
A Better Approximation for Bipartite Traveling Tournament in Inter-League
Sports Scheduling

Jingyang Zhao and Mingyu Xiao∗

University of Electronic Science and Technology of China, Chengdu, China
{jingyangzhao1020, myxiao}@gmail.com

Abstract
The bipartite traveling tournament problem
(BTTP) was initially introduced by Hoshino and
Kawarabayashi (AAAI 2011) to address inter-
league sports scheduling, which aims to design a
feasible bipartite tournament between two n-team
leagues under some constraints such that the total
traveling distance of all participating teams is
minimized. Since its introduction, several methods
have been developed to design feasible schedules
for NBA, NPB and so on. In terms of solution
quality with a theoretical guarantee, previously
only a (2 + ε) approximation is known for the case
that n ≡ 0 (mod 3). Whether there are similar
results for the cases that n ≡ 1 (mod 3) and
n ≡ 2 (mod 3) was asked in the literature. In
this paper, we answer this question positively by
proposing a (3/2+ ε)-approximation algorithm for
any n and any constant ε > 0, which also improves
the previous ratio for the case that n ≡ 0 (mod 3).

1 Introduction
The traveling tournament problem (TTP), introduced by Eas-
ton et al. [2001], is a well-known benchmark problem in the
field of sports scheduling [Kendall et al., 2010]. This prob-
lem aims to find a double round-robin tournament, minimiz-
ing the total traveling distance of all participating teams. In a
double round-robin tournament involving n teams (where n
is even), each team plays two games against each of the other
n − 1 teams that includes one home game at its own home
venue and one away game at its opponent’s home venue, and
on each day each team can only play one game. Moreover, all
games should be scheduled on 2(n−1) consecutive days, sub-
ject to several constraints on the maximum number of consec-
utive home/away games for each team, ensuring a balanced
tournament arrangement. In the problem, we may also con-
sider that the distance is a semi-metric, i.e., it satisfies the
symmetry and triangle inequality properties. An overview
of TTP and its variants, along with their various applications
on sports scheduling, can be found in [Bulck et al., 2020;
Durán, 2021].

∗Contact Author

The bipartite traveling tournament problem (BTTP), intro-
duced by Hoshino and Kawarabayashi [2011b], is an inter-
league extension of TTP. Given two n-team leagues, it asks
for a distance-optimal double round-robin bipartite tourna-
ment between the leagues, where every team in one league
plays one home game and one away game against each team
in another league. It also requires that each team plays only
one game on each day, and all games need to be scheduled on
2n consecutive days. For TTP/BTTP, the double round-robin
(bipartite) tournament is subject to the following three basic
constraints or assumptions:

• No-repeat: No pair of teams can play against each other
in two consecutive games.

• direct-traveling: Each team travels directly from its
game venue on the i-th day to its game venue on the
(i + 1)-th day, where we assume that all teams are ini-
tially at home before the first game starts and will return
home after the last game ends.

• Bounded-by-3: Each team can play at most 3-
consecutive home games or away games.

In the last constraint, we require that the maximum number of
consecutive home/away games for each team is at most three.
This is the most extensively studied case [Lim et al., 2006;
Anagnostopoulos et al., 2006; Goerigk et al., 2014]. The case
that at most two consecutive home/away games are allowed is
also studied in some references [Thielen and Westphal, 2012;
Chatterjee and Roy, 2021; Zhao and Xiao, 2021b]. A small
number of consecutive home/away games requires teams to
return home frequently, which may make the tournament bal-
anced as a cost of a possible longer traveling distance.

As indicated in a previous study [Hoshino and
Kawarabayashi, 2011c], BTTP has natural applications
in sports scheduling, such as for events like the Davis Cup,
the biennial Ryder Cup, the National Basketball Associa-
tion (NBA), and the Nippon Professional Baseball (NPB).
Exploring BTTP also holds promise for advancing the
theoretical development of enhanced algorithms for TTP. For
instance, Zhao and Xiao [2023] utilized an approximation
algorithm for BTTP between two groups by grouping teams
and achieved an efficient polynomial-time approximation
scheme for a special case of TTP where all teams are
positioned along a line. BTTP possesses a simpler structure,
and scheduling for TTP can be derived from scheduling for

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6814



BTTP using a divide-and-conquer method [Chatterjee and
Roy, 2021]. Therefore, effective algorithms for BTTP have
the potential to yield effective algorithms for TTP as well.

1.1 Related Work
Both TTP and BTTP are difficult optimization problems,
and their NP-hardness has been established in [Thielen and
Westphal, 2011; Hoshino and Kawarabayashi, 2011b]. In
the online benchmark [Trick, 2024; Bulck et al., 2020],
many instances of TTP with more than ten teams have not
been completely solved even by using high-performance
machines. TTP and BTTP have been extensively stud-
ied both in theory [Hoshino and Kawarabayashi, 2012;
Hoshino and Kawarabayashi, 2013; Westphal and Noparlik,
2014; Xiao and Kou, 2016; Imahori, 2021; Zhao and Xiao,
2021a] and practice [Easton et al., 2002; Di Gaspero and
Schaerf, 2007; Hentenryck and Vergados, 2007; Hoshino and
Kawarabayashi, 2011a; Hoshino and Kawarabayashi, 2011b;
Hoshino and Kawarabayashi, 2011c; Goerigk and Westphal,
2016; Frohner et al., 2023].

TTP and BTTP are also rich problems in approximation
algorithms. An algorithm is called an α-approximation algo-
rithm if it can generate a feasible schedule in polynomial time
such that the total traveling distance of all teams is within
α times the optimal. For TTP, Miyashiro et al. [2012] first
proposed a (2 + ε)-approximation algorithm where ε is an
arbitrary fixed constant, and the ratio was later improved to
(1.667 + ε) by Yamaguchi et al. [2011], and (1.598 + ε)
by Zhao et al. [2022]. For BTTP, the only known result is
a (2 + ε)-approximation algorithm for the case that n ≡ 0
(mod 3), proposed by Hoshino and Kawarabayashi [2013],
and whether there exist similar algorithms for the cases that
n ≡ 1 (mod 3) and n ≡ 2 (mod 3) was asked in this paper.

1.2 Our Results
In this paper, we design a new algorithm for BTTP and prove
that our algorithm can achieve an approximation ratio of
(3/2 + ε) for any n and any constant ε > 0. This not only
positively answers the open question for the cases that n ≡ 1
(mod 3) and n ≡ 2 (mod 3) but also improves the previous
best ratio of (2+ε) for the case that n ≡ 0 (mod 3) [Hoshino
and Kawarabayashi, 2013].

To achieve our improvement, we introduce a novel lower
bound for BTTP related to the minimum weight cycle pack-
ing (i.e., a set of cycles and each cycle has a length of at least
3). Then, we propose a 3-path packing construction, which
reduces BTTP to the task of finding a good 3-path packing.
At last, we use the minimum weight cycle packing to obtain a
3-path packing, and show that by applying the 3-path packing
to our construction we can get a schedule with an approxima-
tion ratio of at most (3/2 + ε) in polynomial time.

In addition to the theoretical results, we also consider the
practical applications of our construction. We create a new
instance from the real situation of NBA for BTTP with 32
teams (n = 16) and test our algorithm on this instance. Note
that previous construction only works for the case that n ≡ 0
(mod 3). In the new instance, n ≡ 1 (mod 3). We extend
our 3-path packing construction to a more efficient construc-
tion based on 3-cycles. By applying these two constructions

to the new instance, experimental results show that our algo-
rithms can be implemented within 2 seconds, and the qual-
ity of the obtained solutions is much better than the expected
1.5-approximation ratio: the gaps between our results and the
optimal are at most 24.66% and 9.42% for the 3-path and 3-
cycle constructions.

Due to limited space, the proofs of lemmas and theorems
marked with “*” were omitted and they can be found in the
full version of this paper.

2 Notations
An instance of BTTP can be presented by a complete graph
G = (V = X ∪ Y,E,w) with 2n vertices representing 2n
teams, where X = {x0, . . . , xn−1} and Y = {y0, . . . , yn−1}
are two n-team leagues, and w is a non-negative semi-metric
weight function on the edges in E that satisfies the symmetry
and triangle inequality properties, i.e., w(x, y) + w(y, z) ≥
w(x, z) = w(z, x) for any x, y, z ∈ V . The weight w(x, y)
of edge xy ∈ E represents the distance between the homes of
teams x and y. We also extend the function to a set of edges,
i.e., we let w(E′) :=

∑
e∈E′ w(e) for any E′ ⊆ E, and to a

subgraph G′ of G, i.e., we let w(G′) be the total weight of all
edges in G′. Given any V ′ ⊆ V , the complete graph induced
by V ′ is denoted by G[V ′].

Given two vertices/teams x ∈ X and y ∈ Y , and two sets
X ′ ⊆ X and Y ′ ⊆ Y , we define the following notations.
We use x → y to denote a game between x and y at the
home of y, and x ↔ y to denote two games between x and
y including one game at the home of x and one game at the
home of y. We use EY ′(x) (resp., EX′(y)) to denote the set
of edges in G between the vertex x (resp., y) and one vertex
in Y ′ (resp., X ′), i.e., EY ′(x) = {xy | y ∈ Y ′}. We also let
δY ′(x) = w(EY ′(x)) and δY ′(X ′) =

∑
x∈X′ δY ′(x) (resp.,

δX′(y) = w(EX′(y)) and δX′(Y ′) =
∑

y∈Y ′ δX′(y)). Note
that δY ′(X ′) = δX′(Y ′).

Two subgraphs or sets of edges are vertex-disjoint if they
do not share a common vertex. An l-cycle x1x2 . . . xlx1 is a
simple cycle on l different vertices {x1, . . . , xl}. It consists
of l edges {x1x2, . . . , xlx1}, and its length is said to be l.
A cycle packing in a graph is a set of vertex-disjoint cycles,
where the length of each cycle is at least three and the cycles
cover all vertices of the graph. The minimum weight cycle
packing in a graph with n vertices can be found in O(n3)
time [Hartvigsen, 1984]. Similarly, an l-path x1x2 . . . xl is a
simple path on l different vertices {x1, . . . , xl}. It consists of
l − 1 edges {x1x2, . . . , xl−1xl}, and the vertices x1 and xl

are called its terminals. An l-path packing in a graph is a set
of vertex-disjoint l-paths, where the paths cover all vertices
of the graph.

A walk is a sequence of vertices where each consecutive
pair of vertices is connected by an edge, and its weight is
defined as the total weight of the edges traversed in the se-
quence. A walk is closed if the first and the last vertices are
the same. In a solution of BTTP, every team v ∈ X ∪ Y
has an itinerary, which is a closed walk starting and ending
at v. This itinerary could be decomposed into several mini-
mal closed walks, each starting and ending at v, referred to as
trips. Each trip is an l-cycle containing v with 2 ≤ l ≤ 4, and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6815



0 1 2 3 4 5
x0 y0 y1 y2 y0y0y0 y1y1y1 y2y2y2
x1 y2y2y2 y0 y1 y2 y0y0y0 y1y1y1
x2 y1y1y1 y2y2y2 y0 y1 y2 y0y0y0
y0 x0x0x0 x1x1x1 x2x2x2 x0 x1 x2

y1 x2 x0x0x0 x1x1x1 x2x2x2 x0 x1

y2 x1 x2 x0x0x0 x1x1x1 x2x2x2 x0

Table 1: A solution for BTTP with two leagues X = {x0, x1, x2}
and Y = {y0, y1, y2}, where home games are marked in bold

all trips/cycles share only one common vertex v. For exam-
ple, Table 1 shows a solution for leagues X = {x0, x1, x2}
and Y = {y0, y1, y2}, where home games are marked in bold.
We can get that x2 has an itinerary x2y0y1y2x2, and y2 has an
itinerary y2x1x2y2x0y2, and y2 has two trips y2x1x2y2 and
y2x0y2 (a 3-cycle and a 2-cycle sharing y2 only).

Fix a constant ε > 0. We want to consider a 3-path packing
in G. Since n may not be divisible by 3, we will remove a
small number of vertices (as we will see that the number is
related to ε) in X and Y to obtain two new sets Xε ⊆ X
and Yε ⊆ Y such that the number of vertices in Xε and Yε,
denoted as nε, are the same and can be divisible by 3. Hence,
there always exist 3-path packings in G[Xε] and G[Yε]. We
also let Xε := X \Xε and Yε := Y \ Yε. The graph Gε :=
G[Xε ∪ Yε] is called the core graph of G because we will see
that the quality of our schedule is only dominated by the total
traveling distance of teams in Xε ∪Yε, i.e., the total traveling
distance of teams in Xε∪Yε is small. We denote the minimum
weight cycle packing in G[Xε] (resp., G[Yε]) by CXε (resp.,
CYε ).

3 Lower Bounds
Lower bounds play an important role in approximation algo-
rithms. We need to compare our solution with the optimal
solution. However, it is hard to compute the optimal solu-
tion. Then, we turn to find some lower bounds of the optimal
value and compare our solution with the lower bounds. We
will use two lower bounds. The first one is from the literature
and the second one is newly proved. We use OPT to denote
the weight (i.e., the total traveling distance of all teams) of an
optimal solution for BTTP.

Lemma 1. [Hoshino and Kawarabayashi, 2013]. For BTTP,
it holds that 2δX(Y ) = δY (X) + δX(Y ) ≤ 3

2 · OPT.

Next, we will propose a new lower bound that is related to
the minimum weight cycle packings CXε and CYε .

Lemma 2 (*). For BTTP, it holds that δYε(Xε) +
1
2nεw(CYε) + δXε(Yε) +

1
2nεw(CXε) ≤ 3

2 · OPT.

4 The Construction of the Schedule
Assuming we are given a 3-path packing PXε

in G[Xε] and a
3-path packing PYε

in G[Yε], to construct a schedule that min-
imizes the total traveling distance of teams in Xε∪Yε, the idea
is to ensure every team in Xε (res., Yε) plays 3-consecutive
away games along every 3-path in PYε

(resp., PXε
) from one

terminal to another.

Consider an ideal schedule where every team in Yε (resp.,
Xε) plays 3-consecutive away games along every 3-path in
PXε

(resp., PYε
). Then, every team in Yε (resp., Xε) plays nε

3
away-trips with teams in Xε (resp., Yε). The total traveling
distance of teams in Yε for these away-trips is∑

y∈Yε

∑
P=xx′x′′

∈PXε

(w(y, x) + w(y, x′′) + w(P ))

=
∑

xx′x′′∈PXε

(δYε
(x) + δYε

(x′′)) + nεw(PXε
).

Denote
∑

xx′x′′∈PXε
(δYε(x)+ δYε(x

′′)) by δYε(PXε) for the
sake of presentation and define δXε

(PYε
) in the similar man-

ner. The total traveling distance of teams in Xε ∪Yε for these
away-trips is δYε(PXε)+nεw(PXε)+δXε(PYε)+nεw(PYε).

Our construction will generate a schedule such that the to-
tal traveling distance of teams in X∪Y is close to δYε(PXε)+
nεw(PXε) + δXε(PYε) + nεw(PYε), i.e, the performance of
our schedule is close to the ideal schedule. To achieve this,
we make sure that almost every team in Yε (resp., Xε) plays
3-consecutive away games along every 3-path in PXε

(resp.,
PYε

). Next, we give our construction in details.
Note that ε > 0 is a fixed constant. Let d := 6⌈1/ε⌉ and

m := 2⌊ n
6d⌋ − 1 (it is useful to ensure that d is even and m

is odd). We will select nε := 3md vertices from X (resp., Y )
to form Xε (resp., Yε). The details of how to select these ver-
tices is deferred to the analysis part of our schedule. Recall
that PXε and PYε are two given 3-path packings in G[Xε] and
G[Yε]. So, both PXε and PYε contain md 3-paths. Assume
that PXε

= {P1, . . . , Pmd} and PYε
= {Q1, . . . , Qmd},

where Pi = x3i−3x3i−2x3i−1 and Qi = y3i−3y3i−2y3i−1.
Each 3-path corresponds to three teams. For every d 3-paths
from P1 (resp., Q1) to Pmd (resp., Qmd), we pack the corre-
sponding 3d teams as a super-team, denoted by Si (resp., Ti).
So, Si = {x3i′−3, x3i′−2, x3i′−1}id−1

i′=id−d. Let l := n − nε.
There are l teams in Xε (resp., Yε), and we label them us-
ing {xnε , . . . , xn−1} (resp., {ynε , . . . , yn−1}). We can get l
team-pairs {L1, . . . , Ll} where Li = {xnε+i−1, ynε+i−1}.

We may assume that n ≥ 108d3, as otherwise, we have
n < 108d3 = Oε(1)

1, and in this case, we can solve the
problem optimally in constant time. Since n ≥ 108d3, we
can get m ≥ 18d2. Moreover, since l = n−nε = n−3md =
n− 6d⌊ n

6d⌋+ 3d, we can get 3d ≤ l ≤ 9d ≤ m.
The main idea of the construction is that: we first arrange

a schedule of super-games between super-teams (including
the team-pairs); then, we extend the super-games into nor-
mal games between normal teams, which will form a feasible
schedule for BTTP.

Our schedule contains m + 1 time slots, where we have
m super-games in each of the first m time slots, including l
left super-games and m− l normal super-games. Each super-
team will attend one super-game in each of the first m time
slots. The last time slot is special, and we will explain it
later. Each of the first m time slots spans 6d days and the
last time slot spans 2l days. Hence, our schedule will span
6md+ 2l = 2nε + 2l = 2n days.

1Oε(1) means a constant related to ε.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6816



S1

T1

L1

S2

T2

L2

S3

T3

S4

T4

S5

T5

Figure 1: The super-game schedule in the first time slot, where m =
5 and l = 2

S2

T3

L1

S3

T4

L2

S4

T5

S5

T1

S1

T2

Figure 2: The super-game schedule in the second slot, where m = 5
and l = 2

4.1 The First m Time Slots
In the first time slot, the super-games are arranged as shown
in Figure 1, where m = 5 and l = 2. Each super-team is
denoted by a cycle node and each team-pair is denoted by a
square node. There are 2m super-teams, l team-pairs, and
m super-games. Each super-game is denoted by an edge be-
tween two super-teams. The most left l super-games, each
involving two super-teams and one team-pair, are called the
left super-games. The left super-game involving team-pair
Li is denoted as the i-th left super-game. The other m − l
super-games are called normal super-games. It is worth not-
ing that there are only a constant number of left super-games
since l ≤ 9d = Oε(1). So, in our construction almost all
super-games are normal super-games.

In the second time slot, the super-games are arranged as
shown in Figure 2. Compared to the first time slot, the posi-
tions take one leftward shift for super-teams S1, . . . , Sm, take
two leftward shifts for super-teams T1, . . . , Tm, and keep un-
changed for team-pairs L1, . . . , Ll.

The schedules for the first m time slots are derived analo-
gously. We have two observations.
Claim 3. During the first m time slots, there is only one
super-game between super-teams Si and Tj for every 1 ≤
i, j ≤ m.

Proof. By the construction, there is a super-game between
super-teams Si and Tj if and only if the schedule is at the
time slot of (j − i+ 1 +m) mod m.

Claim 4. During the first m time slots, each super-team par-
ticipates in only one i-th left super-game for every 1 ≤ i ≤ r.

Proof. From the 1-st to the m-th time slot, the super-
team in {S1, . . . , Sm} playing an i-th left super-game is
Si, Si+1, . . . , Sm, S1, . . . , Si−1, respectively; the super-team
in {T1, . . . , Tm} playing an i-th left super-game is Ti, Ti+2,
. . . , Ti−1, Ti+1, . . . , Ti−2, respectively, since m is odd. So,
each super-team plays only one i-th left super-game.

Next, we show how to extend normal super-games and left
super-games into normal games.

0 1 2 3 4 5 6 7 8 9 10 11
s0 t0 t1 t2 t0t0t0 t1t1t1 t2t2t2 t3 t4 t5 t3t3t3 t4t4t4 t5t5t5
s1 t5t5t5 t0 t1 t2 t0t0t0 t1t1t1 t2t2t2 t3 t4 t5 t3t3t3 t4t4t4
s2 t4t4t4 t5t5t5 t0 t1 t2 t0t0t0 t1t1t1 t2t2t2 t3 t4 t5 t3t3t3
s3 t3 t4 t5 t3t3t3 t4t4t4 t5t5t5 t0 t1 t2 t0t0t0 t1t1t1 t2t2t2
s4 t2t2t2 t3 t4 t5 t3t3t3 t4t4t4 t5t5t5 t0 t1 t2 t0t0t0 t1t1t1
s5 t1t1t1 t2t2t2 t3 t4 t5 t3t3t3 t4t4t4 t5t5t5 t0 t1 t2 t0t0t0
t0 s0s0s0 s1s1s1 s2s2s2 s0 s1 s2 s3s3s3 s4s4s4 s5s5s5 s3 s4 s5
t1 s5 s0s0s0 s1s1s1 s2s2s2 s0 s1 s2 s3s3s3 s4s4s4 s5s5s5 s3 s4
t2 s4 s5 s0s0s0 s1s1s1 s2s2s2 s0 s1 s2 s3s3s3 s4s4s4 s5s5s5 s3
t3 s3s3s3 s4s4s4 s5s5s5 s3 s4 s5 s0s0s0 s1s1s1 s2s2s2 s0 s1 s2
t4 s2 s3s3s3 s4s4s4 s5s5s5 s3 s4 s5 s0s0s0 s1s1s1 s2s2s2 s0 s1
t5 s1 s2 s3s3s3 s4s4s4 s5s5s5 s3 s4 s5 s0s0s0 s1s1s1 s2s2s2 s0

Table 2: Extending the normal super-game between {s0, s1, s2, s3,
s4, s5} and {t0, t1, t2, t3, t4, t5} into normal games on 6d = 12
days, where d = 2 and home games are marked in bold

We consider a super-game between super-teams Si and Tj .
For the sake of presentation, we define sk := x(i−1)d+k and
tk := y(j−1)d+k for any 0 ≤ k < 3d. By definitions of Si and
Tj , we have that Si = {s0, s1, s2, . . . , s3d−3, s3d−2, s3d−1}
and Tj = {t0, t1, t2, . . . , t3d−3, t3d−2, t3d−1}.

First consider that the super-game is a normal super-game.
Normal super-games: The normal super-game will be ex-

tended into normal games on 6d days in the following way:
• Team s3i+i′ plays an away game with t3j+j′ on (6(i +
j) + i′ + j′) mod 6d day,

• Team s3i+i′ plays a home game with t3j+j′ on (6(i +
j) + i′ + j′ + 3) mod 6d day,

where 0 ≤ i, j ≤ d− 1 and 0 ≤ i′, j′ ≤ 2. An illustration of
the normal games after extending one normal super-game for
d = 2 is shown in Table 2.

The design of normal super-games is essential the same
of the construction in [Hoshino and Kawarabayashi, 2013],
which only works for the case that n ≡ 0 (mod 3). It guar-
antees that all games between one team in Si and one team in
Tj are arranged. To get a feasible schedule for the cases that
n ≡ 1 (mod 3) and n ≡ 2 (mod 3), we need to design left
super-games, which are newly introduced.

Left super-games: In this case, we have a team-pair Li′ ,
so we also define s3d := xnε+i′−1 and t3d := ynε+i′−1. By
definition of Li′ , we can get Li′ = {s3d, t3d}. For all teams
in Si ∪ Tj ∪Ri′ , we define a set of games as

mi := {si′ → t(i′+i) mod (3d+1)}3di′=0,

where each team in Si ∪ Tj ∪ Ri′ plays one game. We also
define mi as the set of games in mi but with reversed venues,
and let mi := mi. Since d is even, the extended normal games
on 6d days can be presented by

m1m2m3m4 · · ·m3d−1m3d ·m2m3m4m5 · · ·m3dm1.

An illustration of the normal games after extending one left
super-game for d = 2 is shown in Table 3.

Note that if d is odd, the games can be presented by
m1m2m3m4 · · ·m3d ·m1m2m3m4 · · ·m3d.

For each left super-game, we have two more teams due to
a team-pair, and then two days’ games in m0 and m0 are still
unarranged in extending the super-game on 6d days.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6817



0 1 2 3 4 5 6 7 8 9 10 11
s0 t1 t2t2t2 t3 t4t4t4 t5 t6t6t6 t2 t3t3t3 t4 t5t5t5 t6 t1t1t1
s1 t2 t3t3t3 t4 t5t5t5 t6 t0t0t0 t3 t4t4t4 t5 t6t6t6 t0 t2t2t2
s2 t3 t4t4t4 t5 t6t6t6 t0 t1t1t1 t4 t5t5t5 t6 t0t0t0 t1 t3t3t3
s3 t4 t5t5t5 t6 t0t0t0 t1 t2t2t2 t5 t6t6t6 t0 t1t1t1 t2 t4t4t4
s4 t5 t6t6t6 t0 t1t1t1 t2 t3t3t3 t6 t0t0t0 t1 t2t2t2 t3 t5t5t5
s5 t6 t0t0t0 t1 t2t2t2 t3 t4t4t4 t0 t1t1t1 t2 t3t3t3 t4 t6t6t6
s6 t0 t1t1t1 t2 t3t3t3 t4 t5t5t5 t1 t2t2t2 t3 t4t4t4 t5 t0t0t0
t0 s6s6s6 s5 s4s4s4 s3 s2s2s2 s1 s5s5s5 s4 s3s3s3 s2 s1s1s1 s6
t1 s5s5s5 s4 s3s3s3 s2 s1s1s1 s0 s4s4s4 s3 s2s2s2 s1 s0s0s0 s5
t2 s4s4s4 s3 s2s2s2 s1 s0s0s0 s6 s3s3s3 s2 s1s1s1 s0 s6s6s6 s4
t3 s3s3s3 s2 s1s1s1 s0 s6s6s6 s5 s2s2s2 s1 s0s0s0 s6 s5s5s5 s3
t4 s2s2s2 s1 s0s0s0 s6 s5s5s5 s4 s1s1s1 s0 s6s6s6 s5 s4s4s4 s2
t5 s1s1s1 s0 s6s6s6 s5 s4s4s4 s3 s0s0s0 s6 s5s5s5 s4 s3s3s3 s1
t6 s0s0s0 s6 s5s5s5 s4 s3s3s3 s2 s6s6s6 s5 s4s4s4 s3 s2s2s2 s0

Table 3: Extending the left super-game between {s0, s1, s2, s3,
s4, s5} and {t0, t1, t2, t3, t4, t5} into normal games on 6d = 12
days, where d = 2 and home games are marked in bold

4.2 The Last Time Slot
In the last time slot, we will arrange all unarranged games due
to left super-games. First, we will consider the unarranged
games involving teams in team-pairs. Then, we will consider
the unarranged games involving teams in super-teams.

The teams in team-pairs. Recall that the l team-pairs con-
tain l teams in Xε = {xnε

, . . . , xn−1} and l teams in Yε =
{ynε

, . . . , yn−1}. The next claim shows the unarranged nor-
mal games involving teams in team-pairs.

Claim 5 (*). The unarranged normal games involving teams
in team-pairs are {xi ↔ yj | xi ∈ Xε, yj ∈ Yε}.

The games in {xi ↔ yj | xi ∈ Xε, yj ∈ Yε} forms a
bipartite tournament between two l-team leagues Xε and Yε.
Next, we design a simple algorithm to arrange them.

Let si := xnε+i and ti := ynε+i for any 0 ≤ i < l. We
define a set of games as

mi := {si′ → t(i′+i) mod l}l−1
i′=0.

The games on 2l days for Xε ∪ Yε can be presented by

m0m1m2m3 · · · ·m0m1m2m3 · · ·.

Since l ≥ 3d, we can avoid the infeasible case m0m0 (l = 1).
The teams in super-teams. By Claim 4, for any 1 ≤ i ≤ l,

each super-team plays only one i-th left super-game. Hence,
there are m i-th left super-games, denoted as {Si − Tji}mi=1.
Recall that in the i-th left super-game two days’ games in
m0 ∪ m0 were not arranged. We denote the union of unar-
ranged games (involving teams in super-teams) in mi for all
m i-th left super-games as Mi. Then, the unarranged games
(involving teams in super-teams) due to the left super-games
are

⋃l
i=1 Mi ∪Mi. The games on 2l days for Xε ∪Yε can be

presented by

M1M2M3M4 · · · ·M1M2M3M4 · · ·.

Theorem 6 (*). For BTTP with n ≥ 108d3, the above con-
struction generates a feasible solution.

Although the above theorem requires n being a large num-
ber, it can guarantee our expected approximation ratio since
an instance with a constant n can be optimally solved in con-
stant time. However, for the sake of application, we also show
that our construction can be slightly modified to work for in-
stances with almost all n.
Theorem 7 (*). For BTTP, our construction can be modified
slightly to generate a feasible solution for any n except for
n ∈ {1, 2, 5, 8, 14}.

4.3 The Quality of the Schedule
The construction provides a feasible solution if each team in
X∪Y has a label. There are n!×n! ways to label teams in X
using {x0, . . . , xn−1} and teams in Y using {y0, . . . , yn−1}.
To get a good solution, we label them randomly.

Step 1. Assign each vertex x ∈ X (resp., y ∈ Y ) with a cost
of δY (x) (resp., δX(y)), and select the top nε vertices with
the highest costs to form Xε (resp., Yε).
Step 2. Generate a random permutation of md 3-paths in PXε

(resp., PYε
), and label them as P1, . . . , Pmd (resp., Q1, . . . ,

Qmd), respectively, where Pi = x3i−3x3i−2x3i−1 and Qi =
y3i−3y3i−2y3i−1.
Step 3. Take an arbitrary permutation of l teams in Xε (resp.,
Yε), and label them as xnε

, . . . , xn−1 (resp., ynε
, . . . , yn−1),

respectively.

Note that Step 1 can be done in O(n2) time, and Step 2 and
Step 3 can be done in O(n) time. In Step 2, we assume the
two 3-path packings are given in advance. Moreover, when
labeling a 3-path using Pi = x3i−3x3i−2x3i−1, there may be
two choices, and either of them is considered valid.
Theorem 8. For BTTP with n ≥ 108d3, using the above
randomized labeling method, our construction can generate
a solution with an expected weight of at most δYε(PXε) +
nεw(PXε

)+δXε
(PYε

)+nεw(PYε
)+ε ·OPT in O(n2) time.

Proof. Clearly, our construction takes O(n2) time.
Then, we make two assumptions for the sake of analysis,

which do not decrease the weight of our schedule by the trian-
gle inequality. Firstly, we assume that every participant team
returns home both before and after each day’s game in left
super-games and the last time slot. Secondly, we assume that
all participant teams return home before the game on the first
day and after the game on the last day in normal super-games.

By Step 1 of our labeling algorithm, since we select the top
nε vertices from X with the highest costs to form Xε, we get

δY (Xε) =
∑
x∈Xε

δY (x) ≥
nε

n

∑
x∈X

δY (x) =
nε

n
δY (X).

Alternatively, since l = n− nε ≤ 9d, we have

δXε
(Y ) = δY (Xε) ≤

(
1− nε

n

)
δY (X) ≤ 9d

n
δY (X). (1)

Similarly, we have

δYε
(X) = δX(Yε) ≤

(
1− nε

n

)
δX(Y ) ≤ 9d

n
δX(Y ). (2)

Consider a team x ∈ Xε. By assumptions, in our schedule
the weight of its itinerary is

∑
y∈Y 2w(x, y) = 2δY (x). The

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6818



total weight of itineraries of teams in Xε is
∑

x∈Xε
2δY (x) =

2δY (Xε) ≤ 18d
n δY (X) ≤ 1

dδY (X) by (1) and n ≥ 108d3.
Fix a team x ∈ Si ⊆ Xε. We have three parts of its trips.

1. The weight of its trips for playing teams in Yε is∑
y∈Yε

2w(x, y) = 2δYε
(x) by assumptions since these

games are in left super-games.
2. In a left super-game between Si and Tj , the weight of

its trips for playing teams in Tj is
∑

y∈Tj
2w(x, y) =

2δTj (x). We can get E[δTj (x)] =
1
mδYε

(x) by Step 2 of
our labeling algorithm. Since Si plays l left super-games
in total, the expected weight of its trips for playing teams
in a super-team that plays a left super-game with Si is
2l
mδYε

(x) ≤ 1
dδYε

(x) due to l ≤ 9d and m ≥ 18d2.
3. In a normal super-game between Si and Tj , it plays d

or d + 1 trips along at least d − 1 3-paths in Qj :=
{Q(j−1)d+1, . . . , Qjd} from one terminal to another (see
Table 2). If it plays d trips along d 3-paths in Qj , the
weight of these trips is δx(Qj) + w(Qj); if it plays
d+ 1 trips along d− 1 3-paths in Qj , it does not follow
a 3-path y′0y

′
1y

′
2 in Qj , the weight of the two trips for

playing teams in {y′0, y′1, y′2} is bounded by 2w(x, y′0)+
2w(x, y′1) + 2w(x, y′2) by the triangle inequality, and
then the weight of the d+1 trips is bounded by δx(Qj)+
w(Qj) + 2w(x, y′0) + 2w(x, y′1) + 2w(x, y′2). We have
E[δx(Qj)] =

1
mδx(PYε), E[w(Qj)] =

1
mw(PYε), and

E[w(x, y′0) + w(x, y′1) + w(x, y′2)] = 1
mdδYε

(x) by
Step 2 of our labeling algorithm. Since Si plays m− l ≤
m normal super-games, the expected weight of trips for
playing teams in a super-team that plays a normal super-
game with Si is at most δx(PYε

) + w(PYε
) + 1

dδYε
(x).

Hence, the total expected weight of itineraries of teams in Xε

is at most

2δYε
(Xε) +

2

d
δYε(Xε) + δXε(PYε) + nεw(PYε)

≤ 3

d
δX(Y ) + δXε(PYε) + nεw(PYε)

since we have 2δYε
(Xε) ≤ 2δYε

(X) ≤ 1
dδX(Y ) by (2) and

n ≥ 108d3, and δYε
(Xε) ≤ δY (X) = δX(Y ).

Therefore, the total expected weight of itineraries of teams
in X is bounded by 4

dδX(Y ) + δXε
(PYε

) + nεw(PYε
). Sim-

ilarly, for teams in Y , the expected weight is bounded by
4
dδY (X) + δYε

(PXε
) + nεw(PXε

).
Since d = 6⌈1/ε⌉ ≥ 6/ε by our setting and δY (X) =

δX(Y ) ≤ (3/4) · OPT by Lemma 1, our schedule has an
expected weight of at most ε·OPT+δYε(PXε)+nεw(PXε)+
δXε(PYε) + nεw(PYε).

5 The 3-Path Packing
In this section, we will obtain novel 3-path packings PXε

in
G[Xε] and PYε

in G[Yε] such that δYε
(PXε

) + nεw(PXε
) +

δXε(PYε)+nεw(PYε) ≤ δYε(Xε)+
1
2nεw(CXε)+δXε(Yε)+

1
2nεw(CYε

). By Lemma 2 and Theorem 8, these two 3-path
packings directly imply a (3/2+ε)-approximation for BTTP.

Next, we mainly show how to obtain PXε
in G[Xε] such

that δYε
(PXε

) + nεw(PXε
) ≤ δYε

(Xε) +
1
2nεw(CXε

) since
we can get PYε

in a similar way. We define some notations.

e1 e3

e2

Figure 3: An illustration of patching paths into a cycle: there are
three paths, denoted by solid lines, and they are patched into a cycle
using three edges e1, e2, e3, denoted by dashed lines

Since CXε
is a cycle packing in G[Xε], the length of each

cycle in CXε
is at least 3 and at most nε. Let Bq be the set of

all q-cycles in CXε
. So, we have CXε

=
⋃nε

q=3 Bq .
We will use CXε

to obtain a cycle packing C in G[Xε] such
that the length of each cycle in C is divisible by 3, and then
use C to obtain the 3-path packing PXε

. The algorithm of C
is shown as follows.

Step 1. Initialize C = ∅.
Step 2. For each 3-cycle in B3, we directly choose it into C.
Step 3. For each q-cycle Cq ∈ CXε

\ B3, obtain a q-path Pq

by deleting the edge xx′ ∈ Cq such that δYε
(x) + δYε

(x′) −
nεw(x, x

′) minimized. Then, patch all paths into a single
cycle C arbitrarily, and select the cycle into the packing.

An illustration of the patching operation in Step 3 can be
seen in Figure 3. Moreover, it is easy to see that the length
of each cycle in C is divisible by 3, and the algorithm takes
O(n3) time, dominated by computing the minimum cycle
packing CXε

[Hartvigsen, 1984].
Lemma 9 (*). nεw(C) ≤ 1

2δYε(Xε) +
3
4nεw(CXε).

Theorem 10 (*). There is a O(n3)-time algorithm to get a
3-path packing PXε

in G[Xε] and a 3-path packing PYε
in

G[Yε] with δYε(PXε)+nεw(PXε) ≤ δYε(Xε)+
1
2nεw(CXε)

and δXε
(PYε

) + nεw(PYε
) ≤ δXε

(Yε) +
1
2nεw(CYε

).
Theorem 11. For BTTP with any n and any constant ε >
0, there is a randomized (3/2 + ε)-approximation algorithm
with a running time of O(n3).

Proof. By Theorem 10, we can get 3-path packings PXε in
G[Xε] and PYε in G[Yε] in O(n3) time with δYε(PXε) +
nεw(PXε)+δXε(PYε)+nεw(PYε) ≤ δYε(Xε)+

1
2nεw(CXε

)

+δXε
(Yε) +

1
2nεw(CYε

).
If n ≥ 108d3, by Lemma 2 and Theorem 8, we can ob-

tain a solution in O(n2) time with an expected weight of at
most (3/2 + ε) · OPT by calling PXε

and PYε
on our ran-

domized construction algorithm. Otherwise, as mentioned,
we have n < 108d3 = Oε(1), and in this case, we can solve
the problem optimally in constant time. Therefore, there is
a randomized (3/2 + ε)-approximation algorithm for BTTP,
and the total running time is O(n3).

Our algorithm is randomized because it uses a simple ran-
domized labeling technique. It can be derandomized in poly-
nomial time using the well-known method of conditional ex-
pectations in [Williamson and Shmoys, 2011], while preserv-
ing the approximation ratio.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6819



6 Application
To test the performance of our algorithm, we introduce a new
BTTP instance, and apply our algorithm to this instance. Ad-
ditionally, we extend our construction to a 3-cycle construc-
tion by slightly modifying the design of normal super-games,
which turns out to be more practical.

The New Instance. The construction of our instance is
motivated by the real situation of NBA. Since 2004, the num-
ber of teams in NBA has always been 30, where there are 15
teams in the Western Conference and 15 teams in the East-
ern Conference. Thus, Hoshino and Kawarabayashi [2011b]
constructed an NBA instance with n = 15 for BTTP. In re-
cent years, there have been rumors saying that NBA is poised
to expand to 32 teams in 2024, with the potential inclusion
of two new teams from Las Vegas and Seattle. Therefore,
we create an instance, where we assume that two new teams
from Las Vegas and Seattle join in the Western Conference,
and also the Minnesota Timberwolves, originally from the
Western Conference, are moved to join the Eastern Confer-
ence. This is an instance for BTTP with n = 16. We de-
termined their distance matrix using the following method:
first, we surveyed the home venues of the existing 30 teams
and made educated guesses about the home venues of the two
new teams; then, we obtained the longitude and latitude co-
ordinates of these home venues using Google Maps; last, we
calculated the distances (in miles) between any pair of teams
based on the coordinates using the Haversine formula.

The Parameters. We set d = 1 and m = 5. Then, we have
l = 1, and the games in the last time slot may violate the no-
repeat constraint. As in the proof of Theorem 7, if we denote
the games on 2n days in our construction as g1g2 . . . g2n, we
can rearrange them as g2ng1g2 . . . g2n−1 to fix this problem.

The 3-cycle Construction. Our construction can be easily
extended to pack 3-cycles. We can modify our normal super-
games as follows. Assume that there is a normal super-game
between S = {s0, s1, s2} and T = {t0, t1, t2}. In the exten-
sion, we define mi := {si′ → t(i′+i) mod 3}2i′=0, and arrange
games on 6 days in the order of m0m1m2m0m1m2.

In the extension of the new normal super-game, each team
in S (resp., T ) plays 3-consecutive away games along two
edges in the 3-cycle t0t1t2t0 (resp., s0s1s2s0). Moreover, on
each day teams in the same league either all play home games
or all play away games. Due to this, before extending one new
normal super-game between super-teams S and T , we may
relabel teams in S and teams T . There are 3!×3! = 36 ways,
and we choose the best one so that the total traveling distance
of teams in S ∪ T is minimized on the extended 6 days. We
will recover their labels after extending the new normal super-
game, and the feasibility still holds. Note that this property
does not hold for the previous normal super-game.

Optimizing Left Super-games. The design of left super-
games in our construction can be optimized. Recall that we
arrange the games in left super-game as m1m2m3m1m2m3.
To reduce the frequency of returning homes, we rearrange
them as m1m2m3m1m3m2 for the 3-path construction, and
m1m2m3m1m2m3 for the 3-cycle construction. The feasi-
bility also holds.

The Implementations. Instead of finding a 3-path packing

Construction Result Gap Time
3-path 817086.814 24.66% 0.85s
3-cycle 717172.797 9.42% 1.03s

Table 4: Experimental results of our constructions

using the algorithm in Theorem 10, we directly label teams
randomly, and try to improve our schedule by exchanging the
labels of two teams in the same league. There are

(
n
2

)
pairs

of teams in X and
(
n
2

)
pairs of teams in Y . We consider these

n(n−1) pairs in a random order. From the first pair to the last,
we test whether the weight of our schedule can be reduced
after we swap the labels of teams in the pair. If no, we do not
swap them and go to the next pair. If yes, we swap them and
go to the next pair. After considering all the n(n − 1) pairs,
if there is an improvement, we repeat the whole procedure.
Otherwise, the procedure ends. Since the size of instance is
small, it is sufficient to obtain a good solution very quickly.

Our algorithms are coded in C++, on a standard desktop
computer with a 3.20GHz AMD Athlon 200GE CPU and 8
GB RAM.

The details of the new instance and our algorithms can be
found in https://github.com/JingyangZhao/BTTP.

We compare our results with the well-known Independent
Lower Bound [Easton et al., 2002]. The idea is to compute
the best-possible traveling distance of a single team v (i.e., the
traveling distance of its minimum weight itinerary) indepen-
dently without considering the feasibility of other teams. The
value is denoted as ILBv , and then the independent lower
bound is ILB =

∑
v∈X∪Y ILBv . Note that ILBv can be

obtained by solving the Capacitated Vehicle Routing Prob-
lem (CVRP). For example, if v ∈ X , we obtain an instance of
CVRP, where there is a vehicle with a capacity of 3 at v, each
team in Y has a unit demand, and we need to find a minimum
itinerary for the vehicle to fulfill the demand of teams in Y .
To solve this instance of CVRP, we use a brute-force enumer-
ation since the size is small. We have ILB = 655475.788.

Our results can be seen in Table 4, where the column ‘Con-
struction’ indicates the 3-path and the 3-cycle constructions;
‘Result’ lists the results of our algorithms; ‘Gap’ is defined to
be Result − ILB

ILB , and ‘Time’ is the running time of our algo-
rithms. We can see that both of our algorithms run very fast.
Compared to ILB, the quality of the 3-path construction has
a gap of 24.66%, which is much smaller than the expected
1.5-approximation ratio. Moreover, the 3-cycle construction
is more practical, which can reduce the gap to only 9.42%.

7 Conclusion
In this paper, for BTTP with any n and any constant ε > 0,
we propose a (3/2 + ε)-approximation algorithm, which sig-
nificantly improves the previous result. Our theoretical result
relies on three key ideas: the first is a new lower bound, the
second is a new construction, and the third is a 3-path packing
algorithm. Our methods also have the potential to design bet-
ter approximation algorithms for TTP, which is left for future
work. For applications, we create a new real instance from
NBA for BTTP. Experimental results show that the 3-cycle
construction has a very good practical performance.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6820

https://github.com/JingyangZhao/BTTP


Acknowledgements
This work is supported by National Natural Science Founda-
tion of China under grants 62372095 and 62172077, and Nat-
ural Science Foundation of Sichuan Province of China under
grant 2023NSFSC0059.

References
[Anagnostopoulos et al., 2006] Aris Anagnostopoulos, Lau-

rent Michel, Pascal Van Hentenryck, and Yannis Verga-
dos. A simulated annealing approach to the traveling tour-
nament problem. Journal of Scheduling, 9(2):177–193,
2006.

[Bulck et al., 2020] David Van Bulck, Dries R. Goossens,
Jörn Schönberger, and Mario Guajardo. Robinx: A three-
field classification and unified data format for round-robin
sports timetabling. European Journal of Operational Re-
search, 280(2):568–580, 2020.

[Chatterjee and Roy, 2021] Diptendu Chatterjee and Bi-
mal Kumar Roy. An improved scheduling algorithm for
traveling tournament problem with maximum trip length
two. In ATMOS 2021, volume 96, pages 16:1–16:15, 2021.

[Di Gaspero and Schaerf, 2007] Luca Di Gaspero and An-
drea Schaerf. A composite-neighborhood tabu search ap-
proach to the traveling tournament problem. Journal of
Heuristics, 13(2):189–207, 2007.

[Durán, 2021] Guillermo Durán. Sports scheduling and
other topics in sports analytics: a survey with special ref-
erence to latin america. Top, 29(1):125–155, 2021.

[Easton et al., 2001] Kelly Easton, George Nemhauser, and
Michael Trick. The traveling tournament problem: de-
scription and benchmarks. In CP 2001, pages 580–584,
2001.

[Easton et al., 2002] Kelly Easton, George L. Nemhauser,
and Michael A. Trick. Solving the travelling tournament
problem: A combined integer programming and constraint
programming approach. In PATAT 2002, volume 2740
of Lecture Notes in Computer Science, pages 100–109.
Springer, 2002.

[Frohner et al., 2023] Nikolaus Frohner, Bernhard Neu-
mann, Giulio Pace, and Günther R Raidl. Approaching
the traveling tournament problem with randomized beam
search. Evolutionary Computation, 31(3):233–257, 2023.

[Goerigk and Westphal, 2016] Marc Goerigk and Stephan
Westphal. A combined local search and integer program-
ming approach to the traveling tournament problem. An-
nals of Operations Research, 239(1):343–354, 2016.

[Goerigk et al., 2014] Marc Goerigk, Richard Hoshino,
Ken-ichi Kawarabayashi, and Stephan Westphal. Solving
the traveling tournament problem by packing three-vertex
paths. In AAAI 2014, pages 2271–2277. AAAI Press,
2014.

[Hartvigsen, 1984] David Hartvigsen. Extensions of match-
ing theory. PhD thesis, Carnegie-Mellon University, 1984.

[Hentenryck and Vergados, 2007] Pascal Van Hentenryck
and Yannis Vergados. Population-based simulated anneal-
ing for traveling tournaments. In AAAI 2007, pages 267–
272. AAAI Press, 2007.

[Hoshino and Kawarabayashi, 2011a] Richard Hoshino and
Ken-ichi Kawarabayashi. The distance-optimal inter-
league schedule for japanese pro baseball. In Proceed-
ings of the ICAPS 2011 Workshop on Constraint Satis-
faction Techniques for Planning and Scheduling Problems
(COPLAS), pages 71–78, 2011.

[Hoshino and Kawarabayashi, 2011b] Richard Hoshino and
Ken-ichi Kawarabayashi. The inter-league extension of
the traveling tournament problem and its application to
sports scheduling. In AAAI 2011, pages 977–984, 2011.

[Hoshino and Kawarabayashi, 2011c] Richard Hoshino and
Ken-ichi Kawarabayashi. Scheduling bipartite tourna-
ments to minimize total travel distance. Journal of Arti-
ficial Intelligence Research, 42:91–124, 2011.

[Hoshino and Kawarabayashi, 2012] Richard Hoshino and
Ken-ichi Kawarabayashi. The linear distance traveling
tournament problem. In AAAI 2012, pages 1770–1778.
AAAI Press, 2012.

[Hoshino and Kawarabayashi, 2013] Richard Hoshino and
Ken-ichi Kawarabayashi. An approximation algorithm for
the bipartite traveling tournament problem. Mathematics
of Operations Research, 38(4):720–728, 2013.

[Imahori, 2021] Shinji Imahori. A 1+O(1/N) approximation
algorithm for TTP(2). CoRR, abs/2108.08444, 2021.

[Kendall et al., 2010] Graham Kendall, Sigrid Knust,
Celso C Ribeiro, and Sebastián Urrutia. Scheduling
in sports: An annotated bibliography. Computers &
Operations Research, 37(1):1–19, 2010.

[Lim et al., 2006] Andrew Lim, Brian Rodrigues, and Xing-
wen Zhang. A simulated annealing and hill-climbing
algorithm for the traveling tournament problem. Eu-
ropean Journal of Operational Research, 174(3):1459–
1478, 2006.

[Miyashiro et al., 2012] Ryuhei Miyashiro, Tomomi Matsui,
and Shinji Imahori. An approximation algorithm for the
traveling tournament problem. Annals of Operations Re-
search, 194(1):317–324, 2012.

[Thielen and Westphal, 2011] Clemens Thielen and Stephan
Westphal. Complexity of the traveling tournament prob-
lem. Theoretical Computer Science, 412(4):345–351,
2011.

[Thielen and Westphal, 2012] Clemens Thielen and Stephan
Westphal. Approximation algorithms for TTP(2). Math-
ematical Methods of Operations Research, 76(1):1–20,
2012.

[Trick, 2024] Michael Trick. Challenge traveling tournament
instances. Online, 2024.

[Westphal and Noparlik, 2014] Stephan Westphal and Karl
Noparlik. A 5.875-approximation for the traveling
tournament problem. Annals of Operations Research,
218(1):347–360, 2014.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6821



[Williamson and Shmoys, 2011] David P Williamson and
David B Shmoys. The design of approximation algo-
rithms. Cambridge university press, 2011.

[Xiao and Kou, 2016] Mingyu Xiao and Shaowei Kou. An
improved approximation algorithm for the traveling tour-
nament problem with maximum trip length two. In MFCS
2016, volume 58 of LIPIcs, pages 89:1–89:14, 2016.

[Yamaguchi et al., 2011] Daisuke Yamaguchi, Shinji Ima-
hori, Ryuhei Miyashiro, and Tomomi Matsui. An im-
proved approximation algorithm for the traveling tourna-
ment problem. Algorithmica, 61(4):1077–1091, 2011.

[Zhao and Xiao, 2021a] Jingyang Zhao and Mingyu Xiao. A
further improvement on approximating TTP-2. In CO-
COON 2021, volume 13025 of Lecture Notes in Computer
Science, pages 137–149, 2021.

[Zhao and Xiao, 2021b] Jingyang Zhao and Mingyu Xiao.
The traveling tournament problem with maximum tour
length two: A practical algorithm with an improved ap-
proximation bound. In IJCAI 2021, pages 4206–4212,
2021.

[Zhao and Xiao, 2023] Jingyang Zhao and Mingyu Xiao.
The linear distance traveling tournament problem allows
an EPTAS. In AAAI 2023, pages 12155–12162, 2023.

[Zhao et al., 2022] Jingyang Zhao, Mingyu Xiao, and Chao
Xu. Improved approximation algorithms for the travel-
ing tournament problem. In MFCS 2022, volume 241 of
LIPIcs, pages 83:1–83:15, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6822


	Introduction
	Related Work
	Our Results

	Notations
	Lower Bounds
	The Construction of the Schedule
	The First m Time Slots
	The Last Time Slot
	The Quality of the Schedule

	The 3-Path Packing
	Application
	Conclusion

