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Abstract
Any-angle path planning is an extension of tradi-
tional path-planning algorithms that aims to gen-
erate smoother and shorter paths in graphs by al-
lowing any-angle moves between vertices, rather
than being restricted by edges. Many any-angle
path-planning algorithms have been proposed, such
as Theta*, Block A* and Anya, but most of them
are designed only for static environments, which is
not applicable when dynamic obstacles are present.
Time-Optimal Any-Angle Safe-Interval Path Plan-
ning (TO-AA-SIPP) was developed to fill this gap,
which can find an optimal collision-free any-angle
path that minimizes the traversal time. However, as
indicated by its authors, TO-AA-SIPP may not be
efficient enough to be used in multi-agent pathfind-
ing (MAPF). Therefore, this paper presents a new
algorithm Zeta*-SIPP to improve TO-AA-SIPP by
means of 1) reducing useless search nodes that have
no contribution to finding optimal solutions, and 2)
introducing Field of View (FoV) instead of Line
of Sight (LoS) to speed up visibility checks with
static obstacles. Benchmark experiments showed
that Zeta*-SIPP reduced the computation time of
TO-AA-SIPP by around 70%-90% on average.

1 Introduction
Path planning aims to find an optimal path between two lo-
cations. A* [Hart et al., 1968] is one of the most classic al-
gorithms to solve the path-planning problem. However, the
paths found by A* are usually not the true shortest because
the expansion of A* is limited to adjacent neighbors and thus
the shape of the path is highly affected by the graph structure.
On a square grid map, A* only searches paths in 45-degree
increments. Therefore, any-angle path planning has been de-
veloped, which ignores the edges of the graph and allows
any-angle turns at vertices, to generate smoother and shorter
paths, such as Theta* [Daniel et al., 2010], Block A* [Yap et
al., 2011] and Anya [Harabor et al., 2016]. More analysis and
evaluation regarding any-angle path planning can be found in
[Uras and Koenig, 2015]
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Most any-angle path-planning algorithms are designed
only for static obstacles, which limits their applications in
dynamic environments. Path planning with dynamic obsta-
cles needs to consider the time dimension when searching for
collision-free paths. A common approach to handle it is to di-
vide the time dimension into multiple equal-length time slots,
thus creating a space-time grid map [Silver, 2005]. In this
way, static and dynamic obstacles can both be represented
by space-time grids, and thus path-planning algorithms, like
A*, can be easily extended to dynamic environments. How-
ever, this approach may aggravate the curse of dimensionality
problem because obstacle grids could be quite sparse, espe-
cially when there are only few dynamic obstacles. Therefore,
Safe Interval Path Planning (SIPP) [Phillips and Likhachev,
2011] was proposed to merge consecutive obstacle-free time
slots into safe intervals, creating a compact space-time map
to narrow the search space.

To combine any-angle path planning and SIPP, Any-Angle
SIPP (AA-SIPP) was designed [Yakovlev and Andreychuk,
2017]. The basic idea of AA-SIPP is similar to Theta*. Both
attempt to straighten paths by checking if the neighbors of a
current node can be reached from the parent of this current
node with lower cost. However, this is a greedy approach.
AA-SIPP, like Theta*, is not guaranteed to find true optimal
any-angle paths. Thus, Time-Optimal AA-SIPP with inverted
expansion (TO-AA-SIPP is used in this paper instead of iTO-
AA-SIPP) was further developed [Yakovlev and Andreychuk,
2021] by checking if the paths through the current node to
its neighbors could be straightened by any other node in the
search space rather than only the parent of the current node.
This operation ensures optimality but also slows down the al-
gorithm since too many nodes need to be examined during
the search process. As stated in [Yakovlev and Andreychuk,
2021], TO-AA-SIPP may not be fast enough to be straight-
forwardly used in multi-agent pathfinding (MAPF).

With further research, we found that actually, in TO-AA-
SIPP, not all nodes in the search space contributed to find-
ing optimal paths. Some nodes were never removed from the
open list after being inserted during initialization. Therefore,
it should be possible to improve the performance of TO-AA-
SIPP by reducing these useless nodes. Inspired by Informed
Rapidly-exploring Random Tree* (Informed RRT*) [Gam-
mell et al., 2014] and Batch Informed Trees (BIT*) [Gammell
et al., 2015], we found that the “ellipse” used in Informed
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RRT* and BIT* can be adapted to indicate and limit the cur-
rent search range and thus designed an any-angle forward ex-
pansion to incrementally add necessary nodes to the open list,
like the forward expansion in A*. In this case, nodes outside
the “ellipse” are temporarily useless until they are expanded
by this “ellipse” (search range). By implementing this idea,
Zeta-SIPP was designed.

However, in the worst case, Zeta-SIPP would be as slow
as TO-AA-SIPP because all nodes in the search space would
be expanded by the any-angle forward expansion (“ellipse”).
Therefore, to further improve TO-AA-SIPP and also Zeta-
SIPP, we introduced Field of View (FoV) to replace Line of
Sight (LoS) for collision detection (visibility checks) with
static obstacles and thus developed TO-AA-FoV-SIPP and
Zeta*-SIPP respectively. Zeta*-SIPP can be considered a su-
perior version of Zeta-SIPP since their search processes are
nearly identical except for the visibility check methods. Ac-
cording to the benchmark experiments, Zeta*-SIPP outper-
formed Zeta-SIPP and TO-AA-FoV-SIPP in most cases, es-
pecially when the map was large.

2 Problem Statement
Suppose there is an agent navigating from a start ps to a target
pt in a graph G = (V,E) where V is the set of vertices and E
is the set of edges. Two different types of actions are allowed:
move and wait. It means that the agent can wait at a certain
vertex or move from a vertex to the other vertex. The move-
ment speed is constant and the cost of an action is its duration.
The agent can only turn or wait at the vertices and the inertial
effects are neglected. Please note that in some practical cases,
the wait action is not possible, such as fixed-wing aircraft. To
simplify the problem, the radius of the agent is ignored.

A path plan is an ordered sequence of position-time pairs
π = {(p1, t1), (p2, t2), ..., (pn, tn)}where pi represents a po-
sition and ti denotes the waiting time at the position pi. If the
wait action is forbidden, ti = 0 (i = 1, 2, ..., n). The cost of
the path plan is the sum of the duration of the actions. The
goal of this problem is to find the time-optimal plan from a
given start ps to a given target pt.

We assume that the plans of dynamic obstacles are known:
{π1, π2, ..., πk}, and after the plans are accomplished, the dy-
namic obstacles will disappear. This is reasonable for flying
vehicles. For instance, when drones complete their missions,
they will land to reload or recharge. Some papers assume that
the dynamic obstacles will stay in their target vertices forever
[Yakovlev and Andreychuk, 2021] as on the ground, a robot
cannot suddenly disappear and it will become a static obstacle
after reaching its target.

3 Algorithm Description
3.1 Overview
Before diving into the details of the proposed algorithms, we
briefly introduce the basic idea of TO-AA-SIPP [Yakovlev
and Andreychuk, 2021] and illustrate how it can be improved.

To make the explanation more easily understandable, we
start from the A* algorithm since A* is quite well-known and
also TO-AA-SIPP is A*-based. In A*, after a node is moved
from open to closed, eight neighbor nodes of this closed node

Open Node

Closed Node

Potential Parent

Impassable Path

Figure 1: Inverted expansion to find potential parents of open nodes.

are generated. If a neighbor is not visited before, this closed
node will directly be its parent. However, if it has been vis-
ited, which means it already has a parent, A* needs to com-
pare this closed node with the current parent of this neighbor
node to find out which is better and could be its true par-
ent. These two nodes can both be viewed as potential parents
of this neighbor node, and the metric used for comparison is
g(pp(n)) + g(pp(n), n) where pp(n) is the potential parent
of a node n, g(pp(n)) is the real cost from the start to pp(n)
and g(pp(n), n) is the real cost from pp(n) to n. Therefore,
the current parent of a node n is also its current best potential
parent bpp(n), and thus the real cost g(n) can be written as

g(n) = g(bpp(n)) + g(bpp(n), n) (1)

In TO-AA-SIPP, the cost computation is similar. However,
to speed up the process, it delays the SIPP-based collision
detection with dynamic obstacles until necessary. It means
that TO-AA-SIPP utilizes an estimated cost h(bpp(n), n), the
lower bound, to replace the real cost g(bpp(n), n) in Eq. (1)
when a node is inserted into open. After a node with the mini-
mum cost is removed from open, the SIPP-based collision de-
tection will be executed to compute the real cost g(bpp(n), n)
and determine if this node can be inserted into closed. This
“lazy” evaluation is similar to Lazy Theta* [Nash et al., 2010]
and BIT* [Gammell et al., 2015] which delay line-of-sight
checks with static obstacles. Please note that in TO-AA-SIPP,
only the SIPP-based collision detection with dynamic obsta-
cles is delayed while the line-of-sight checks with static ob-
stacles are not. Hence, the cost function of TO-AA-SIPP is

f(n) = glow(n) + h(n)

= g(bpp(n)) + h(bpp(n), n) + h(n) (2)

where glow(n) is the lower bound of g(n) and h(n) is the
estimated cost from n to the target. This approach needs to
record all the potential parents of the explored nodes. Then it
can conduct the SIPP-based collision detection with dynamic
obstacles later from the best potential parent to the worst po-
tential parent until one can be the true parent (the detailed
process is more complicated). Only when the true parent of
a node is found can this node be inserted into closed and
meanwhile might be a potential parent of other nodes in open.
Since this approach discovers and maintains connections be-
tween open nodes and their potential parents at each search
step, it can be called inverted expansion [Yakovlev and Andr-
eychuk, 2021], as shown in Figure 1.

To find optimal any-angle paths, unlike the eight neighbors
in A*, TO-AA-SIPP examines all nodes in the search space

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6824



at each step. It means that in TO-AA-SIPP, when a node is
closed, all the other nodes can be considered the “neighbors”
of this closed node. The extended “neighbors” guarantee that
TO-AA-SIPP is not limited to 45-degree increments and thus
can find any-angle paths. However, not all search nodes may
contribute to finding optimal paths. For example, if the map
is large, it may be unnecessary to check the visibility connec-
tions between the closed nodes and the nodes that are very
far from the start and target. In this case, many unnecessary
line-of-sight checks may be conducted in TO-AA-SIPP since
too many useless nodes exist in open, which reduces the per-
formance of the algorithm.

To address this issue, a natural idea is to also delay line-of-
sight checks, which can be performed with the SIPP-based
collision detection simultaneously. In this way, only neces-
sary line-of-sight checks will be executed. However, if there
are many static obstacles, it may result in much more sorting
computation in open. This is because after collision detec-
tion, f(n) is updated. Only if f(n) is still the minimum, the
node n can be inserted into closed, otherwise, it has to be
re-inserted into open and reordered. There is a trade-off be-
tween collision detection and sorting computation when ap-
plying the “lazy” evaluation. Since the size of open may be
very large and grid-based line-of-sight checks can be imple-
mented efficiently with line drawing algorithms, like Bresen-
ham’s line algorithm [Bresenham, 1965], Lazy TO-AA-SIPP
could be much slower in the worst case. Therefore, this idea
may not be suitable for improving TO-AA-SIPP.

Another idea is to directly reduce useless nodes in open,
which will lead to both fewer line-of-sight checks and sorting
calculations. In A*, forward expansion is applied to extend
open at each step, and the nodes in open form a boundary of
the A* search (search range). It is promising to develop a sim-
ilar technique for TO-AA-SIPP to reduce the size of open as
in the worst case, only the calculations for forward expansion
are redundant compared to the original TO-AA-SIPP. There-
fore, to implement this idea, Zeta-SIPP is proposed and the
details will be illustrated in section 3.2.

Those familiar with computer graphics may recognize that
line-of-sight checks may not be the best way to conduct col-
lision detection with static obstacles in TO-AA-SIPP. The
closed node can be viewed as a “light source” and the grids
near the “light source” could be checked for multiple times,
leading to a waste of computing resources. Therefore, Field
of View (FoV) is introduced to replace line-of-sight checks.
TO-AA-FoV-SIPP and Zeta*-SIPP are thus developed. Sym-
metric recursive shadowcasting [Bergström, 2001] is applied
to compute the field of view efficiently.

3.2 Zeta-SIPP

The main idea of Zeta-SIPP is to reduce useless open nodes in
TO-AA-SIPP using any-angle forward expansion. It means
that only necessary nodes are expanded and inserted into
open at each step instead of inserting all nodes in the search
space into open at the beginning. Unlike A*, Zeta-SIPP aims
to find any-angle paths, and thus the forward expansion of A*
cannot be directly applied to Zeta-SIPP. Inspired by Informed
RRT* and BIT*, we can use an expanding “ellipse” to limit

Algorithm 1 Main Loop

1: while minn∈openf(n) <∞ do
2: n← findNextClosedNode(open)
3: if n ̸= null then
4: if n = target then
5: return pathTo(n)
6: end if
7: invertedExpansion(n, open)
8: end if
9: forwardExpansion(open)

10: end while
11: return ∅

Algorithm 2 findNextClosedNode(open)

1: n← argminn∈openf(n)
2: remove n from open
3: if bpp(n) ∈ potentialParents(n) then
4: remove bpp(n) from potentialParents(n)
5: end if
6: gnew ← validateTransition(bpp(n), n)
7: if gnew < g(n) then
8: g(n)← gnew
9: parent(n)← bpp(n)

10: end if
11: if newBestPotentialParentExists(n) then
12: insert n into open
13: return null
14: end if
15: if g(n)+h(n) ≤ minn∈boundflow(n) and g(n)+h(n) ≤

minn∈openf(n) then
16: insert n into closed
17: return n
18: else
19: insert n into open
20: return null
21: end if

the range of any-angle search:

flow(n) ≤ minm∈openf(m) ∀n ∈ S (3)

where flow(n) = h(start, n) + h(n) ≤ g(n) + h(n) =
f(n) is the lower bound of f(n) and S is the search space.
The focal points of the “ellipse” are the start and target and
the major axis length is flow(n). If all nodes satisfying the
Inequality (3) are inserted into open, then

minm∈openf(m) < flow(n) ≤ f(n) ∀n ∈ Sout (4)

where Sout = S \ (open∪ closed) is the search space outside
the current search range. It indicates that the minimum cost
in open is also the minimum in the remaining search space
(S \ closed). Thus, at each step, only open is enough to find
the next closed node, and there is no need to consider Sout.
Therefore, we can apply the Inequality (3) to develop an any-
angle forward expansion for Zeta-SIPP and the search range
of TO-AA-SIPP can be limited during the search process.

The pseudocode of Zeta-SIPP is shown in Algorithms 1-5.
To make the code structure clearer, we split the main loop into
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Algorithm 3 newBestPotentialParentExists(n)

1: glow(n)← g(n), bpp(n)← parent(n)
2: f(n)← glow(n) + h(n)
3: isExisting ← false
4: for each n′ ∈ potentialParents(n) do
5: if g(n′) + h(n′, n) < glow(n) then
6: glow(n)← g(n′) + h(n′, n)
7: bpp(n)← n′

8: f(n)← glow(n) + h(n)
9: isExisting ← true

10: end if
11: end for
12: return isExisting

Algorithm 4 addPotentialParent(n, n′)

1: insert n into potentialParents(n′)
2: if g(n) + h(n, n′) < glow(n

′) then
3: glow(n

′)← g(n) + h(n, n′)
4: bpp(n′)← n
5: f(n′)← glow(n

′) + h(n′)
6: update n′ in open
7: end if

several modules, as shown in Algorithm 1. The revised part,
compared to the original TO-AA-SIPP, is marked in red. The
findNextClosedNode is to identify the next closed node n
from the open list. Since the SIPP-based collision detection is
delayed, the current node may be re-inserted into the open list
after SIPP-based examinations (i.e., validateTransition
in Algorithm 2). In this case, the next closed node would be
null. The invertedExpansion assigns the closed node n
as a potential parent to all nodes in the current open list, pro-
vided there are no static obstacles blocking the connection
(i.e., lineOfSight in Algorithm 5). Please note that if the
invertedExpansion is removed, Algorithm 1 can also rep-
resent the main loop of A*. The forwardExpansion utilizes
an expanding “ellipse” to continuously add new nodes into
the open list. Here, we introduce a new list called bound to
indicate the nodes around the boundary of the search range
(open and closed). The initialization and expansion of the
bound list are important because they are related to whether
the Inequality (3) can be satisfied by Line 9 in Algorithm
5. For simplicity, we initialize the bound list by directly
inserting all the unblocked search nodes in Zeta-SIPP, sim-
ilar to how the open list is initialized in TO-AA-SIPP. How-
ever, the nodes in the bound list do not need be examined
by lineOfSight, thereby improving the performance of TO-
AA-SIPP.

In findNextClosedNode, the SIPP-based collision detec-
tion with dynamic obstacles, namely validateTransition,
will be executed to compute the real cost g(bpp(n), n) from
the best potential parent bpp(n) to the current node n (Line
6). The path from bpp(n) to n may be disturbed by dynamic
obstacles, leading to g(bpp(n), n) > h(bpp(n), n) in Eq. (2).
Let the cost after the SIPP-based collision detection be

fsipp(n) = g(bpp(n)) + g(bpp(n), n) + h(n) (5)

Algorithm 5 Zeta-SIPP Expansion

1: function invertedExpansion(n, open)
2: for each n′ ∈ open do
3: if lightOfSight(n, n′) = true then
4: addPotentialParent(n, n′)
5: end if
6: end for
7: end function

8: function forwardExpansion(open)
9: while minn∈boundflow(n) ≤ minn∈openf(n) do

10: n← argminn∈boundflow(n)
11: move n from bound to open
12: invertedCheck(n)
13: end while
14: end function

15: function invertedCheck(n)
16: for each n′ ∈ closed do
17: if lightOfSight(n′, n) = true then
18: addPotentialParent(n′, n)
19: end if
20: end for
21: end function

There maybe exists a “better” potential parent pp(n) than
bpp(n) (Line 11, see Algorithm 3):

f(n) ≤ f(n)′ < fsipp(n) ∃ pp(n) ∈ pps(n) (6)

where f(n)′ = g(pp(n)) + h(pp(n), n) + h(n) and pps(n)
is the collection of potential parents of n. The best potential
parent should be changed to pp(n): bpp(n)← pp(n), as per-
haps f(n)′ ≤ fsipp(n)

′ < fsipp(n). In this case, the current
node should be re-inserted into open (Line 12) with a new
cost f(n)← f(n)′. Also, there maybe exists a “better” node
n′ than n (Line 15):

f(n) ≤ f(n′) < fsipp(n) ∃n′ ∈ open (7)

The current node n is no longer the most promising node as
perhaps f(n′) ≤ fsipp(n

′) < fsipp(n). In this case, the cur-
rent node n should also be re-inserted into open (Line 19)
with a new cost f(n) ← fsipp(n). When the current node is
not closed, findNextClosedNode will return null.

In Algorithm 4, n is a closed node while n′ is an open node
because only the closed node can be a potential parent of an
open node. In Algorithm 5, the inverted expansion builds the
connections between the current closed node and all the open
nodes whereas the forward expansion inserts new nodes into
open based on the Inequality (3) and finds the connections
between the new open nodes and all the closed nodes.

3.3 TO-AA-FoV-SIPP
The idea of TO-AA-FoV-SIPP is simple. At each step of
TO-AA-SIPP, after a node is inserted into closed, shadow-
casting will be executed to find visible open nodes from this
closed node and subsequently this closed node will be added
to their potential parent lists using Algorithm 4. This pro-
cess is similar to invertedExpansion in Algorithm 5, but
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Algorithm 6 Zeta*-SIPP Expansion

1: function invertedExpansion(n)
2: for each n′ ∈ children(n) do
3: if n′ /∈ closed then
4: addPotentialParent(n, n′)
5: end if
6: end for
7: end function

8: function forwardExpansion(open)
9: while minn∈boundflow(n) ≤ minn∈openf(n) do

10: n← argminn∈boundflow(n)
11: move n from bound to open
12: invertedScan(n)
13: end while
14: end function

15: function invertedScan(n)
16: Nvisible ← shadowcasting(n) ∩ open
17: for each n′ ∈ Nvisible do
18: if n′ ∈ closed then
19: addPotentialParent(n′, n)
20: else
21: insert n′ into children(n)
22: insert n into children(n′)
23: end if
24: end for
25: end function

rather than lineOfSight, shadowcasting for computing the
field of view (FoV) is applied. In addition, the size of open
can be reduced using the field of view. In TO-AA-FoV-SIPP,
only when a node is visible from one of the closed nodes can
it be inserted into open. This is because if a node has no po-
tential parent, the cost of this node is infinite. The inequality
(4) can also be satisfied since f(n) = ∞, ∀n ∈ Sout where
Sout = S \ (open ∪ closed).

3.4 Zeta*-SIPP
The main pseudocode of Zeta*-SIPP is shown in Algorithm
6 and the major revision compared to Zeta-SIPP is marked in
red. In general, the closed nodes may be the potential par-
ents of the open nodes. Thus, the “light source” that needs
to compute the field of view should be a closed node, like
TO-AA-FoV-SIPP. However, in Zeta*-SIPP, since the search
range is bounded, we apply inverted scanning, which means
that the open nodes are considered as “light sources” rather
than the closed nodes. The “light sources” are distributed on
the boundary of the search range and only illuminate the inte-
rior. At each step of the forward expansion, when a new node
is moved from bound to open, an inverted scanning is exe-
cuted to compute the field of view from this new open node
and obtain the corresponding visible nodes inside the search
range. In practice, we treat the node n as a wall in shadow-
casting if its flow(n) is larger than the major axis length of the
current elliptical boundary plus

√
2 grid length (grid buffer),

and thus shadowcasting is bounded. Since the applied shad-
owcasting is symmetric, two nodes are mutually visible if one

(a) TO-AA-FoV-SIPP (b) Zeta/Zeta*-SIPP

Figure 2: Screenshots of TO-AA-FoV-SIPP and Zeta/Zeta*-SIPP

node can be seen from the other. We record these visible con-
nections using Line 21 and 22 of Algorithm 6. Therefore,
when executing the inverted expansion in Zeta*-SIPP, there
is no need to compute the field of view for the closed nodes.

3.5 Data Structure
In general, for SIPP-based planners, a node n can be repre-
sented by (p, [t1, t2]) where p is the location of the node n and
[t1, t2] is the safe interval. For the same location p, there may
exist multiple nodes with different safe intervals. The node n
can be regarded as a spatio-temporal point while the location
p is only a spatial point. In graph-based path planning, p usu-
ally refers to a vertex or a grid. Therefore, the nodes in the
proposed algorithms can be viewed as having two levels: the
“node” level (space-time) and the “grid” level (space). Focus-
ing solely on the “node” level may result in repeated visibility
checks between two grids. To avoid this issue, the visibility
checks can be conducted on the “grid” level and the results
can then be stored in grids. If there is a need to check whether
two nodes are mutually visible, the results can be generated
or called from their corresponding grids.

4 Theoretical Properties
Zeta-SIPP, TO-AA-FoV-SIPP and Zeta*-SIPP have the same
theoretical properties as TO-AA-SIPP. Here we mainly prove
the properties affected by the bound list in Zeta/Zeta*-SIPP.
Lemma 1. The bound list always contains a node with the
minimum flow-value in the search space outside the open and
closed lists S \ (open ∪ closed).

Proof. Since we initialize the bound list by inserting all the
search nodes, according to Line 11 in Algorithm 6, bound =
S \(open∪closed). This concludes the proof. One can adapt
different approaches to generate (or expand) the bound list,
but Lemma 1 must hold to ensure optimality.

Lemma 2. The node extracted from the open list at each
step has the minimum f-value in the search space outside the
closed list S \ closed.

Proof. The while-loop in forwardExpansion (Algorithm 6)
guarantees minn∈openf(n) < minn∈boundflow(n) after ex-
pansion. Let Sout = S \ (open ∪ closed). Lemma 1 indi-
cates minn∈boundflow(n) = minn∈Sout

flow(n). According
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Figure 3: Mean runtime of the algorithms.

Maps
Search nodes (-SIPP) Scanned grids (-SIPP)

TO-AA TO-AA-FoV Zeta Zeta* TO-AA TO-AA-FoV Zeta Zeta*

Random 7.11× 103 3.56× 103 4.56× 102 4.56× 102 3.15× 106 2.60× 104 1.75× 105 2.36× 104

Warehouse 1.71× 104 8.11× 103 2.50× 103 2.50× 103 6.01× 107 3.92× 105 9.68× 106 2.06× 105

Berlin 6.20× 104 2.53× 104 8.53× 103 8.53× 103 4.31× 109 1.46× 107 7.07× 108 6.94× 106

Table 1: Mean number of the search nodes and scanned grids

to flow(n) ≤ f(n), minn∈openf(n) < minn∈Soutf(n). This
concludes the proof.

Theorem 1. Zeta/Zeta*-SIPP is complete and optimal.

Proof. Since TO-AA-SIPP has already proved to be com-
plete and optimal, we only need to prove the main search
procedure (Algorithm 2) of Zeta/Zeta*-SIPP is equivalent to
that of TO-AA-SIPP. Let the open list of Zeta/Zeta*-SIPP
be open and the open list of TO-AA-SIPP be open′. In
TO-AA-SIPP, since all search nodes are inserted into open′

at initialization, open′ = S \ closed. In Zeta/Zeta*-SIPP,
Lemma 2 indicates minn∈openf(n) = minn∈S\closedf(n).
Therefore, minn∈openf(n) = minn∈open′f(n). This means
that the node extracted from the open list at each step in
Zeta/Zeta*-SIPP is identical to that of TO-AA-SIPP. How-
ever, Lemma 2 cannot guarantee this equation still holds af-
ter extraction. Therefore, we have to add g(n) + h(n) ≤
minn∈boundflow(n) in Line 15 of Algorithm 2. Then based
on Lemma 1, the adjusted condition in Line 15 can prove to
be equivalent to the original one in TO-AA-SIPP.

5 Empirical Analysis
We implemented TO-AA-FoV-SIPP, Zeta-SIPP and Zeta*-
SIPP in our web-based pathfinding visualizer1, as shown in
Figure 2. It is clear to see that Zeta/Zeta*-SIPP forms an el-
liptical boundary to limit the search range. The nodes outside

1URL: http://dronectr.tudelft.nl/ , ID: Zeta*. Our implementa-
tion is available at https://github.com/yiyuanzou/zeta-sipp.

the boundary have no contribution to finding the optimal path,
and thus there is no need to insert them into open.

To measure the performance of the proposed algorithms,
we performed experiments on three different benchmark
maps [Stern et al., 2019]: Random-64-64-10, a 64 × 64 map
with 10% of randomly blocked grids; Warehouse-10-20-10-
2-2, a 170× 84 map from a logistics domain; Berlin 1 256, a
256 × 256 real-world city map. These three maps were cho-
sen because they represent different types of environment and
differ in size. For each map, 500 scenarios were generated
by the following steps: 1) Chose 25 benchmark scenario sets
(random) [Stern et al., 2019]. 2) For each scenario set, we
took the last 20 scenarios as tests and the top 32/64/96/128
scenarios as dynamic obstacles. 3) The trajectories of dy-
namic obstacles were generated successively by Zeta*-SIPP,
which were collision-free and contained any-angle moves.
All the algorithms were implemented in JavaScript and the
experiments were performed on Node.js v18.14.2 on a laptop
with 2.30GHz Intel Core i7-11800H and 16 GB RAM.

Figure 3 shows the mean runtime of different algorithms.
On average, the proposed three algorithms all outperformed
TO-AA-SIPP and Zeta*-SIPP was the best among them. In
the Random map, Zeta-SIPP has similar performance com-
pared with Zeta*-SIPP. This is because when the map size
is small, the advantage of Field of View is rather inconspic-
uous. In the Warehouse and Berlin maps, the performance
difference between Zeta-SIPP and TO-AA-FoV-SIPP dimin-
ishes. When the dynamic obstacles are 32 and 64, TO-AA-
FoV-SIPP is even faster than Zeta-SIPP. In the Berlin map, the
mean runtime of TO-AA-SIPP surpasses 40-60 seconds, ex-
emplifying the algorithm’s relative inefficiency and thereby
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Figure 4: The frequency distributions of the percentage of reduced
runtime in relation to the original TO-AA-SIPP runtime.

restricting its real-world applicability. Zeta*-SIPP substan-
tially improves TO-AA-SIPP and the mean runtime is gener-
ally reduced by around 70%-90%.

Table 1 shows the mean search nodes and scanned grids
of the algorithms regardless of the number of dynamic obsta-
cles. The search nodes indicate the nodes visited by the al-
gorithms whereas the scanned grids mean the grids checked
by Line of Sight or Field of View. Zeta/Zeta*-SIPP effec-
tively reduces the search nodes of TO-AA-SIPP while main-
taining the capability to find time-optimal paths. The search
nodes are basically reduced by about 85%-95%. It is appar-
ent that Field of View scans much fewer grids than Line of
Sight, especially when the map is large. This also illustrates
why TO-AA-FoV-SIPP performs better than Zeta-SIPP in the
Warehouse and Berlin maps.

In Figure 3 and Table 1, we show means rather than me-
dians because medians may disregard some worst cases with
extremely slow runtime. For example, when there are 32 dy-
namic obstacles in the Berlin map, relying solely on the me-
dian runtime may lead us to believe that Zeta*-SIPP is ap-
proximately 20 times faster than TO-AA-SIPP. However, in
Figure 3, the mean runtime of Zeta*-SIPP is around 10% of
that of TO-AA-SIPP (only 10 times speedup). The improve-
ments should be viewed with caution.

To further evaluate the improvements, Figure 4 shows the
frequency distributions of the percentage of reduced run-
time in relation to the original TO-AA-SIPP runtime. The
range of the x-axis is limited to [0, 1] since only the posi-
tive values represent improvements. It is worth noting that
in 99.4% of scenarios, all the proposed algorithms outper-
formed TO-AA-SIPP. Hence, omitting the part less than 0
has little effect. The distributions illustrate the superiority
of Zeta*-SIPP. In majority (88.4%) of scenarios, Zeta*-SIPP
reduces the runtime of TO-AA-SIPP by over 70%. Zeta-SIPP
and Zeta*-SIPP both exhibit outstanding performance in the
range [0.9, 1] compared with TO-AA-FoV-SIPP because their
search ranges are limited by the elliptical region between the
start and target. If the optimal path is almost a straight line,
Zeta/Zeta*-SIPP may quickly find it and could be more than
10 times faster than TO-AA-SIPP.

6 Conclusion
Optimal any-angle path planning with dynamic obstacles re-
mains relatively underexplored, with only a handful of al-
gorithms making significant contributions to this area of re-
search. TO-AA-SIPP is one of the important works in this
field. However, the efficiency of this algorithm is an issue,

posing difficulties for its applications. Therefore, in this pa-
per, we propose two different directions to improve TO-AA-
SIPP: 1) reduce useless search nodes by any-angle forward
expansion (Zeta-SIPP), and 2) replace Line of Sight with
Field of View for visibility checks with static obstacles (TO-
AA-FoV-SIPP). Combining these two ideas, Zeta*-SIPP is
further developed. The initial experimental results of Zeta*-
SIPP are promising, reducing the runtime of TO-AA-SIPP by
around 70%-90% on average.

To enhance the applicability of the algorithms in real-world
scenarios, future work could consider incorporating domain-
specific constraints into the algorithms. For instance, the con-
straints on turning angles could be involved to account for
maneuver restrictions of vehicles. In this case, the algorithm
may be even faster as the search space is reduced. Further-
more, current algorithms only focus on 2D scenarios. In the
future, 3D any-angle path planning with dynamic obstacles
can also be explored (e.g., drone path planning).
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