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Abstract

The Capacitated Location Routing Problem is an
important planning and routing problem in logis-
tics, which generalizes the capacitated vehicle rout-
ing problem and the uncapacitated facility location
problem. In this problem, we are given a set of
depots and a set of customers where each depot
has an opening cost and each customer has a de-
mand, and we need to use minimum cost to open
some depots and route capacitated vehicles in the
opened depots to satisfy all customers’ demand. In
this paper, we propose a 4.169-approximation algo-
rithm for this problem, improving the best-known
4.38-approximation ratio (Transportation Science
2013). Moreover, if the demand of each customer
is allowed to be delivered by multiple tours, we
propose a more refined 4.092-approximation algo-
rithm. Experimental study on benchmark instances
shows that the quality of our computed solutions is
better than that of the previous algorithm and is also
much closer to optimality than the provable approx-
imation factor.

1 Introduction

In the fields of logistics, vehicle routing and facility loca-
tion are two major problems that have been widely studied
in both theory and application. Given a set of depots, vehi-
cle routing aims to route capacitated vehicles in the depots
to deliver goods for customers to satisfy their demand us-
ing the minimum cost. Facility location concerns the open-
ing cost of depots and the connection cost between cus-
tomers and the opened depots. Location routing can be
seen as a combination of these two problems, and is more
natural in real life. It involves first opening a set of de-
pots at some cost, and then routing the vehicles from the
opened depots. Location routing problems have been stud-
ied for decades since the idea of combining vehicle routing
and facility location was introduced in [Von Boventer, 1961;
Maranzana, 1964; Webb, 1968]. Recent surveys of location
routing problems can be found in [Prodhon and Prins, 2014;
Drexl and Schneider, 2015].
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In Capacitated Location Routing (CLR), we are given an
undirected complete graph G = (VUU, E, w, ¢, d, k), where
V is the set of customers, U is the set of depots (or facilities),
and there is one travel cost function w : E — Rx>( on edges,
an opening cost function ¢ : U — Rx>( on depots, and a
demand function d : V' — Rx>q on customers. Each depot
u € U has an opening cost ¢(u) and contains an unbounded
fleet of vehicles with the same capacity k > 0, each customer
v € V has a demand d(v) > 0, and we need to determine a
set of depots O C U to open and a set of tours Z such that
(1) each tour starts and ends at the same (opened) depot, (2)
each tour delivers at most k& of demand to customers on the
tour, and (3) the union of tours in Z satisfies all customers’ de-
mand. The total cost is defined as ) ;. w(I)+>_,co ¢(u),
where w(I), the cost of tour I, is defined to be the total cost of
edges in [, i.e., w(I) = > ., w(e). We consider two vari-
ants of CLR: splittable and unsplittable, where the demand
of each customer is allowed to be delivered by multiple tours
(resp., only one tour) in splittable (resp., unsplittable) CLR.
This definition also captures the case where each tour incurs
an extra depot-dependent fixed cost [Tuzun and Burke, 1999;
Barreto et al., 2007], i.e., each vehicle departing from depot
u € U incurs an additional cost of 7, € R>g. This can be
represented by adding F), /2 to the cost of all edges incident to
u, as each tour originating at u uses only two of these edges.

CLR generalizes many famous NP-hard problems. If ¢ =
0, we can open all depots in U at no cost, and in this case
CLR is the Multidepot Capacitated Vehicle Routing Problem
(MCVRP). If ¢ = 0 and £ = oo, CLR becomes the metric
m-depot traveling salesman problem (TSP). Hence, CLR also
includes the (single depot) Capacitated Vehicle Routing Prob-
lem (CVRP) and metric TSP as special cases. Moreover, CLR
with k being the greatest common divisor of the demands also
generalizes Uncapacitated Facility Location (UFL), where we
choose to open some depots and assign each customer v to its
nearest opened depot u with a cost of d(v)w(v,u). These
problems have been extensively studied both in terms of ap-
proximation algorithms and experimental algorithms [Toth
and Vigo, 2014; Montoya-Torres et al., 2015; An et al., 2017;
Zhang et al., 2015; Xin et al., 2021; Zhou et al., 2023].

1.1 Related Work

We focus on approximation algorithms. Next, we give a brief
review of literature on TSP, Vehicle Routing, UFL, and CLR.
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TSP. For metric TSP, the Christofides-Serdyukov algo-
rithm [1976; 1978] is a well-known 1.5-approximation algo-
rithm, and the ratio has been recently improved to 1.5—10~36
by Karlin er al. [2021; 2023]. For metric m-deopot TSP,
Rathinam et al. [2007] proposed a simple 2-approximation al-
gorithm, and Xu ef al. [2011] improved the ratio to 2 — 1/m.
There are also some works for the case that m is fixed [Xu and
Rodrigues, 2015; Traub et al., 2022; Deppert et al., 2023].

Vehicle Routing. For the case of single depot, Haimovich
and Kan [1985] proposed a 2.5-approximation algorithm for
splittable CVRP, and Altinkemer and Gavish [1987] pro-
posed a 3.5-approximation algorithm for unsplittable CVRP.
For the case of multidepot, Li and Simchi-Levi [1990] pro-
posed a 4-approximation algorithm for splittable MCVRP,
and Harks er al. [2013] proposed a 4-approximation algo-
rithm for unsplittable MCVRP. These results got improved
only very recently. For CVRP, Blauth et al. [2022] improved
the ratio to 2.5 — ﬁ for the splittable case, and Friggstad et
al. [2022] improved the ratio to about 3.164 for the unsplit-
table case. For MCVRP, Zhao and Xiao [2023] obtained a
ratio of 4 — Tloo for the splittable case and a ratio of 4 —
for the unsplittable case.

UFL. UFL has a rather rich history on approximation algo-
rithms (see the book [Williamson and Shmoys, 20111), where
many new techniques were developed. We mention the fol-
lowing results: Jain er al. [2003] proposed a practical 1.861-
approximation algorithm based on the greedy method with
a running time of O(nmlognm); Byrka and Aardal [2010]
proposed a 1.5-approximation algorithm and a bifactor ap-
proximation algorithm by modifying the LP rounding method
in [Chudak and Shmoys, 2003]; The current best result is a
1.488-approximation algorithm [Li, 2013].

CLR. Since CLR is more challenging, there are only a few
results on approximation algorithms. Harks er al. [2013] pro-
posed a 4.38-approximation algorithm for both unsplittable
and splittable CLR, and showed that unsplittable CLR can-
not be approximated better than 1.5 unless P = N P. They
also extended their algorithm to derive approximation algo-
rithms for three settings of CLR: prize-collecting, grouping,
and cross-docking. Recently, Heine e al. [2023] proposed a
bifactor approximation algorithm for a variant of CLR, where
each depot is also capacitated.

1.2 Our Results

In this paper, we propose two improved approximation algo-
rithms for CLR. The first, denoted as Tree-Alg, is a 4.169-
approximation algorithm for both unsplittable and splittable
CLR, which improves the previous 4.38-approximation algo-
rithm [Harks et al., 2013]. Note that the previous approxima-
tion ratio has been kept for a decade. The second, denoted as
Path-Alg, achieves a better ratio of 4.092 for splittable CLR.
The details of our improvements are as follows.

First, we obtain two stronger lower bounds for CLR, which
are essential to our results. Second, by refining the previous
4.38-approximation algorithm, we obtain our Tree-Alg, and
the main idea is to obtain tours by splitting trees. At last,
motivated by the cycle-splitting method used in vehicle rout-
ing problems, we develop our Path-Alg, focusing on splitting
paths. Although paths are simpler than trees, the analysis uses
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more techniques. The main reason is that we may use an ap-
proximation algorithm of TSP to compute paths which are
more expensive, and then we cannot even obtain a better ap-
proximation ratio by a straightforward analysis.

In practice, our algorithms are easy to implement and run
very fast. Experimental study on benchmark instances shows
that the quality of our computed solutions is better than that of
the previous algorithm and is also much closer to optimality
than the provable approximation factor.

1.3 Paper Organization

The remaining parts of the paper are organized as follows. In
Section 2, we introduce some notations and the formal defini-
tions of CLR and UFL. In Section 3, we propose two stronger
lower bounds for CLR. In Section 4, we give our Tree-Alg for
both unsplittable and splittable CFL, and in Section 5, we give
our Path-Alg for splittable CFL. In Section 6, we present the
experimental study of our algorithms. At last, we make the
concluding remarks in Section 7.

Due to limited space, the proofs of lemmas and theorems
marked with & were omitted and they can be found in the full
version of this paper.

2 Preliminaries

InCLR, weuse G = (VUU, E, w, ¢, d, k) to denote the input
complete graph. The cost function w is a metric function, i.e.,
it is symmetric and satisfies the triangle inequality. In UFL,
the input graph is the same as CLR, except for the absence
of the parameter k, and we use G = (V U U, E,w, ¢,d) to
denote it.

For any function f : X — Rx, we always define f(Y') =
> wey f(x) forany Y C X. For any subgraph S of G, we
use V(S), U(S), and E(S) to denote the customer set, the
depot set, and the edge set of S, respectively. Furthermore,
we define w(S) = ZeeE(S) w(e), ¢(S) = ZueU(S) p(u),
and d(S) = X, ey (g) d(v).

A walk in a graph, denoted by vyvs . .. vy, is a sequence of
vertices vy, va, . . ., U;, Where a vertex may appear more than
once and each consecutive pair of vertices is connected by an
edge. A path in a graph is a walk where no vertex appears
more than once. The first and the last vertices of a path are
referred to as its terminals. A closed walk is a walk where the
first and the last vertices are the same, and a cycle is a walk
where only the first and the last vertices are the same. Given a
closed walk, we can skip repeated vertices along the walk to
get a cycle, and such an operation is called shortcutting. Dur-
ing shortcutting, if a specific vertex v is consistently skipped,
we refer to it as shortcutting v.

A constrained spanning forest in G is a forest that spans
(i.e., covers) all vertices in V' and each tree in it contains only
one depot. A constrained spanning path-packing in G is a
set of vertex-disjoint paths that spans all vertices in V, each
depot is contained in at most one path in it, and each path in it
contains only one depot and the depot is one of its terminals.
A constrained spanning cycle-packing in G is a set of vertex-
disjoint cycles or paths that spans all vertices in V', each cycle
in it contains only one depot, and each path in it contains only
two depots and the depots are its terminals.
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A tour is a walk that starts and ends at the same depot and
does not pass through any other depot. We may only consider
simple and minimal tours with each containing only one de-
pot, i.e., each tour is a cycle containing only one depot.

2.1 Formal Problem Definition

Definition 1 (CLR). Given an undirected complete graph
G = (VUU,E,w,¢,d, k), we need to find a set of de-
pots O C U and a set of tours T with a demand assignment
x:V x 1T — Ry such that

s UI)NO #Qforany I €T,

* Yvevn Tor S kforany I €T,

* Yvev\v(n Tor =0forany I €T,
* > rerTor = d(v) foranyv €V,

and ) ;e w(l) + >, co ¢(u) is minimized.

In the above definition, if each customer is allowed to be
satisfied by using multiple tours, we call it as splittable CLR.
For unsplittable CLR, it requires that each customer must be
satisfied by using only one tour. Clearly, unsplittable CLR
admits a feasible solution only if it holds d(v) < k for any
v € V. In any solution (O, Z), we will refer to ) ;. w([)
as the routing cost and ) , ¢(u) as the opening cost.

Definition 2 (UFL). Given an undirected complete graph
G = (VUU,E,w,,d), we need to find a set of depots
O C U such that the cost ) ., d(v) - minyco w(o,v) +
> weo ¢(u) is minimized, i.e., for each v € V we directly
assign d(v) of demand to v from its nearest depot o in O with
a connection cost of d(v)w(o,v).

In Definition 2, )\, d(v) - min,co w(o,v) is called the
connection cost and ) ., ¢(u) is called the opening cost.

3 Lower Bounds

In this section, we prove two lower bounds of the optimal
solution that holds for both unsplittable and splittable CLR.
These bounds are crucial for us to prove the approximation
ratio.

Given an instance G = (VU U, E,w, ¢,d, k) of CLR, we

construct an UFL instance G = (V U U, E,w, ¢,d) as fol-
lows. The sets of depots and customers with their demand
remain the same as in CLR, but we set the costs of edges to
w = (2/k)w and the costs of depots to ¢ = « - ¢, where
« is a fixed constant that will be defined later. Note that «
is an important parameter newly proposed by us. In contrast,

Harks et al. [2013] only focused on ¢ = ¢.

Let OPT (resp., OPT’) denote the cost of an optimal solu-
tion for CLR (resp., UFL). We let ¢* and ¢* to denote the
routing cost of vehicles and the opening cost of facilities with
respect to the optimal solution of CLR, respectively. Note
that we have OPT = ¢* + ¢*. We have the following bound.

Lemma 3 (). It holds that OPT + (1 — ) - ¢* < OPT.

Our bound in Lemma 3 is more general since the previous
paper [Harks et al., 2013] only obtained the bound under oo =
1. Next, we consider the second lower bound.
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Algorithm 1 An improved approximation algorithm for un-
splittable and splittable CLR (Tree-Alg)

Input: An instance of CLR.
Output: A feasible solution to CLR.

1: Create an UFL instance with edge costs w = (2/k)w and depot

costs ¢ = « - ¢ as in Lemma 3.

2: Apply Byrka and Aardal’s bifactor approximation algo-
rithm [Byrka and Aardal, 2010] with a parameter of v > 0 on
the UFL instance, and let O, be the set of depots opened in the
resulting UFL solution.

3: Compute a constrained spanning forest 7 in GG as in Lemma 4,
and let O = U(T) be the set of depots contained in some
TeT.

4: Open all depots in O := O1 U Oa.

5: Obtain a set of feasible tours Z by calling the tree-splitting pro-
cedure in Algorithm 2.

6: Return (O, 7).

It was shown in [Harks et al., 2013] that one can use poly-
nomial time to find a constrained spanning forest 7 in GG such
that 2w(7T) + ¢(T) < 2 - OPT. We propose a better result.

Lemma 4 (&). There is a polynomial-time algorithm to find
a constrained spanning forest T such that

2w(T) + ¢(T) + ¢* < 2- OPT.

4 General CLR

In this section, we introduce our Tree-Alg, which is a 4.169-
approximation algorithm for unsplittable and splittable CLR.

4.1 The Algorithm

Our algorithm uses the framework of the 4.38-approximation
algorithm in [Harks er al., 2013]. Tt uses a bifactor approxi-
mation algorithm to compute a solution (i.e., a set of depots)
for the constructed instance of UFL in Lemma 3. Then, it
computes the constrained spanning forest 7 in Lemma 4. Let
O; be the set of opened depots in the solution of UFL and Oz
be the set of depots contained in 7. The algorithm will open
all depots in O := O; U Os. Based on splitting the trees in T
(the tree-splitting procedure in [Harks et al., 2013]), the algo-
rithm will return a feasible solution in polynomial time. The
framework of the algorithm is shown in Algorithm 1. Note
that the 4.38-approximation algorithm in [Harks ez al., 2013]
corresponds to our algorithm under o = 1.

Given a set of opened depots O and a constrained spanning
forest T, the tree-splitting procedure is to obtain a set of fea-
sible tours using only depots in O, which is also equivalent
to solving an instance of MCVRP. Note that it also works for
the case of splittable demand. Hence, we may assume w.l.o.g.
that a customer can have a demand of more than k. The main
idea is to repeatedly find a sub-tree S of trees in 7 such that
k > d(S) > k/2, and then construct a tour for (part of)
customers in V' (.S) by doubling edges in E(S) U {es} and
shortcutting, where eg is a minimum weight edge between
one customer in V'(S) and one depot in O.

The details are as follows. First, for each customer v € V'
with d(v) > k, we construct [%] tours for v by connect-
ing v with its nearest opened depot in O and regard v as a
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zero-demand customer in the following. Then, we consider
atree Ty, € T rooted at v € O, and satisfy all non-zero-
demand customers in V' (T,) by sphttlng T.,. Denote the sub-
tree rooted at v and the set of v’s children by T, and Q,,
respectively.

o If d(T\,) < k, we construct a tour for all non-zero-
demand customers in V(7)) by doubling all edges in
E(T,) and then shortcutting. Note that d(7, ) may have
a demand of less than k/2, but T, is special since it con-
tains an opened depot.

* Else, we find a minimal sub- tree T, such that d(T,) > k
and d(T,/) < k for every v’ € @,. Consider sub-trees
inT, = {v}U{Ty | v € Q,}. We greedily partition
them into sets 7o, ..., 7; such that d(7;) < k for each ¢
and d(7;) > k/2 for each i > 0. For each 7; with ¢ > 0,
we combine trees in 7; into a sub-tree .S by adding the
edges joining v and each tree in 7; and v (if {v} ¢ T;).
Then, we find a minimized cost edge eg connecting one
depot in O with one vertex in V' (S)UU (S). By doubling
edges in E(S) U {eg} and shortcutting, we construct a
tour for all non-zero-demand customers in V(7;). At
last, we update T, by removing V(S) \ {v} and E(S)
from T, and regard v as a zero-demand customer in the
following if {v} € T;.

The tree-splitting procedure used in Algorithm 1 is shown

in Algorithm 2. The tours have the following properties.

Lemma 5. [Harks et al., 2013]. Given a set of opened depots
O and a constrained spanning forest T, the set of tours T
returned by the tree-splitting procedure holds that (0,Z) is
a feasible solution for unsplittable and splittable UFL, and

w(T) <2w(T) + D, ey (4/k)d(v) - min,eo w(v, u).
4.2 The Analysis

In this subsection, we show that by carefully setting the values
of a and -y we can obtain a 4.169-approximation ratio.

For UFL with any constant v > 1.678, Byrka
and Aardal [2010] proposed a (bifactor) (1 + 2e77,7v)-
approximation algorithm. It returns a solution whose con-
nection cost is at most (1 + 2e~7) - ¢ p and whose opening
cost is at most 7y - ¢y, p, where ¥ 1, p and ¢, p are the values of
the connection cost and the opening cost of an initially com-
puted optimal fractional LP solution, respectively. In Step 2
of Algorithm 1, we apply Byrka and Aardal’s algorithm on
the UFL instance to open a set of depots O;. Hence, the
connection cost and the opening cost in the solution satis-
fies Y,y d(v) - mingeo, w(v,u) and $(O1), respectively.
Therefore, we have the following bounds.

Lemma 6. It holds that ), .\, d(v) - min,eco, w

(1+2e77) - ¢pp and $(01) < - drp.

Recall that OPT’ is the cost of an optimal solution on the
UFL instance in Lemma 3. The cost of the optimal fractional
LP solution is at most the cost of an optimal solution. Hence,
we have ¥ p + ¢ p < OPT’. By Lemma 3, we have

Lemma 7. It holds that V1. p + ¢1p < OPT < 0" + a - ¢,

Theorem 8. For unsplittable and splittable CLR, Tree-Alg is
a polynomial-time 4.169-approximation algorithm.

(v,u) <
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Algorithm 2 The tree-splitting procedure for CLR

Input: An instance of CLR, a set of opened depots O, and a con-
strained spanning forest 7.
Output: A set of feasible tours Z to CLR.

1: Initialize 7 = 0.

2: for allv € V with d(v) > k do

3: Construct [d(”)} tours for v by connecting v with its nearest
opened depot in O

4: Add the tours to Z and regard v as a zero-demand customer
in the following.

5: end for

6: forall T, € T do

7: while d(T%,) > k do

8: Find v € V(Ty) with d(T,) > k and d(T,) < k for
each v’ € Q..

9: Greedily partition trees in Ty, == {v} U{T, | v' € Qu}

into sets 7o, . . ., 71 such that d(7;) < k for each ¢ and d(7;) >
k/2 for each ¢ > 0.

10: forie {1,...,l} do

11: Combine trees in 7; into a sub-tree .S by adding the
edges joining v and each tree in 7;, and v (if {v} ¢ T).

12: Find an edge es with minimized cost connecting one
depot in O with one vertex in V(S) UU(S).

13: Construct a tour for all non-zero-demand customers
in V(7;) by doubling edges in E(S) U {es} and shortcutting.

14: Add the tour to Z, update T’, by removing V' (.S) \

{v} and E(S) from T, and regard v as a zero-demand cus-
tomer in the following if {v} € T;.

15: end for
16: end while
17: Construct a tour for all non-zero-demand customers in

V(Tw) by doubling edges in E(T,) and shortcutting.
18: Add the tour to Z.
19: end for
20: Return Z.

Proof. By Algorithm 1, it returns a solution (O, Z) such that

w(Z) + ¢(0)

<2w(T)+ Z (4/k)d mlnw(v u) + ¢(0O1) + ¢(0s)
veV

<2uw(T)+ > 2d(v (v) - min @(v,u) + — - $(01) + ¢(T)
veV

<2" 4+ 9" +2(1+2e77) - Yrp + (1/a) -y orp,
where the first inequality follows from w(Z) < 2w(T) +
> vev (4/k)d(v) - min,eo w(v,u) by Lemma 5 and ¢(0O) <
#(01) + #(O2), the second inequality follows from
mingeo w(v,u) < mingeo, w(v,u), w = (2/k)w, ¢ =
a - ¢, and ¢(O2) = ¢(T), and the last inequality follows
from OPT = ¢* + ¢* and Lemmas 4 and 6.

Let f () = max{2(1+2e~7), (1/a)-~}. Since OPT =
¥ 4 ¢*, the approximation ratio is bounded by

29" 4+ ¢* + f () - (Yrp + dLP)

o
W0+ f(0) (¥ +agY)

<max{2+ f,(a),1 +a- f,(a)},
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where the first inequality follows from Lemma 7.

Setting o = 1.461 and v = 3.168, we get f,(«) < 2.169
and max{2 + f,(a),1+ a - fy(a)} < 4.169. Hence, the
approximation ratio of Algorithm 1 is at most 4.169.

Since the bifactor approximation algorithm [Byrka and
Aardal, 2010] and the tree-splitting procedure [Harks er al.,
2013] run in polynomial time, it is easy to see that Tree-Alg
also runs in polynomial time. O

S Splittable CLR

In this section, we introduce our Path-Alg. As asked in [Harks
et al., 2013], an open problem is whether a more tour-specific
approach could lead to better approximation ratios. We an-
swer this question partially by showing that for splittable
CLR our Path-Alg is a 4.092-approximation algorithm. The
approach is inspired by the cycle-splitting method used for
MCVRP in [Li and Simchi-Levi, 1990].

The main idea of the cycle-splitting method proposed in [Li
and Simchi-Levi, 1990] is to obtain a Hamiltonian cycle by
using a §-approximation algorithm for metric TSP (recall that
0 ~ 1.5), and then obtain tours based on splitting the cycle.
Since we can transform a cycle into a path by deleting an
edge from it, instead of splitting a cycle, we focus on split-
ting a path. Although it seems that there is no big difference
between cycles and paths, they may lead to different approx-
imation ratios. This is because the edges incident to depots
may have additional costs, and we need to carefully control
the number of edges incident to depots.

A path, as a special case of tree, has a simpler structure:
for the case of splittable demand, one can greedily divide it
into several segments of demand & and possibly leave the last
segment (containing the depot) with a demand of less than
k. Recall that the tree-splitting procedure is mainly to obtain
a sub-tree S such that & > d(S) > k/2 repeatedly. There-
fore, based on a path-splitting procedure, we may reduce the
connection part of the routing cost from ) (4/k)d(v) -
min,co w(v,u)to ) - (2/k)d(v)-minyeo w(v, u). How-
ever, it is not straightforward to obtain better approximation
ratios for splittable CLR since we need to use twice cost of
the paths obtained from a §-approximation algorithm for met-
ric TSP that is more expensive than the constrained spanning
forest computed in Lemma 4. We will obtain a good approx-
imation ratio based on this idea with novel analysis.

5.1 The Algorithm

Compared to Tree-Alg, Path-Alg has two main modifications:
firstly, it computes a constrained spanning path-packing
rather than a constrained spanning forest, and secondly, it
constructs a set of tours through a path-splitting procedure
instead of the tree-splitting procedure.

To compute a constrained spanning path-packing, we con-
struct two new graphs G’ and H. Given G = (V U
U, E,w, @), we obtain a new graph G’ = (VU U, E,w’, ¢)
such that w'(v,v") = w(v,v’") for any v,v’ € V and
w'(u,v) = w(u,v)+0-¢(u) foranyv € V and u € U, where
0 is a constant defined later. Then, we obtain another graph
H = (VU{r}, F,c) such that ¢(r,v) = min,cpy w'(u,v)
and ¢(v,v") = min{w’(v,v"), c(r,v) + ¢(r,v")}. One can
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Algorithm 3 An improved approximation algorithm for split-
table CLR (Path-Alg)

Input: An instance of CLR.
Output: A feasible solution to CLR.

1: Create an UFL instance with edge costs w = (2/k)w and depot

costs ¢ = « - ¢ as in Lemma 3.

2: Apply Byrka and Aardal’s bifactor approximation algo-
rithm [Byrka and Aardal, 2010] with a parameter of v > 0 on
the UFL instance and let O; be the set of depots opened in the
resulting UFL solution.

3: Compute a constrained spanning path-packing P in G as in
Lemma 9 and let O2 = U(P) be the set of depots contained
in some P € P.

4: Open all depots in O := O1 U Oa.

5: Obtain a set of feasible tours Z by calling the path-splitting pro-
cedure in Algorithm 4.

6: Return (O, 7).

also think that H is obtained by contracting all depots in U as
a super-depot r and then taking a metric closure of G’. Note
that the edge weight functions in new graphs G’ and H are
still metric functions.

Lemma 9. Given a §-approximation algorithm for metric
TSP, there is a polynomial-time algorithm to compute a con-
strained spanning path-packing P in G.

Proof. By applying a d-approximation algorithm for metric
TSP in H, we can obtain a Hamiltonian cycle C' in H. Note
that C corresponds to a subgraph of G’ where each vertex in
V has an even degree. Therefore, we can obtain a constrained
spanning cycle-packing C in G’ by shortcutting. Note that the
shortcutting can ensure that each depot is contained in at most
one cycle or path in C.

Then, we can transform C into a constrained spanning path-
packing P by doing: (1) for each cycle uv; ...v;u € C we
delete the edge with a smaller cost from uv; and uv;, and (2)
for each path wvy ... v;u/ € C we delete the edge incident to
the depot with a smaller opening cost from wv; and u'v;. We
can see each depot is contained in at most one pathin P. [

The framework of our Path-Alg for splittable CLR can be
seen in Algorithm 3.
The path-splitting procedure works as follows. First, for

each customer v € V with d(v) > k, we construct [%} -1
tours for v (with each delivering k& of demand) by connect-
ing v with its nearest opened depot in O and update d(v) =

d(v) —k- ([@] —1). In the following, the demand of each
customer v holds that 0 < d(v) < k. Then, we consider
a path P, € P rooted at u € O, and satisfy all customers
in V(P,) by splitting P,. Denote the sub-path rooted at v
and v’s the only children by P, and ¢(v), respectively. We
consider the following two cases.

o If d(P,) < k, we get a tour for all customers in V(P,)
by doubling all edges in F(P,) and then shortcutting.

* Otherwise, we can do the following repeatedly until it
satisfies that d(P,) < k. First, we can find a customer
v € V(P,) such that d(P,) > k and d(Py.,)) < k.
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Algorithm 4 The path-splitting procedure for splittable CLR

Input: An instance of CLR, a set of opened depots O, and a con-
strained spanning path-packing P.
Output: A set of feasible tours Z to CLR.

1: Initialize Z = (.

2: for all v € V with d(v) > k do

3: Construct f@} — 1 tours for v by connecting v with its

nearest opened depot in O (each delivers k of demand).

4:  Addthe tours to Z and update d(v) = d(v)—k-([ d(k”) 1-1).

5: end for

6: for all P, € P do > P, is rooted at the depot u € O

7: while d(P,) > k do

8: Find v € V(P,) with d(P,) > k and d(Py(,y) < k. »
q(v) is v’s the only children

9: Find an edge ep, with minimized cost connecting one

depot in O with one vertex in V (P,).

10: Construct a tour I for all customers in V' (P,) by dou-
bling edges in E(P,) U {ep, } and shortcutting with demand
assignments: z,; = k — d(Py(y)) and 2,/; = d(v") for each
v e V(Pq(v)).

11: Add the tour to Z, update P, by removing V' (P,(,)) and
E(P,) from P,, and update d(v) := d(v) — zvr.

12: end while

13: Construct a tour for all customers in V(P,) by doubling
edges in E(P,) and shortcutting.

14: Add the tour to Z.

15: end for

16: Return Z.

Consider the sub-path P,. Then, we find an edge ep,
with minimized cost connecting one depot in O with one
vertex in V(P,). By doubling edges in E(P,) U {es}
and shortcutting, we construct a tour [ for all customers
in V(P,) with demand assignments: 2,7 = k—d(Py,))
and x,; = d(v’) for each v € V(Py,)). At last, we
update P, by removing V (Py,) and E(P,) and setting
d(v) = d(v) — Xypy.

The path-splitting procedure used in Algorithm 3 is for-
mally shown in Algorithm 4.

Lemma 10 (&). Given a set of opened depots O and a
constrained spanning path-packing P, the path-splitting pro-
cedure can use polynomial time to obtain a set of tours T
such that (0, T) is a feasible solution for splittable UFL and
w(Z) < 2w(P) + 3,y (2/k)d(v) - min,co w(v, u).

5.2 The Analysis

Based on a straightforward analysis, we may obtain 2w(P) +
d(P) < 2§-1p*+26-¢*, where § is the approximation ratio of
the algorithm used for metric TSP. However, it cannot lead to
a better-than-4.169-approximation ratio. In this subsection,
we will prove a better bound based on a tighter analysis, and
obtain a 4.092-approximation ratio.

Let C* be a minimum cost Hamiltonian cycle in graph H.

Lemma 11. It holds that c(C*) < o* + 20 - ¢*.
Proof. Consider an optimal solution (O, Z) of CLR. For each

depot 0 € O, there is a set of tours Z, C Z with each in
it containing o. By shortcutting all tours in Z,, we obtain a

cycle C, = ov;...v;0 such that w'(C,) < w(Z,) + 20 -
¢(0). Note that H is obtained by contracting all depots in U
as a super-depot 7 and then taking a metric closure of G’, and
{Cs}oco corresponds to an Eulerian graph in H. Therefore,
by shortcutting {C,},c0, we obtain a Hamiltonian cycle in
H with a cost of at most »_ _,w'(C,). Since C* is the
minimum cost Hamiltonian cycle in H, we can get that

c(C) <) w'(Cy)

0€O

< w(T) +20 - $(0) = v* +20 - ",
which finishes the proof. O

Lemma 12. Given a d-approximation algorithm for metric
TSP, the computed constrained spanning path-packing P sat-
isfies that 2w(P) + ¢(P) < 26 - * + 0 - ¢* under § = 1.

Proof. Given a ¢-approximate Hamiltonian cycle in H, the
algorithm in Lemma 9 simply computes a constrained span-
ning cycle-packing C in G’ by shortcutting the corresponding
subgraph in G’. Hence, we have w’(C) < § - ¢(C*). Let
C = C; U (s, where C; and Cs denote the set of cycles and
paths in C, respectively.

For each cycle uv; ... v;u € Cy (resp., path uvy ... v;u" €
C5), the algorithm deletes the edge with a smaller cost from
uwvy and ww; (resp., incident to the depot with a smaller open-
ing cost from uw; and u’v;). Therefore, the constrained span-
ning path-packing P satisfies that w'(P) < w'(C) — 6 -
¢(C1) — 30 - 6(C2) and ¢(P) < ¢(C1) + 5¢(C2). Note that
w'(P) = w(P) + 0 - $(P) since each path in P contains only
one edge incident to the depot. Moreover, under 6 = i, we
also have 1 — 20 = 26 > 0. Hence, we have

2w(P) + ¢(P) = 2w'(P) + (1 - 20) - (P)
< 2w'(P) + (1 -20) - (¢(Cl) + ;é(Cz))

=2uw'(P) + 26 - (qﬁ(Cl) + ;¢(C2))

< 2uw'(C)
<25 ¢(C7).

So, we get 2w(P)+¢(P) < 2§-9*+§-¢* by Lemma 11. [

Using the well-known Christofides-Serdyukov algo-
rithm [1976; 19781 for metric TSP, we have § = 3, and then
we have 2w(P)+¢(P) < 3¢*+3 ¢* by Lemma 12. Note that
this result may only lead to a 4.143-approximation algorithm
for splittable CLR. We can obtain a further improvement if
using the property of their algorithm. Let 7" be a minimum
spanning tree in H. We have the following lemma.

Lemma 13 (&). It holds that ¢(T*) < i* + 0 - ¢*.

Lemma 14 (&). Given the Christofides-Serdyukov algorithm
for metric TSP, the computed constrained spanning path-
packing P satisfies that 2w(P) + ¢(P) < 3¢* + ¢* if § = 1.

Theorem 15 (&). For splittable CLR, Path-Alg is a
polynomial-time 4.092-approximation algorithm.

6810



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6 Experimental Results

We conduct experiments to compare our two algorithms,
Tree-Alg and Path-Alg, with the previous approximation al-
gorithm in [Harks et al., 2013]. Next, we introduce the bench-
mark instances of CLR, the implementations of our algo-
rithms, and the results, respectively.

Instances. Harks et al. [2013] tested their approximation
algorithm on 45 CLR benchmark instances in total, including
36 instances from [Tuzun and Burke, 1999] and 9 instances
from [Barreto et al., 2007]. They compared their results
with the previous best known solutions (pbks) obtained by
heuristic approaches [Prins et al., 2007; Baldacci et al., 2009;
Barreto et al., 2007; Tuzun and Burke, 1999] by comput-
ing the gaps between their results and the pbks. Although
some results of these benchmark instances have been fur-
ther slightly improved [Baldacci et al., 2011; Contardo er al.,
2014], for the sake of comparison, we test our algorithms on
these instances and still compute the gaps between our results
and the pbks.

Implementations. We present the detailed implementa-
tions of our algorithms.

On one hand, given a sub-tree, instead of finding tours by
the method of doubling and shortcutting, we obtained a tour
by finding a minimum cost matching on the odd-degree ver-
tices contained in the sub-tree and then shortcutting. This was
motivated by its ability to guarantee a 1.5-approximation for
metric TSP [Christofides, 1976; Serdyukov, 1978], whereas
the doubling-and-shortcutting method may only achieve a 2-
approximation [Williamson and Shmoys, 2011]. Note that
in our Path-Alg we used this method to implement the 1.5-
approximation algorithm of metric TSP as well.

On the other hand, as in [Harks et al., 2013], we used the
practical 1.861-approximation algorithm [Jain et al., 2003] of
UFL to open a set of depots O, instead of using the bifactor
approximation algorithm [Byrka and Aardal, 2010] since the
latter algorithm involves solving an LP, which is not practical.
So, there was no need to consider the setting of . Moreover,
after opening a set of depots using the greedy algorithm, sug-
gested in [Harks et al., 2013], we regarded their opening cost
as zero in the following. This does not impact the approxi-
mation ratio. For «, we tested different values. This choice
was made because for a range of values of « the implemen-
tations can always guarantee an approximation ratio. See the
following lemma. Harks et al. [2013] only considered o = 1
and showed the implementation had a ratio of 5.722.

Lemma 16 (&). For any 0.5 < a < 1.26, our implementa-
tion of Tree-Alg has an approximation ratio of 5.722; For any
1 < o < 2.07, our implementation of Path-Alg has an ap-
proximation ratio of 4.861; Moreover, both implementations
have a running time of O(n® 4+ nmlog nm).

Our algorithms are implemented in C++ on a desktop
computer with an AMD Ryzen 5 PRO 4650G with Radeon
Graphics (3.70 GHz, 32.0 GB RAM) using Windows Sub-
system for Linux (WSL). The detailed information of our al-
gorithms, the 45 tested instances and the pbks can be found
in https://github.com/JingyangZhao/CLR.
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o | Tree-Alg | Path-Alg
0.1 | 0.1996 0.2621
0.2 | 0.1503 0.2098
0.3 | 0.1265 0.1883
04 | 0.1164 0.1755
0.5 | 0.1211 0.1755
0.6 | 0.1202 0.1677
0.7 | 0.1219 0.1676
0.8 | 0.1270 0.1733
0.9 | 0.1330 0.1834
1.0 | 0.1363 0.1874
1.1 0.1408 0.1872
1.2 | 0.1420 0.1888
1.3 | 0.1480 0.1932
1.4 | 0.1566 0.1998
1.5 | 0.1589 0.2024

Table 1: The average gaps between our results and the pbks for Tree-
Alg and Path-Alg under different values of

Results. A summary of our results can be found in Table 1,
where we list the average gaps between our results of Tree-
Alg (resp., our results of Path-Alg) and the pbks under dif-
ferent settings of o. Note that our algorithms run very fast.
The running time of each instance on average is about 0.08s
for both Tree-Alg and Path-Alg, which is almost unchanged
under different values of a.

The previous algorithm in [Harks ez al., 2013] achieves an
average gap of 18.8%. Under a = 0.1, our algorithms get a
bigger average gap, which means our results are worse. The
reason may be that under o = 0.1 the greedy algorithm opens
almost all depots for each instance which is too expensive.
For other values of « in Table 1, we can achieve a better ra-
tio. Notably, as we increase the value of «, the gaps exhibit a
significant decrease potentially because the greedy algorithm
opens less depots. Especially, when setting o = 0.4 and
a = 0.7, the gaps become 11.64% and 16.76% for Tree-Alg
and Path-Alg, respectively, both surpassing the performance
of 18.8%. But, when further increasing «, the gaps start to
increase: the number of opened depots may be too small.

We conclude that when setting « suitably, our algorithms
achieve much better results than the previous approximation
algorithm, and the quality of solutions is also much closer to
optimality than the provable approximation ratio. Although
Path-Alg has a better approximation ratio in theory, Tree-
Alg is slightly better on the tested instances in practical. The
reason may be that in the worst-case, Tree-Alg delivers only
about k/2 of demand on each tour but it delivers close to k of
demand on each tour in practical.

7 Conclusion

In this paper, we propose two improved approximation algo-
rithms for CFL: one is a 4.169-approximation algorithm for
both the unsplittable case and the splittable case, and another
is a 4.092-approximation algorithm for the splittable case.
Our algorithms may be extended to some variants of CLR
in [Harks er al., 2013]. A remained open problem is to design
a better-than-4-approximation algorithm for CLR.


https://github.com/JingyangZhao/CLR
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