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Abstract
In the area of multi-objective evolutionary algo-
rithms (MOEAs), there is a trend of using an
archive to store non-dominated solutions generated
during the search. This is because 1) MOEAs may
easily end up with the final population containing
inferior solutions that are dominated by other so-
lutions discarded during the search process and 2)
the population that has a commensurable size of
the problem’s Pareto front is often not practical. In
this paper, we theoretically show, for the first time,
that using an archive can guarantee speed-ups for
MOEAs. Specifically, we prove that for two well-
established MOEAs (NSGA-II and SMS-EMOA)
on two commonly studied problems (OneMinMax
and LeadingOnesTrailingZeroes), using an archive
brings a polynomial acceleration on the expected
running time. The reason is that with an archive,
the size of the population can reduce to a small
constant; there is no need for the population to
keep all the Pareto optimal solutions found. This
contrasts existing theoretical studies for MOEAs
where a population with a commensurable size of
the problem’s Pareto front is needed. The findings
in this paper not only provide a theoretical confir-
mation for an increasingly popular practice in the
design of MOEAs, but can also be beneficial to the
theory community towards studying more practical
MOEAs.

1 Introduction
Multi-objective optimization refers to an optimization sce-
nario of considering multiple objectives simultaneously.
Since the objectives of a multi-objective optimization prob-
lem (MOP) are usually conflicting, there does not exist a sin-
gle optimal solution, but a set of trade-off solutions, called
Pareto optimal solution set (or Pareto front in the objec-
tive space). Evolutionary algorithms (EAs), a kind of ran-
domized heuristic optimization algorithms inspired by natu-
ral evolution, have been found well-suited to MOPs. Their
population-based search mechanism can approximate a set of
Pareto optimal solutions within one execution, with one solu-
tion representing a different trade-off between the objectives.

Over the last decades, there have been a lot of well-known
multi-objective EAs (MOEAs) developed, such as the non-
dominated sorting genetic algorithm II (NSGA-II) [Deb et al.,
2002], multi-objective evolutionary algorithm based on de-
composition (MOEA/D) [Zhang and Li, 2007], and S metric
selection evolutionary multi-objective optimization algorithm
(SMS-EMOA) [Beume et al., 2007].

In the MOEA area, recently there is a trend of using
an archive to store non-dominated solutions generated dur-
ing the search [Li et al., 2023b]. A major reason for this
practice is that the population in MOEAs may fail to pre-
serve high-quality solutions found even with elite preser-
vation [Knowles and Corne, 2004]. During the evolution-
ary process, it is highly likely that there are more non-
dominated solutions generated than the capacity of the pop-
ulation. As such, a population truncation needs to take place
to remove excess non-dominated solutions (e.g., on the ba-
sis of their crowdedness in the population). However, the
population later may accept new solutions which are non-
dominated to the current population but being dominated by
the ones removed previously (due to the dynamics of the
evolution, for example, some area becomes sparse again).
Consequently, the final population may have a large por-
tion of dominated solutions. This applies to all practical
MOEAs [Li et al., 2023b]. For example, it has been re-
ported in [Li and Yao, 2019] that on some problems (such as
DTLZ7 [Deb et al., 2005]), nearly half of the final population
of NSGA-II and MOEA/D are not globally optimal (i.e., be-
ing dominated by other solutions which were discarded dur-
ing their evolutionary process). This unwelcome issue has
been frequently observed in various scenarios, from synthetic
test suites [Laumanns et al., 2002; Fieldsend et al., 2003;
Li and Yao, 2019] to real-world problems [Fieldsend, 2017;
Chen et al., 2019].

An easy way to fix the above issue is to use an (unbounded)
archive that stores all non-dominated solutions found, leav-
ing the search focused on finding new non-dominated solu-
tions. This is indeed an increasingly popular practice [Li
et al., 2023b], given the capacity of today’s computers that
storing millions of solutions does not pose a problem. Var-
ious studies of using an unbounded archive emerged [Li et
al., 2023b], including to store high-quality solutions [Dubois-
Lacoste et al., 2015; Ishibuchi et al., 2020; Zhang et al.,
2023], to incorporate it into MOEAs as an important al-
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OneMinMax LeadingOnesTrailingZeroes

Original NSGA-II, namely, the one without
using an archive ([Bian and Qian, 2022]) O(µn log n) [µ ≥ 2(n+ 1)] O(µn2) [µ ≥ 2(n+ 1)]

NSGA-II using an archive (this paper) O(µn log n) [Thm 1, µ ≥ 4] O(µn2 + µ2n log n) [Thm 2, µ ≥ 4]

Original SMS-EMOA, namely, the one without
using an archive ([Zheng and Doerr, 2024]) O(µn log n) [µ ≥ n+ 1] O(µn2) [µ ≥ n+ 1]

SMS-EMOA using an archive (this paper) O(µn log n) [Thm 3, µ ≥ 2] O(µn2 + µ2n log n) [Thm 4, µ ≥ 2]

Table 1: The expected number of fitness evaluations of NSGA-II and SMS-EMOA for solving the OneMinMax and LeadingOnesTrailingZe-
roes problems when an archive is used or not, where n denotes the problem size, and µ denotes the population size.

gorithm component [Wang et al., 2019; Li et al., 2021],
to benchmark different MOEAs [Tanabe and Oyama, 2017;
Brockhoff and Tušar, 2019], to use it to identify if the search
stagnates [Li et al., 2023a], and to design efficient data struc-
ture for it [Glasmachers, 2017; Jaszkiewicz and Lust, 2018;
Fieldsend, 2020; Nan et al., 2020]. An archive (even a
bounded one) can significantly improve the performance of
MOEAs, as shown empirically in [Bezerra et al., 2019].

In this paper, we theoretically show that using an archive
can bring speed-ups for MOEAs. Specifically, we study
the expected running time of two well-established MOEAs,
NSGA-II and SMS-EMOA, when using an archive to store
non-dominated solutions generated during the search. We
consider two bi-objective optimization problems, OneMin-
Max and LeadingOnes-TrailingZeroes, which were com-
monly used in theoretical studies of MOEAs [Laumanns et
al., 2004; Doerr et al., 2013; Nguyen et al., 2015; Bian and
Qian, 2022; Zheng and Doerr, 2023a].

The results are given in Table 1. As can be seen in the ta-
ble, using an archive allows a small constant population size,
which brings an acceleration of Θ(n) on the expected run-
ning time. Note that the original algorithms without using an
archive require the population size µ to be at least the same
size of the problem’s Pareto front (i.e., µ ≥ 2(n + 1) for
NSGA-II and µ ≥ n+1 for SMS-EMOA, where n+1 is the
size of the Pareto front), otherwise Pareto optimal solutions
can be lost even if they have been found previously. Using
an archive that stores all the Pareto optimal solutions gener-
ated enables the algorithms not to worry about losing Pareto
optimal solutions, but only endeavoring to seek new Pareto
optimal solutions, thus speeding up the search process.

Over the past two decades, there is a substantial num-
ber of theoretical studies in the area of MOEAs, particularly
regarding their running time complexity analyses. It starts
with the analysis of a simple evolutionary multi-objective op-
timizer (SEMO) and its global variant, GSEMO, for solv-
ing multi-objective synthetic and combinatorial optimization
problems [Giel, 2003; Laumanns et al., 2004; Neumann,
2007; Giel and Lehre, 2010; Neumann and Theile, 2010;
Doerr et al., 2013; Qian et al., 2013; Bian et al., 2018]. On the
other side, based on SEMO and GSEMO, the effectiveness of
several parent selection and reproduction methods has also
been studied [Laumanns et al., 2004; Friedrich et al., 2011;
Qian et al., 2013; Qian et al., 2016; Doerr and Zheng, 2021].

Recently, attention is being shifted to the analysis of prac-

tical MOEAs. The expected running time of (µ+ 1) SIBEA,
i.e., an MOEA using the hypervolume indicator to update
the population, was analyzed on several synthetic prob-
lems [Brockhoff et al., 2008; Nguyen et al., 2015; Doerr et
al., 2016]. Very recently, Zheng and Doerr [2023a] analyzed
the expected running time of NSGA-II, for the first time, by
considering the bi-objective OneMinMax and LeadingOnes-
TrailingZeroes problems. Since then, the effectiveness of dif-
ferent components and mechanisms in NSGA-II, e.g., crowd-
ing distance [Zheng and Doerr, 2022], stochastic tournament
selection [Bian and Qian, 2022], fast mutation [Doerr and
Qu, 2023a], crossover [Dang et al., 2023b; Doerr and Qu,
2023c], and diversity maintenance [Ren et al., 2024], has also
been analyzed. More results on NSGA-II include [Cerf et al.,
2023; Doerr and Qu, 2023a; Doerr and Qu, 2023b; Zheng and
Doerr, 2023b]. Furthermore, the expected running time of
other well-established MOEAs has also been analyzed, e.g.,
MOEA/D [Huang et al., 2019; Huang and Zhou, 2020; Huang
et al., 2021], SMS-EMOA [Bian et al., 2023; Ren et al., 2024;
Zheng and Doerr, 2024], and NSGA-III [Wietheger and Do-
err, 2023], in addition to the analysis of them under different
optimization models such as under noise [Dang et al., 2023a;
Dinot et al., 2023] and the interactive model [Lu et al., 2024].

Yet, all the above work regarding practical MOEAs needs
a population with a commensurable size of the problem’s
Pareto front. This may not be very practical since one may not
be able to know the size of the problem’s Pareto front before
the optimization. The proposed work in this paper addresses
this issue and proves that a small population, with an archive,
even works better. This result not only provides a theoreti-
cal confirmation for an increasingly popular practice in the
development of MOEAs, but can also be beneficial to the the-
ory community towards studying more practical MOEAs.

2 Preliminaries
In this section, we first give basic concepts in multi-objective
optimization, which is followed by the considered algo-
rithms NSGA-II and SMS-EMOA, and the archive mecha-
nism. Lastly, we describe the OneMinMax and LeadingOn-
esTrailingZeroes problems studied in this paper.

2.1 Multi-objective Optimization
Multi-objective optimization aims to optimize two or more
objective functions simultaneously, as presented in Defini-
tion 1. In this paper, we consider maximization (minimization
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can be defined similarly), and pseudo-Boolean functions, i.e.,
the solution space X = {0, 1}n. Since the objectives are usu-
ally conflicting, there does not exist canonical complete order
in the solution space X , and we use the domination relation-
ship in Definition 2 to compare solutions. A solution is Pareto
optimal if it is not dominated by any other solution in X , and
the set of objective vectors of all the Pareto optimal solutions
is called the Pareto front. The goal of multi-objective opti-
mization is to find the Pareto front or its good approximation.
Definition 1 (Multi-objective Optimization). Given a feasi-
ble solution space X and objective functions f1, f2, . . . , fm,
multi-objective optimization can be formulated as

max
x∈X

f(x) = max
x∈X

(
f1(x), f2(x), ..., fm(x)

)
.

Definition 2 (Domination). Let f = (f1, f2, . . . , fm) : X →
Rm be the objective vector. For two solutions x and y ∈ X :

• x weakly dominates y (denoted as x ⪰ y) if for any
1 ≤ i ≤ m, fi(x) ≥ fi(y);

• x dominates y (denoted as x ≻ y) if x ⪰ y and
fi(x) > fi(y) for some i;

• x and y are incomparable if neither x ⪰ y nor y ⪰ x.

2.2 NSGA-II and SMS-EMOA
The NSGA-II algorithm [Deb et al., 2002], as presented
in Algorithm 1, is a very popular MOEA which incorpo-
rates two substantial features, i.e., non-dominated sorting and
crowding distance. It starts from an initial population of µ
(without loss of generality, we assume that µ is even) ran-
dom solutions (line 1). In each generation, NSGA-II em-
ploys binary tournament selection to select parent solutions
(line 5), which picks two solutions randomly from the pop-
ulation P with replacement, and then selects a better one
as the parent solution (ties broken uniformly). Then, one-
point crossover is performed on the two parent solutions with
probability pc (lines 6–11), which selects a crossover point
i ∈ {1, 2, . . . , n} uniformly at random, where n is the prob-
lem size, and then exchanges the first i bits of two solutions.
The bit-wise mutation operator, which flips each bit of a so-
lution independently with probability 1/n, is then applied to
generate offspring solutions (line 12). After a set P ′ of µ
offspring solutions have been generated, the solutions in the
current and offspring populations are partitioned into non-
dominated sets R1, . . . , Rv (line 15), where R1 contains all
the non-dominated solutions in P ∪ P ′, and Ri (i ≥ 2) con-
tains all the non-dominated solutions in (P ∪ P ′) \ ∪i−1

j=1Rj .
Note that a solution is said to be with rank i if it belongs
to Ri. Then, the solutions in R1, . . . , Rv are added into the
next population, until the population size exceeds µ (lines 16–
19). For the critical set Ri whose inclusion makes the popu-
lation size larger than µ, the crowding distance is computed
for each of the contained solutions (line 20). Crowding dis-
tance reflects the diversity of a solution. For each objective
fj , 1 ≤ j ≤ m, the solutions in Ri are sorted according to
their objective values in ascending order, and we assume the
sorted list is x1,x2, . . . ,xk; the crowding distance of the so-
lution xl with respect to fj is set to ∞ if l ∈ {1, k}, and
(fj(x

l+1) − fj(x
l−1))/(fj(x

k) − fj(x
1)) otherwise. The

Algorithm 1 NSGA-II [Deb et al., 2002]
Input: objective functions f1, f2 . . . , fm, population size µ,
probability pc of using crossover

1: P ← µ solutions uniformly and randomly selected from
{0,1}n with replacement;

2: while criterion is not met do
3: let P ′ = ∅, i = 0;
4: while i < µ/2 do
5: apply binary tournament selection twice to select

two solutions x and y;
6: sample u from uniform distribution over [0, 1];
7: if u < pc then
8: apply one-point crossover on x and y to generate

two solutions x′ and y′

9: else
10: set x′ and y′ as copies of x and y, respectively
11: end if
12: apply bit-wise mutation on x′ and y′ to generate x′′

and y′′, respectively, and add them into P ′;
13: i = i+ 1
14: end while
15: partition P ∪P ′ into non-dominated sets R1, . . . , Rv;
16: let P = ∅, i = 1;
17: while |P ∪Ri| < µ do
18: P = P ∪Ri, i = i+ 1
19: end while
20: assign each solution in Ri with a crowding distance;
21: sort the solutions in Ri in ascending order by crowding

distance, and add the last µ− |P | solutions into P
22: end while
23: return P

final crowding distance of a solution is the sum of the crowd-
ing distance with respect to each objective. Finally, the solu-
tions in Ri are selected to fill the remaining population slots
where the solutions with larger crowding distance are pre-
ferred (line 21). Note that when using binary tournament se-
lection in line 5, the selection criterion is based on rank and
crowding distance, that is, a solution x is superior to y if x
has a smaller rank, or x and y have the same rank but x has a
larger crowding distance than y. The probability pc of using
crossover is set to 0.9, just as the setting in [Deb et al., 2002].

The SMS-EMOA algorithm [Beume et al., 2007] as pre-
sented in Algorithm 2 is also a popular MOEA, which em-
ploys non-dominated sorting and hypervolume indicator to
update the population. Starting from an initial population
of µ random solutions (line 1), in each generation, it ran-
domly selects a parent solution x from the current popula-
tion for reproduction (line 3). With probability pc (similar
to NSGA-II, pc is set to 0.9), it selects another solution y
and applies one-point crossover on x and y to generate an
offspring solution x′ (lines 4–7); otherwise, x′ is set as the
copy of x (line 9). Note that one-point crossover actually
produces two solutions, but the algorithm only picks the one
that consists of the first part of the first parent solution and
the second part of the second parent solution. Afterwards,
bit-wise mutation is applied on x′ to generate one offspring
solution (line 11). Then, similar to line 15 of Algorithm 1,
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Algorithm 2 SMS-EMOA [Beume et al., 2007]
Input: objective functions f1, f2 . . . , fm, population size µ,
probability pc of using crossover

1: P ← µ solutions uniformly and randomly selected from
{0,1}n with replacement;

2: while criterion is not met do
3: select a solution x from P uniformly at random;
4: sample u from uniform distribution over [0, 1];
5: if u < pc then
6: select a solution y from P uniformly at random;
7: apply one-point crossover on x and y to generate

one solution x′

8: else
9: set x′ as the copy of x

10: end if
11: apply bit-wise mutation on x′ to generate x′′;
12: partition P∪{x′′} into non-dominated sets R1, ...,Rv;
13: let z = argminx∈Rv ∆r(x, Rv);
14: P ← (P ∪ {x′′}) \ {z}
15: end while
16: return P

the union of the current population and the newly gener-
ated offspring solution is partitioned into non-dominated sets
R1, . . . , Rv (line 12), and one solution z ∈ Rv that mini-
mizes ∆r(x, Rv) := HVr(Rv)−HVr(Rv\{x}) is removed
(lines 13–14), where HVr(X) = Λ

(
∪x∈X {f ′ ∈ Rm | ∀1 ≤

i ≤ m : ri ≤ f ′
i ≤ fi(x)}

)
denotes the hypervolume of a

solution set X with respect to a reference point r ∈ Rm (sat-
isfying ∀1 ≤ i ≤ m, ri ≤ minx∈X fi(x)), i.e., the volume of
the objective space between the reference point and the objec-
tive vectors of the solution set, and Λ denotes the Lebesgue
measure. A larger hypervolume value implies a better ap-
proximation with regards to both convergence and diversity.
Note that when SMS-EMOA solves bi-objective problems,
we use the original setting in [Beume et al., 2007] that the
two extreme points (i.e., the objective vectors which contain
the largest objective value for some fi, i ∈ {1, 2}) are always
kept in the population regardless of their hypervolume loss.

2.3 NSGA-II and SMS-EMOA with an Archive
In the original NSGA-II and SMS-EMOA, there is no archive
used. As explained previously, the non-dominated solutions
may lose even if they have been found once. Using an archive
can easily address this issue. That is, once a new solution
is generated, the solution will be tested if it can enter the
archive. If there is no solution in the archive that domi-
nates the new solution, then the solution will be placed in
the archive. Additional algorithmic steps incurred by adding
an archive in NSGA-II and SMS-EMOA are given as follows.
For NSGA-II in Algorithm 1, an empty set Q is initialized in
line 1, the following lines

for x′′ ∈ P ′ do
if ∄z ∈ Q such that z ≻ x′′ then
Q← (Q \ {z ∈ Q | x′′ ⪰ z}) ∪ {x′′}

end if

end for

are added after line 14, and the set Q instead of P is returned
in the last line. For SMS-EMOA in Algorithm 2, an empty
set Q is also initialized in line 1, the following lines

if ∄z ∈ Q such that z ≻ x′′ then
Q← (Q \ {z ∈ Q | x′′ ⪰ z}) ∪ {x′′}

end if

are added after line 11, and the set Q instead of P is returned
in the last line.

2.4 OneMinMax and LeadingOnesTrailingZeroes
Now we introduce two bi-objective problems, OneMinMax
and LeadingOnesTrailingZeroes considered in this paper.
Theses two problems have been widely used in MOEAs’ the-
oretical analyses [Laumanns et al., 2004; Brockhoff et al.,
2008; Doerr et al., 2013; Qian et al., 2013; Bian and Qian,
2022; Zheng and Doerr, 2023a].

The OneMinMax problem presented in Definition 3 aims
to simultaneously maximize the number of 0-bits and the
number of 1-bits of a binary bit string. The Pareto front is
{(a, n− a) | a ∈ [0..n]}, whose size is n+ 1, and the Pareto
optimal solution corresponding to (a, n − a), a ∈ [0..n], is
any solution with (n−a) 1-bits. Note that we use [l..r] to de-
note the set {l, l+1, . . . , r} of integers throughout the paper.
We can see that any solution x ∈ {0, 1}n is Pareto optimal
for this problem.
Definition 3 (OneMinMax [Giel and Lehre, 2010]). The
OneMinMax problem of size n is to find n bits binary strings
which maximize f(x) = (n−

∑n
i=1 xi,

∑n
i=1 xi), where xi

denotes the i-th bit of x ∈ {0, 1}n.

The LeadingOnesTrailingZeroes problem presented in
Definition 4 aims to simultaneously maximize the number of
leading 1-bits and the number of trailing 0-bits of a binary bit
string. The Pareto front is {(a, n − a) | a ∈ [0..n]}, whose
size is n + 1, and the Pareto optimal solution corresponding
to (a, n − a), a ∈ [0..n], is 1a0n−a, i.e., the solution with a
leading 1-bits and n− a trailing 0-bits.
Definition 4 (LeadingOnesTrailingZeroes [Laumanns et al.,
2004]). The LeadingOnesTrailingZeroes problem of size n
is to find n bits binary strings which maximize f(x) =

(
∑n

i=1

∏i
j=1 xj ,

∑n
i=1

∏n
j=i(1−xj)), where xj denotes the

j-th bit of x ∈ {0, 1}n.

3 Analysis of NSGA-II with an Archive
In this section, we analyze the expected running time of
NSGA-II in Algorithm 1 using an archive. Note that the run-
ning time of an EA is usually measured by the number of
fitness evaluations, which is often the most time-consuming
step in the evolutionary process. We prove in Theorem 1 that
the expected number of fitness evaluations of NSGA-II using
an archive for solving OneMinMax is O(µn log n), where the
population size µ ≥ 4. The proof idea is to divide the op-
timization procedure into two phases, where the first phase
aims at finding the two extreme Pareto optimal solutions 1n
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and 0n, and the second phase aims at finding the remaining
objective vectors in the Pareto front.

Theorem 1. For NSGA-II solving OneMinMax, if using an
archive, and a population size µ such that µ ≥ 4, then the
expected number of fitness evaluations for finding the Pareto
front is O(µn log n).

Proof. We divide the running process of NSGA-II into two
phases. The first phase starts after initialization and finishes
until 1n and 0n are both found; the second phase starts after
the first phase and finishes when the Pareto front is found.

For the first phase, we will prove that the expected num-
ber of generations for finding 0n is O(n log n), and then the
same bound holds for finding 1n analogously. We first show
that the maximal f1 value of the solutions in the population
P , i.e., maxx∈P |x|0, will not decrease, where |x|0 denotes
the number of 0-bits in x. Let C denote the set of solutions
in P ∪ P ′ with the maximal f1 value, where P ′ denotes the
offspring population. Because of P ⊆ P ∪ P ′ and the defi-
nition of C, we have for any x ∈ C, |x|0 ≥ maxx∈P |x|0.
Thus, we only need to show that one solution in C will be
maintained in the next population. Because all the solutions
in C have the maximal f1 value and the same f2 value, they
cannot be dominated by any solution in P ∪P ′, implying that
they all have rank 1, i.e., belong to R1 in the non-dominated
sorting procedure. If |R1| ≤ µ, all the solutions in C will be
maintained in the next population. If |R1| > µ, the crowding
distance of the solutions in R1 needs to be computed. When
the solutions in R1 are sorted according to f1 in ascending
order, one solution in C (denoted as x∗) must be put in the
last position and thus has infinite crowding distance. Note
that only solutions in the first and the last positions can have
infinite crowding distance. As OneMinMax has two objec-
tives, at most four solutions in R1 can have infinite crowding
distance. Thus, x∗ is among the best four solutions in R1 and
must be included in the next population (note that µ ≥ 4),
implying that the maximal f1 value will not decrease.

Next, we analyze the increase of the maximal f1 value.
Assume that currently the maximal f1 value is i (i < n), i.e.,
maxx∈P |x|0 = i. When using binary tournament selection
to select a parent solution, the competition between the two
randomly selected solutions is based on rank and crowding
distance (note that the rank and crowding distance here are
computed based on the current population P instead of the
union of the current population and the offspring population)
with ties broken uniformly. As analyzed in the last paragraph,
a solution x ∈ P with |x|0 = i must have rank 1 and infinite
crowding distance. Once x is selected for competition (whose
probability is 1/µ), it will always win, if the other solution
selected for competition has larger rank or finite crowding
distance; or win with probability 1/2, if the other solution
has the same rank and crowding distance as x, resulting in
a tie which is broken uniformly at random. Thus, x can be
selected as a parent solution with probability at least 1/(2µ).
In the reproduction procedure, a solution with more 0-bits
can be generated from x if crossover is not performed (whose
probability is 1 − 0.9 = 0.1) and only one of the 1-bits in x
is flipped by bit-wise mutation (whose probability is ((n −
|x|0)/n) · (1− 1/n)n−1). Thus, the probability of generating

a solution with more than i 0-bits is at least
1

2µ
· 0.1 · n− |x|0

n
·
(
1− 1

n

)n−1

≥ n− i

20eµn
. (1)

Because in each generation, µ/2 pairs of parent solutions will
be selected for reproduction, the probability of generating a
solution with more than i 0-bits is at least

1−
(
1− n− i

20eµn

)µ/2

≥ 1− 1

e(n−i)/(40en)

≥ 1− 1

1 + (n− i)/(40en)
= Ω

(n− i

n

)
,

where the inequalities hold by 1 + a ≤ ea for any a ∈ R.
Because the solution with the most number of 0-bits will be
maintained in the population, the expected number of genera-
tions for increasing the maximal f1 value to n, i.e., finding 0n,
is at most

∑n−1
i=0 O(n/(n− i)) = O(n log n). That is, the ex-

pected number of generations of the first phase is O(n log n).
Now we consider the second phase, and will show that

NSGA-II can find the whole Pareto front in O(n log n) ex-
pected numbers of generations. Note that after phase 1,
0n and 1n must be maintained in the population P . Let
D = {j | ∃x ∈ Q, |x|0 = j}, where Q denotes the archive,
and we suppose |D| = i, i.e., i points in the Pareto front has
been found in the archive. Note that i ≥ 2 as 0n and 1n have
been found. Next, we consider two cases.
(1) The number of 1n or the number of 0n in the current popu-
lation P is at least µ/4. Without loss of generality, we assume
that the number of 0n is at least µ/4. Then, the probability
of selecting 0n as a parent solution is at least (1/4)2 = 1/16,
because it is sufficient to select 0n twice in binary tourna-
ment selection. According to the analysis in the paragraph
above Eq. (1), the probability of selecting 1n as the other par-
ent solution is at least 1/(2µ). After exchanging the first k
(k ∈ [0..n] \ D) bits of 0n and 1n by one-point crossover
(the probability is 0.9 · (1/n)), a solution with k 0-bits can be
generated, which can keep unchanged after bit-wise mutation
if none of the bits is flipped (the probability is (1 − 1/n)n).
Thus, the probability of generating a new point in the Pareto
front is at least

1

16
· 1

2µ
· 0.9 · n+ 1− i

n
·
(
1− 1

n

)n

≥ n+ 1− i

32µn
· 0.9 ·

(
1− 1

n

)
· 1
e
≥ n+ 1− i

64eµn
,

(2)

where the term n+1−i is because there are |[0..n]\D| = n+
1− i points in the Pareto front to be found, the first inequality
holds by (1 − 1/n)n−1 ≥ 1/e, and the second inequality
holds for n ≥ 3.
(2) The number of 1n and the number of 0n in the current
population P are both less than µ/4. Then, in one binary
tournament selection procedure, the probability of selecting
two solutions with the number of 0-bits in [1..n − 1] is at
least (µ − µ/4 − µ/4)2/µ2 = 1/4, and we assume that the
winning solution x has j (j ∈ [1..n − 1]) 0-bits. If the other
selected parent solution is 0n, then for any k ∈ [j+1..n]\D,
there must exist a crossover point k′ such that exchanging the
first k′ bits of x and 0n can generate a solution with k 0-
bits. If the other selected parent solution is 1n, then for any
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k ∈ [0..j − 1] \D, there must exist a crossover point k′ such
that exchanging the first k′ bits of x and 1n can generate a
solution with k 0-bits. The newly generated solution can keep
unchanged by flipping no bits in bit-wise mutation. Note that
the probability of selecting 1n (or 0n) as a parent solution is
at least 1/(2µ). Thus, similar to Eq. (2), the probability of
generating a new point in the Pareto front is at least

1

4
· 1

2µ
· 0.9 · n+ 1− |D|

n
·
(
1− 1

n

)n

≥ n+ 1− i

16eµn
. (3)

By taking the smaller one between Eqs. (2) and (3), and using
the fact that NSGA-II produces µ/2 pairs of offspring solu-
tions in each generation, the probability of generating a new
point in the Pareto front in each generation is at least

1−
(
1− n+ 1− i

64eµn

)µ/2

= Ω
(n+ 1− i

n

)
.

Then, we can derive that the expected number of generations
of the second phase (i.e., for finding the whole Pareto front)
is at most

∑n
i=2 O(n/(n+ 1− i)) = O(n log n).

Combining the two phases, the total expected number of
generations is O(n log n), implying that the expected number
of fitness evaluations is O(µn log n), because each generation
of NSGA-II requires to evaluate µ offspring solutions. Thus,
the theorem holds.

We prove in Theorem 2 that the expected number of fitness
evaluations of NSGA-II using an archive for solving Leadin-
gOnesTrailingZeroes is O(µn2 + µ2n log n), where the pop-
ulation size µ ≥ 4. As the proof of Theorem 1, we divide the
optimization procedure into two phases, that is to find the ex-
treme solutions 1n and 0n, and to find the whole Pareto front,
respectively. But due to the fact that only solutions with the
form 1j0n−j are Pareto optimal for LeadingOnesTrailingZe-
roes while any solution is Pareto optimal for OneMinMax,
their analyses of increasing the maximal f1 value in the first
phase as well as generating new Pareto optimal solutions in
the second phase are different. The detailed proof of Theo-
rem 2 is given in the supplementary due to space limitation.

Theorem 2. For NSGA-II solving LeadingOnesTrailingZe-
roes, if using an archive, and a population size µ such that
µ ≥ 4, then the expected number of fitness evaluations for
finding the Pareto front is O(µn2 + µ2n log n).

The expected number of fitness evaluations of the origi-
nal NSGA-II (without using an archive) for solving OneMin-
Max and LeadingOnesTrailingZeroes has been shown to be
O(µn log n) and O(µn2), respectively, where the population
size µ ≥ 2(n + 1) [Bian and Qian, 2022]. Thus, our re-
sults in Theorems 1 and 2 show that if a constant population
size is used for NSGA-II having an archive, the expected run-
ning time can be reduced by a factor of Θ(n). The main rea-
son for the acceleration is that the archive can preserve all
the non-dominated solutions generated so far, which enables
NSGA-II to discard solutions that are not critical for finding
the Pareto front, and thus to use a small population bringing
more efficient exploration of the search space.

4 Analysis of SMS-EMOA with an Archive
In this section, we consider SMS-EMOA in Algorithm 2 us-
ing an archive. We prove in Theorems 3 and 4 that the ex-
pected number of fitness evaluations of SMS-EMOA using
an archive for solving OneMinMax and LeadingOnesTrail-
ingZeroes is O(µn log n) and O(µn2 + µ2n log n), respec-
tively, where the population size µ ≥ 2. Their proofs are
similar to that of Theorems 1 and 2, respectively. That is, we
divide the optimization procedure into two phases, where the
first phase aims at finding 1n and 0n, and the second phase
aims at finding the whole Pareto front. The main difference
of the proofs is led by that 1) during the population update
procedure, SMS-EMOA directly preserves two boundary ob-
jective vectors which contain the largest objective value for
f1 or f2, and 2) during the reproduction procedure, it uses
uniform parent selection and generates only one offspring so-
lution in each generation. The detailed proof of Theorem 4 is
given in the supplementary due to space limitation.
Theorem 3. For SMS-EMOA solving OneMinMax, if using
an archive, and a population size µ such that µ ≥ 2, then the
expected number of fitness evaluations for finding the Pareto
front is O(µn log n).

Proof. For the first phase, the maximal f1 value will not de-
crease because SMS-EMOA directly keeps the two boundary
points in the population update procedure. Now, we consider
the increase of the maximal f1 value. Note that SMS-EMOA
in Algorithm 2 selects a parent solution uniformly at random,
instead of using binary tournament selection; thus, the prob-
ability of selecting any specific solution in the population is
1/µ. Eq. (1) changes to

1

µ
· 0.1 · n− |x|0

n
·
(
1− 1

n

)n−1

≥ n− i

10eµn
.

Different from NSGA-II which produces µ/2 pairs of off-
spring solutions in each generation, SMS-EMOA only repro-
duces one solution in each generation. Thus, the expected
number of generations for increasing the maximal f1 value
to n, i.e., finding 0n, is at most

∑n−1
i=0 10eµn/(n − i) =

O(µn log n). That is, the expected number of generations
of the first phase is O(µn log n).

For the second phase, by considering the difference be-
tween uniform parent selection employed by SMS-EMOA
and binary tournament selection employed by NSGA-II,
Eq. (2) changes to

1

4
· 1
µ
· 0.9 · n+ 1− i

n
·
(
1− 1

n

)n

≥ n+ 1− i

8eµn
,

and Eq. (3) changes to

1

2
· 1
µ
· 0.9 · n+ 1− |D|

n
·
(
1− 1

n

)n

≥ n+ 1− i

4eµn
.

Thus, the expected number of generations of the second
phase (i.e., for finding the whole Pareto front) is at most∑n

i=2 8eµn/(n+ 1− i) = O(µn log n).
Combining the two phases, the total expected number of

generations is O(µn log n). Since SMS-EMOA only gener-
ates one solution in generation, the expected number of fit-
ness evaluations is also O(µn log n).
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Theorem 4. For SMS-EMOA solving LeadingOnesTrail-
ingZeroes, if using an archive, and a population size µ such
that µ ≥ 2, then the expected number of fitness evaluations
for finding the Pareto front is O(µn2 + µ2n log n).

The expected number of fitness evaluations of the orig-
inal SMS-EMOA (without crossover) solving OneMinMax
and LeadingOnesTrailingZeroes has been shown to be
O(µn log n) and O(µn2), respectively, where the population
size µ ≥ n+1 [Zheng and Doerr, 2024]. Though their analy-
sis does not consider crossover, the running time bounds still
hold asymptotically here as the crossover operator is not per-
formed with a constant probability 0.1 in Algorithm 2. Note
that the size of the Pareto front is n+1, thus when µ < n+1,
the whole Pareto front cannot be covered. Therefore, our re-
sults in Theorems 3 and 4 show that if a constant population
size is used for SMS-EMOA having an archive, the expected
running time can be accelerated by a factor of Θ(n). The
main reason for the acceleration is similar to that of NSGA-
II. That is, introducing the archive enables SMS-EMOA to
only preserve essential solutions for locating the Pareto front,
and thus makes the exploration more efficient.

5 Experiments
In the previous sections, we have proved that when an archive
is used in NSGA-II and SMS-EMOA, the expected number of
fitness evaluations for solving OneMinMax and LeadingOn-
esTrailingZeroes can be reduced by a factor of Θ(n). How-
ever, as only upper bounds on the running time of the original
NSGA-II and SMS-EMOA have been derived, we conduct
experiments to examine their actual performance to comple-
ment the theoretical results.

Specifically, we set the problem size n from 10 to 50,
with a step of 10. For NSGA-II and SMS-EMOA using
an archive, the population size µ is set to 4 and 2, respec-
tively, as suggested in Theorems 1–4. For the original NSGA-
II and SMS-EMOA without an archive, we test three val-
ues of µ, i.e., n + 1, 2(n + 1), and 4(n + 1), as sug-
gested by [Bian and Qian, 2022; Zheng and Doerr, 2023a;
Zheng and Doerr, 2024]. Note that n + 1 is the size of the
Pareto front of OneMinMax and LeadingOnesTrailingZeroes.
If using a population size µ < n + 1, the original algo-
rithms without archive obviously cannot find the Pareto front.
For each n, we run an algorithm 1000 times independently,
and record the average number of fitness evaluations until the
Pareto front is found. In case where the Pareto front cannot
be found in acceptable running time, we set the maximum
number of fitness evaluations to 5× 104 for OneMinMax and
2×105 for LeadingOnesTrailingZeroes. We can observe from
Figure 1 that using an archive brings a clear acceleration.

We can also observe that when using a population size of
n+1, SMS-EMOA performs much better than NSGA-II. The
main reason is that for NSGA-II, when two Pareto optimal so-
lutions corresponding to one objective vector (e.g., two solu-
tions corresponding to one boundary point in the Pareto front)
have been found, they both can have fairly large crowding dis-
tance, and thus occupy two slots in the population. Then, the
population size of n+ 1 is not sufficient to ensure the preser-
vation of objective vectors in the Pareto front. However, for

(a) NSGA-II

(b) SMS-EMOA

Figure 1: Average number of fitness evaluations of NSGA-II and
SMS-EMOA with or without an archive for solving the OneMinMax
and LeadingOnesTrailingZeroes problems. Left subfigure: OneM-
inMax; right subfigure: LeadingOnesTrailingZeroes.

SMS-EMOA, these duplicate Pareto optimal solutions have
a zero hypervolume contribution, and thus are less preferred,
implying that they will not affect the preservation of other
objective vectors in the Pareto front. Meanwhile, since SMS-
EMOA only removes one solution in each generation, the ob-
jective vector corresponding to these duplicate solutions will
also be preserved. Thus, a population size of n+1 is sufficient
for SMS-EMOA to preserve the whole Pareto front.

6 Conclusion
In this paper, we perform a first theoretical study for MOEAs
with an archive, an increasingly popular practice in the de-
sign of MOEAs. Through rigorous running time analysis
for NSGA-II and SMS-EMOA solving two commonly stud-
ied bi-objective problems, OneMinMax and LeadingOnes-
TrailingZeroes, we prove that using an archive can allow
a constant population size, bringing an acceleration of fac-
tor Θ(n). This is also verified by the experiments. Our
results provide theoretical confirmation for the benefit of
using an archive to store non-dominated solutions gener-
ated during the search process of MOEAs, which has fre-
quently been observed empirically [Fieldsend et al., 2003;
Bezerra et al., 2019]. In the future, it would be interest-
ing to derive the lower bounds of NSGA-II and SMS-EMOA
without using an archive to make the comparison strict. An-
other interesting direction is studying real-world problems,
e.g., multi-objective combinatorial optimization problems.
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