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Abstract
Building upon recent advancements in formalising
Fully Observable Non-Deterministic (FOND) Hier-
archical Task Network (HTN) planning, we present
the first approach to find strong solutions for HTN
problems with uncertainty in action outcomes. We
present a search algorithm, along with a compila-
tion that relaxes a FOND HTN problem to a deter-
ministic one. This allows the utilisation of exist-
ing grounders and heuristics from the deterministic
HTN planning literature.

1 Introduction
Hierarchical Task Network (HTN) planning allows the de-
composition of complex tasks into smaller sub-tasks using
predefined methods [Ghallab et al., 2016; Bercher et al.,
2019]. The hierarchy imposed by the decompositions re-
stricts which tasks can be included in the solutions, and more
interestingly, excluded from them. This fine-grain control
over the solutions makes HTN planning provably more ex-
pressive than the classical goal-satisfying approach [Erol et
al., 1996; Geier and Bercher, 2011; Alford et al., 2015].

One of the prevailing assumptions in hierarchical plan-
ning systems is that the operating domain will react deter-
ministically to the execution of actions [Erol et al., 1994;
Nau et al., 2003; Bercher et al., 2019; Höller et al., 2021];
this is, however, rarely the case when dealing with real-world
scenarios. While many planning systems in classical set-
ting can deal with non-determinism [Cimatti et al., 2003;
Kissmann and Edelkamp, 2009; Mattmüller et al., 2010;
Fu et al., 2011; Pereira et al., 2022], to the best of our knowl-
edge, there is no system to tackle HTN problems in the con-
text of Fully Observable Non-Deterministic (FOND) environ-
ments. While hierarchical planners such as YoYo [Kuter et
al., 2005; 2009], and ND-SHOP2 [Kuter and Nau, 2004] per-
mit hierarchy as advice on how to solve the underlying classi-
cal FOND planning problems, they do not leverage the inher-
ent expressivity of HTN planning. In other words, plans fol-
lowing their policies are usually not refined according to the
task hierarchy. Other treatments of uncertainty in hierarchical
planning such as the UPOM planner [Patra et al., 2020; 2021]
which extends the Reactive Acting Engine (RAE) [Ghallab et
al., 2016] to include learning strategies for online planning

in dynamically changing environments, emphasize “acting”
[Ghallab et al., 2014]. As a consequence, they use a non-
standard operational model to achieve hierarchy [Patra et al.,
2019]. In this work, we aim to bridge this gap by building
upon a theoretical framework proposed for solving FOND
HTN problems [Chen and Bercher, 2022]. To achieve this
goal we lay the entire groundwork necessary:

• A compilation from FOND HTN domains to their all-
outcome-determinized relaxation in order to:

– ground lifted FOND HTN domains using existing
deterministic HTN planning grounders, and

– derive heuristics from the deterministic planning
literature (present and future),

• A heuristic search algorithm to solve (propositional)
acyclic FOND HTN planning problems.

As a minor (non-scientific) contribution, we also extend the
Hierarchical Domain Definition Language (HDDL) [Höller et
al., 2020a] to allow the expression of FOND HTN problems,
and provide the first set of benchmark problems denoted in
this language for our (or future) empirical evaluations.

Overall, we introduce (to the best of our knowledge) the
first planning system for HTN planning problems capable
of handling some level of uncertainty while strictly adher-
ing to the hierarchy and retaining important features such
as the partial ordering of tasks. We would like to note that
the AO* algorithm requires acyclic search spaces, which is
why we restrict our evaluation to acyclic problems. How-
ever, none of our other contributions (i.e., the all-outcome-
determinization, the grounder, and heuristics) requires this
restriction. We call our system Koala, and it is accessible
at https://github.com/koala-planner/main.

2 Problem Statement
Currently, two formalizations for FOND HTN (under stan-
dard HTN semantics) exist [Chen and Bercher, 2021; 2022].
The biggest difference between the solutions put forward in
2021 and those in 2022 is that the former only considers
primitive task networks as solutions, i.e., a complete and
finite refinement of the initial task network. Its underly-
ing policy just tells when each primitive task is to be exe-
cuted, based on the observed outcome. This has been called
outcome-dependent fixed-method policy [Chen and Bercher,
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2021]. The latter version, called method-based policy, dif-
fers significantly from this since the choice of methods is
postponed until primitive tasks have been executed [Chen
and Bercher, 2022]. As a consequence, solutions are com-
plex policies, not fixed task networks. Any primitive ac-
tion sequence executed is still a refinement of the initial task
network, but which plan that is will be decided during run-
time after observing non-deterministic action outcomes. For
this flexible kind of solution, two variants exist: Strong and
strong cyclic policies. Strong solutions guarantee finite ex-
ecution time since they prohibit cycling. Strong cyclic so-
lutions are allowed to exploit cyclic method definitions. As
a consequence, while these plans still guarantee to end up
in a primitive and executable refinement eventually, it could
take arbitrarily long due to unfortunate action outcomes. The
definitions resemble those found in FOND classical plan-
ning [Goldman and Boddy, 1996; Pryor and Collins, 1996;
Cimatti et al., 2003]. Our work aims at finding strong
method-based policies for FOND HTN problems. As such,
in this section, we provide the formalization introduced by
Chen and Bercher [2022].

A FOND HTN domain contains all objects, relations, and
valid operations on them.
Definition 1 (Planning Domain). A FOND HTN planning do-
main D is a tuple D = ⟨F,Np, Nc, δ,M⟩ where:

• F is a finite set of facts, and we define the set of states to
be S := 2F ,

• N := Np ∪Nc is a finite set of primitive, Np, and com-
pound, Nc, task names where Np ∩Nc = ∅,

• δ : Np → A, with A ⊆ S × 22
F×2F a finite set of non-

deterministic actions, is the action mapping, and
• M ⊆ Nc×TN is a finite set of decomposition methods,

where TN denotes the set of all possible task networks.
We will sometimes use the term action name and action

synonymously (as it is often clear from the context which one
is meant), although the former first has to be mapped to the
latter via the action mapping δ. Also, note that the terms ac-
tion and primitive task are used synonymously.

For each primitive task name p ∈ Np, δ defines an ac-
tion δ(p) = (pre, eff ) where pre ⊆ F is the set of pre-
conditions that must hold in order to execute the action and
eff ⊆ 22

F×2F consists of a set of effect pairs of the form
(add, del), with add effects add ⊆ F and delete effects
del ⊆ F . For convenience, we also write pre(p) and eff (p)
to refer to the preconditions and effects of an action p ∈ Np.
An action p ∈ Np is executable in state s ∈ S (denoted by
τ(p, s) = ⊤) if and only if pre(p) ⊆ s.

The execution of an action p ∈ Np in a state s ∈ S results
in a non-deterministic state transition, defined as follows.

γ(p, s) =


{(s \ del) ∪ add | τ(p, s) = ⊤
(add , del) ∈ eff (p)}

undefined τ(p, s) = ⊥
The tasks that need to be accomplished and their desired or-

dering are organized in task networks. The definition is iden-
tical to deterministic HTN planning, as it simply organizes
the tasks in a partially ordered fashion, which is independent
of whether actions are deterministic or not.

Definition 2 (Task Network). A task network is a tuple tn =
⟨T,≺, α⟩ where T is a finite set of task IDs, ≺ is a partial
order over T , and α : T → N .

Task IDs are required to differentiate between multiple oc-
currences of the same tasks. Therefore, the ordering is de-
fined on these IDs, and then α maps those IDs back to the
actual tasks. Therefore, it does not matter which concrete
identifiers are used for the IDs. This is captured by the defi-
nition of isomorphism (i.e., equivalence) of task networks:

Definition 3 (Isomorphism of Task Networks). Let tn1 =
⟨T1,≺1, α1⟩ and tn2 = ⟨T2,≺2, α2⟩ be two task networks.
tn1 and tn2 are isomorphic (denoted tn1

∼= tn2) if there
is a bijection σ : T1 → T2 such that for all t, t′ ∈ T1 we
have α1(t) = α2(σ(t

′)), and further it holds (t, t′) ∈ ≺1 iff
(σ(t), σ(t′)) ∈ ≺2.

Note that our definition does not incorporate so-called
method preconditions [Nau et al., 2003], which provide state
properties that have to hold in order to be allowed/capable
of applying a method in a certain state during progression
search. This is for two main reasons: (1) We base on the un-
altered formalism by Chen and Bercher [2022] for which a
comprehensive complexity investigation has been conducted,
and (2) for the sake of simplicity because under a common in-
terpretation of method preconditions, they can easily be com-
piled away by introducing a new artificial primitive task as the
first task into the respective task network with the method’s
precondition as its precondition [Höller et al., 2020a]. How-
ever, despite being considered standard, this interpretation is
semantically doubtful in a partial order setting (while being
perfectly fine in total order), as discussed by Höller et al.
[2020a]. Existing grounders, such as the one presented by
Behnke et al., which has been employed in this paper, elimi-
nate method preconditions.

Definition 4 (Decomposition Method). A (decomposition)
method is a tuple m = ⟨c, tn⟩ where c ∈ Nc and tn is a
task network.

We now define task decomposition in the context of pro-
gression search [Höller et al., 2018; 2020b], where only
compound tasks without predecessor (in their ordering con-
straints) can be decomposed.

Definition 5 (Progression Task Decomposition). A method
m = ⟨c, tn⟩ decomposes a task network tn1 = ⟨T1,≺1, α1⟩
into tn2 = ⟨T2,≺2, α2⟩ if there exists an unconstrained task
t ∈ T1 (i.e., there is no x ∈ T1 where (x, t) ∈ ≺) such that
α1(t) = c and there is a task network tn′ = ⟨T ′,≺′, α′⟩ with
tn′ ∼= tn where T1 ∩ T ′ = ∅. The task network tn2 is defined
as tn2 = ⟨(T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, ((α1 \ {(t, c)}) ∪ α′)⟩
where ≺D is defined as follows.

≺D = {(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 ̸= t ∧ t2 ̸= t}

FOND HTN planning problems are defined as follows.

Definition 6 (FOND HTN Problem). A FOND HTN planning
problem P is a tuple ⟨D, tnI , sI⟩ where D is its planning
domain and sI ∈ 2F and tnI are its initial state and task
network, respectively.
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We still need to define the set of solutions for a planning
problem. Whereas in deterministic HTN planning [Geier and
Bercher, 2011; Bercher et al., 2019] (or even in FOND HTN
planning with fixed-methods [Chen and Bercher, 2021]), a
solution is simply a fixed task network, we – for the more
flexible method-based FOND solutions – require a more com-
plex data structure, called method-based policy [Chen and
Bercher, 2022]. This is a mapping from a current task net-
work plus its state to either a primitive task (the next task to
execute) or a compound task and an appropriate method (how
to decompose the next compound task). After formally defin-
ing this (partial) function, we provide the criteria which of
these policies are actually solutions.
Definition 7 (Method-Based Policy). A (method-based) pol-
icy π is a partial function π : TN × S → T ×M ′ where
T is the union of the sets of (corresponding) tasks in the task
networks of TN , and M ′ = M ∪ {ϵ} where ϵ is the reserved
symbol for execution of primitive tasks.

For a policy π to be well-defined, we have to impose that
for all (tn1, s1) and (tn2, s2) in the domain of π, if s1 = s2
and tn1

∼= tn2 then tn1 = tn2.
Following a policy we get an execution trace, i.e., a se-

quence of task networks and states – the search nodes pro-
cessed by an HTN progression planner. This is formally
captured by what was called execution structure [Chen and
Bercher, 2022]. In the following definition, for a task net-
work tn = ⟨T,≺, α⟩ we use the shorthand tn \ t to denote
⟨T \ {t}, {(x, y) | (x, y) ∈ ≺ and x, y ̸= t}, α \ {(t, α(t)}⟩.
Definition 8 (Execution Structure). Let P be a FOND HTN
problem. Let L = ⟨U, V ⟩ be a tuple where U ⊆ TN ×S and
V ⊆ (TN ×S)× (T ×M ∪{ϵ})× (TN ×S) be the minimal
sets satisfying (tnI , sI) ∈ U and:
If (tn, s) ∈ U and π(tn, s) = (t,m), then

• if t is primitive, then for all s′ ∈ γ(t, s) we have (tn \
t, s′) ∈ U and ((tn, s), (t, ϵ), (tn \ t, s′)) ∈ V , and

• if t is compound, then we have (tn′, s) ∈ U and
((tn, s), (t,m), (tn′, s)) ∈ V , where tn′ is the result of
decomposing task t in tn with method m.

The execution structure induced by a policy π is the tuple
[L] = ⟨[U ], [V ]⟩ where [U ] is the set U quotient out by
the relation (tn, s) ∼ (tn′, s) iff tn and tn′ are isomor-
phic and similarly for [V ] where ((tn1, s), (t,m), (tn2, s)) ∼
((tn′

1, s), (t,m), (tn′
2, s)) iff tn1 and tn2 are isomorphic and

tn′
1 and tn′

2 are isomorphic.
The execution structure [L] = ⟨[U ], [V ]⟩ induced by a pol-

icy π can be viewed as a directed graph where each node
u ∈ [U ] is a FOND HTN (sub-)problem with its own task
network and state, and each transition v ∈ [V ] is an instruc-
tion on which task (either primitive or compound) must be
performed in order to step toward solving the problem – see
Fig. 1 for an example. This simply corresponds to all task
networks a progression planner would create while following
all possible outcomes of a given policy.

Given an execution structure L, we refer to (tnI , sI) as the
initial node, any node that has no outgoing edge as terminal,
and terminal nodes (tn, s) where tn contains no task (also
denoted by tn∅) as a goal node.

s0

s2s1

s2s1

s4

⟨p1,ϵ⟩

⟨c
1 ,m

2 ⟩

⟨c
1 ,m

1 ⟩ ⟨p3,ϵ⟩⟨p 2
,ϵ⟩

Figure 1: An illustration of the execution structure of a (strong) pol-
icy π for problem P = ⟨D, p1 → c1, s0⟩, where D is the do-
main (not formally provided) and p1 → c1 is shorthand for a to-
tally ordered task network with a primitive task p1 having two (non-
deterministic) effects and a compound task c1. Nodes and edges
correspond to those in execution structure. Edge labels show the
output of the policy for the respective parent node.

We can now define the solution criteria for FOND HTN
problems. Note that we define, purely for the sake of com-
pleteness, all three standard kinds of solutions: weak, strong,
and strong cyclic ones – but in this paper, we are only con-
cerned with finding strong solutions.
Definition 9 (Weak, Strong, and Strong Cyclic Solutions).
Let P be a FOND HTN problem. A policy π with execution
structure L = ⟨U, V ⟩ is a weak solution to P if at least one
terminal node of L is a goal node, a strong cyclic solution to
P if every terminal node of L is a goal node, and a strong
(acyclic) solution to P if L is acyclic, finite, and every termi-
nal node of L is a goal node.

For weak solutions, Chen and Bercher [2022] also demand
finiteness. Although we are not concerned with weak solu-
tions, we removed this constraint as it would exclude some
policies from considered weak although they admit a solution
given favorable outcomes.

3 All Outcome Determinization
In this section, we show how a FOND problem can be turned
into a deterministic problem serving as problem relaxation,
meaning that the set of solutions of the deterministic prob-
lem is a superset of the (traces of the) solutions of the non-
deterministic one. We believe that this transformation has
multiple practical applications in FOND HTN planning, two
of which are proposed in this paper. There might also be fur-
ther theoretical applications as evidenced by one result rely-
ing on it already. Chen and Bercher [2021] used it for the
less flexible HTN formalization (of fixed-method policies) to
prove their Lemma 4.3 which relates this problem relaxation
to weak solutions. Since we now build on it in a more sig-
nificant way we present it in more technical detail and state
important theoretical properties.

A core idea behind the transformation is the so-called
all-outcome-determinization, which is well known in non-
hierarchical planning and has been used, among others, in
FF-replan for probabilistic planning problems [Yoon et al.,
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2007]. The transformation extends these ideas to make it
work in the hierarchical setting.

FOND problems are often represented as an AND/OR
graph (also known as a hypergraph) [Bonet and Geffner,
2000], which is a generalization of a canonical graph that al-
lows multiple connections using a single edge.
Definition 10 (Hypergraph). A hypergraph is a tuple G =
(V,E) where V is a set of vertices and E ⊆ V × 2V is a set
of connectors. A k-connector is a connector in a hypergraph
G such that (v, V ′) ∈ E where |V ′| = k.

Intuitively, the transformation converts all k-connectors in
a search space to k 1-connectors, thus sacrificing the “AND”
semantics and relaxing it into an “OR” semantics.

Formally, for any non-deterministic primitive task p ∈ Np

(i.e., we require |eff (p)| ≥ 2) we construct a set of deter-
ministic actions Ap := {(pre(p), add , del) | (add , del) ∈
eff (p))} and redefine p to now be a compound task with
|Ap| methods where each method decomposes the task into
one of the actions in Ap. We use the notation Nnd to re-
fer to non-deterministic action names in a domain. Formally,
Nnd := {p | p ∈ Np, |eff (p)| ≥ 2}. Furthermore, without
loss of generality, we assume the existence of an injective la-
belling function, β : Nnd × (2F × 2F ) → Sym , that, given
a non-deterministic action name and one its effects, provides
a unique symbol to be used as a name, where Sym ∩N = ∅.
More precisely, if p ∈ Nnd and e ∈ eff (p), then β(p, e) = s
for some s ∈ Sym , acting as a new task name.

Given that we now deal with deterministic domains, the
definition of action mappings is slightly altered. Now, an ac-
tion mapping δ : N → 2F × 2F × 2F maps to a 3-tuple.
Definition 11 (All-Outcome-Determinized Relaxation). Let
D = ⟨F,Np, Nc, δ,M⟩ be a FOND HTN domain and
Nnd be its set of non-deterministic action names. Then,
the all-outcome-determinized relaxation of D is D′ =
⟨F,N ′

p, N
′
c, δ

′,M ′⟩, a deterministic HTN domain, where:

• N ′
p = (Np \Nnd) ∪ {β(p, e) | p ∈ Nnd, e ∈ eff (p) }

• N ′
c = Nc ∪ Nnd,

• For all n ∈ N we define δ′(n) = (pre(n), add , del),
where e = (add , del) with e ∈ eff (p), and
either n ∈ Np \Nnd (n is already deterministic),
or p ∈ Nnd, β(p, e) = n (new action per effect).

• M ′ = M ∪ {(p, ⟨{p}, ∅, {(p, β(p, e))}⟩)
| p ∈ Nnd, e ∈ eff (p)}

The corresponding planning problem can be defined with-
out further changes:
Definition 12 (All-Outcome-Determinized Problem). Let
⟨D, sI , tnI⟩ be a FOND HTN problem and D′ be the deter-
minization of D. Then, the all-outcome determinization of P
is the (deterministic) problem P ′ = ⟨D′, sI , tnI⟩.

As mentioned before, the core idea behind this encoding
was introduced before, where polynomial runtime was stated
[Chen and Bercher, 2021, Lemma 4.3]. Since this useful
problem encoding was a bit “hidden” in a (short) proof, we
make aware of its formal properties more prominently, and
provide tighter properties as well.

Proposition 1. Let P be a FOND HTN planning problem
and P ′ its deterministic version. Then, P ′ can be computed
in time linear to the count of non-deterministic effects.

Our definitions are provided, for the sake of simplicity, on
a fully propositional level. However, we would like to stress
that the transformation also works on a lifted level, and also
requires only linear runtime to compute. This is because one
can still turn a single non-deterministic action with n effects
into n deterministic actions (with its accompanying n meth-
ods) – whether these actions are ground or lifted is irrelevant.

We now prove a novel result that will prove useful for sev-
eral possible applications, such as its usage for heuristics and
grounding: The transformation is a problem relaxation.
Theorem 1. Let P be a FOND HTN problem and
P ′ be its all-outcome-determinization. Let π be a
strong or strong cyclic policy. Then, each execu-
tion trace tr1 = ⟨(tn1, s1), (t1,m1)⟩, ..., ⟨(tnk, sk), ∅⟩
with (tn1, s1) = (tnI , sI) and tnk = tn∅ follow-
ing π corresponds to a sequence of progressions tr2 =
⟨(tn1, s1), (t

′
1,m

′
1)⟩, ..., ⟨(tn′

k′ , sk′), ∅⟩ with |tr2| = k′ ≥
k = |tr1| for P ′. More precisely: Let t1 = p1, . . . , pk be
the primitive task (name) sequence induced by tr1. Then,
the task name sequence t2 = p′1, . . . , p

′
k induced by tr2 is a

(classical) solution to P ′ and it holds:
• If pi ∈ Np \Nnd, then p′i = pi.
• If pi ∈ Nnd and its effect eji ∈ eff (pi) produced the

respective successor state, then p′i = β(pi, eji).

Proof. By construction, every method for a compound task
in P exists in P ′ and is hence still applicable there. The same
applies to primitive deterministic actions. The only case to
look closely at is the application of a non-deterministic ac-
tion. If however, the trace contains a progression from a non-
deterministic action p to a new state s, then this is due to
some specific non-deterministic effect e ∈ eff (p). Then, by
construction, the action β(p, e) leads to s.

This implies that whenever there exists a weak, strong, or
strong cyclic solution, the all-outcome-determinized problem
also has a solution, which enables us to use it as a problem
relaxation, as exploited by, e.g., heuristics and a grounder.

4 Grounding Procedure
While most planning systems – both in classical as well as
in HTN planning – work on a propositional model, the do-
mains are commonly expressed in a lifted representation with
variables to abstract over concrete object instances, such as
PDDL for classical models [Fox and Long, 2003] or HDDL
for (deterministic) hierarchical ones [Höller et al., 2020a].
The extension is conceptually very simple: every fact, task,
and method now has a sequence of (typed) variables which
may be instantiated by a (type-conforming) constant. An ex-
ample, provided in the HDDL syntax, is provided in Fig. 2.
Examples for valid groundings are provided later.

The process of turning a lifted model into a propositional
one is called grounding. A ground domain can be obtained by
instantiating all variables. However, in practice, naive instan-
tiation would result in an exponential number of propositions.
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Thus, most planners utilize a more sophisticated grounding
procedure that exploit reachability analyses and in case of
HTN planning further exploit the task hierarchy in a non-
trivial manner [Behnke et al., 2020].

In order to ground a FOND HTN problem, instead of cre-
ating an entirely new approach to deal with the additional
challenges of dealing with non-determinism in the context
of HTN planning, we propose to exploit the all-outcome-
determinization and thereby, existing – and future – HTN
grounding technology. Our algorithm resembles the ap-
proach by Scala and Vallati [2021] that infers a ground-
ing for PDDL+ using classical grounders. The procedure
is as follows: First, Compute the all-outcome-determinized
relaxation as defined in Def. 11 on the lifted model, then
use an existing oracle (i.e., any deterministic HTN prob-
lem grounder) to obtain a ground representation of the de-
terminized problem. And finally, re-infer a valid (over-
approximation) grounding of the original model based on the
grounding of the determinized model. When we say “valid”
grounding, then we mean any grounding that (i) is in line
with all constraints (this is trivial, e.g., respecting type con-
straints of variables and constants) and, more importantly, (ii)
no grounding is missing, i.e., that any ground instance (of any
domain element, like action, method, etc.) that could be part
of a solution is part of the grounding.

Before we provide our procedure in pseudo code, we ex-
plain it using an illustrative example that also semi-informally
introduces the formalization as required for our purposes.

Consider the following non-deterministic action, Lift,
expressed in our extension of HDDL (Fig. 2). The new
“oneof” keyword allows us to define mutual exclusion on
effects, mirroring the approach adopted in extending PDDL
for non-deterministic effects [Bertoli et al., 2003].

(:action Lift
:parameters (?h - hoist ?c - crate)
:precondition (reachable ?h ?c)
:effect (oneof

(lifting ?h ?c)
(not (lifting ?h ?c))

)
)

Figure 2: Non-deterministic action in extended HDDL

To go through the grounding process, assume that we
have two hoists (h1 and h2) and also two crates (c1, c2).
So in total, four groundings exist in the worst-case, lead-
ing to the four ground actions Lift[h1,c1], Lift[h1,c2],
Lift[h2,c1], and Lift[h2,c2]. The all-outcome-
determinization (run on the lifted model) will create two lifted
actions Lift-eff1[?h, ?c] and Lift-eff2[?h, ?c], and
so we will get at most eight ground actions for the deter-
minized problem (four for each).

Suppose the black-box grounder (for deterministic plan-
ning) rules out two groundings for Lift-eff1[?h, ?c] and
even three for Lift-eff2[?h, ?c], resulting in the following
remaining ground instances:

• Lift-eff1[h1,c2], Lift-eff1[h2,c2]

• Lift-eff2[h2,c2]

• we also have 2 ground compound tasks (Lift[h1,c2]
and Lift[h2,c2]), and 3 ground methods (one for
Lift[h1,c2] and two for Lift[h2,c2], one for each
reachable effect)

At this point we could stop and use the two identi-
fied groundings [h1,c2] and [h2,c2] for the ground non-
deterministic action. However, we can do even better.

Notice that the grounding [h1,c2] only appears in one of
the two effects of our non-deterministic action. However, ac-
cording to the definition of strong (or strong cyclic) policies,
every outcome must eventually lead to a solution. Due to
Thm. 1 we know that the corresponding action would be used
in some solution. Since we know that this is not the case (as
the respective grounding wasn’t computed), we can conclude
that Lift[h1,c2] cannot be part of any strong (or strong
cyclic) policy. We can hence discard this grounding and iden-
tified only a single (of four possible) one: Lift[h2,c2]. The
procedure is summarized in Alg. 1.

Algorithm 1: FOND Grounding Procedure
Input: P , a lifted FOND HTN planning problem;

P ′, its (lifted) all-outcome-determinisation;
G′, a valid grounding of P ′

Output: G, a valid grounding of P
1 Let G be an empty set of groundings.
2 Let Nnd be the set of names of actions with more than

one effect in the domain of P .
3 foreach C[o1, o2, ..., ok] in ground compound tasks of

G′ do
4 if C ∈ Nnd then
5 If the number of ground methods in G′ that

decompose C[o1, o2, ..., ok] is equal to |eff (n)|
in the original lifted domain, add [o1, o2, ..., ok]
to G as a valid grounding for the non-determi-
nistic action that corresponds to C.

6 else
// a "normal" compound task

7 add C[o1, o2, ..., ok] and all of its methods to G.
8 Copy all remaining groundings in G′ (those not

covered in the previous loop, i.e., actions) to G.
9 return G

From the arguments above, especially by exploiting
Thm. 1, we can conclude:

Proposition 2. The grounding procedure described in Alg. 1
is correct, i.e., no grounding of tasks, methods, etc. that could
be part of any strong (or strong cyclic) policy will be missing
in its output.

5 Search Algorithm
While there are several algorithms to search for a solution in
a hypergraph [Bonet and Geffner, 2005], we propose to use
the AO* algorithm [Nilsson, 1982; Edelkamp and Schrödl,
2012] to find a strong solution to a FOND HTN problem (cf.
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Alg. 2). This heuristic search algorithm explores an acyclic
hypergraph gradually extending the best (strong) policy.

Algorithm 2: AO* Search
Input: an acyclic FOND HTN planning problem

P = ⟨D, tnI , sI⟩.
Output: a solution to problem P or “No Solution”

1 V ← {⟨tnI , sI⟩}, E ← ∅, G← (V,E)
2 cost(⟨tnI , sI⟩)← 0, label(⟨tnI , sI⟩)← “Ongoing”
3 while label(⟨tnI , sI⟩) /∈ {“Solved”, “Failed”} do
4 πp ← G
5 if there are markers in G then
6 πp ← the marked subgraph of G
7 n← a random unexpanded node of πp

8 succ(n)← expand(n)
9 foreach SN i ∈ succ(n) do

10 foreach ⟨tn, s⟩ ∈ SN i do
11 if ⟨tn′, s⟩ ∈ V for some tn′ ∼= tn then
12 Change the pointer to ⟨tn, s⟩ in SN i to its

equivalent search node in V .
13 else
14 cost(⟨tn, s⟩)← h(⟨tn, s⟩)
15 V ← V ∪ {⟨tn, s⟩}
16 E ← E ∪ {(n,SN i)}
17 W ← {n}
18 while W ̸= ∅ do
19 q ← a node x ∈W such that x does not have any

descendants in W
20 if isTerminal?(q) then
21 label(q) = “Failed”
22 if isGoal?(q) then label(q) = “Solved”
23 W ←W ∪ predecessors(q)
24 else
25 if all successors of q are terminal then
26 label(q)← “Failed”
27 if there is a “Solved” successor then
28 label(q)← “Solved”
29 W ←W ∪ predecessors(q)

30 best ← argmin({cost(x) | x ∈ succ(q)})
31 cost(q)← cost(best)
32 mark(q, best)

33 if label(⟨tnI , sI⟩) = “Solved” then
34 return πp

35 else
36 return “No solution”

The algorithm is a loop consisting of two steps: Lines 5–
16 expand the frontier of the search, and Lines 17–32 do a
backward cost revision. Note that, in Line 11 when checking
for equivalence between a new search node ⟨tn, s⟩ ∈ SN i

and explored nodes V , in the case where states are equal, we
have to check for isomorphism between task networks (cf.
Def. 8). This is a costly operation (it is not yet known whether
a poly-time procedure exists), and in order to avoid a com-
plete search for bijection, we first use the over-approximation
algorithm introduced by Höller and Behnke [2021] to quickly

rule out task networks that cannot be isomorphic. The expan-
sion step performed in Line 8 is presented in Alg. 3.

Algorithm 3: Node Expansion
Input: task network tn, and state s
Output: all possible progressions of tn

1 (Up, Uc)← unconstrained(tn), SN ← ∅
2 foreach t ∈ Uc do
3 foreach m ∈ t .methods do
4 tn′ ← tn.decompose(t ,m)
5 SN ← SN ∪ {{⟨tn′, s⟩}}
6 foreach t ∈ Up do
7 foreach a ∈ Np do
8 if τ(a, s) = ⊤ then
9 ⟨tn′, S′⟩ ← tn.apply(a)

10 SN ← SN ∪ {{⟨tn′, s′⟩ | s′ ∈ S′}}
11 return SN

The AO* algorithm is known to terminate with an optimal
solution (defined as the minimum sum of transition costs) un-
der the following conditions [Nilsson, 1982]: (i) There is a
solution graph from the initial node to a set of goal nodes, (ii)
for all search nodes, h(n) ≤ h∗(n) where h∗(n) is the actual
distance of node n to its nearest goal node (admissibility), and
(iii) for all search nodes, h(n) ≤ c + h(n1) + ... + h(nk)
where n1, ..., nk are the successors of n (in the same connec-
tor) and c is the connector cost (monotonicity).

For the first condition it is known for deterministic HTN
planning that a goal node, if one exists, can be reached via a
sequence of progressions [Alford et al., 2012; Höller et al.,
2020b]. Alg. 3 is an adaptation of progression-based expan-
sion to non-deterministic settings where line 10 forces the
algorithm to solve for all states that result from executing a
non-deterministic action. Criteria (ii) and (iii) would have to
be ensured by the deployed heuristic.

6 A Generic Approach to Use Deterministic
HTN Heuristics in FOND HTN Planning

Even in deterministic HTN planning, there are only three
heuristics available as of now [Bercher et al., 2017; Höller
and Bercher, 2021; Höller et al., 2020]. Although they are
all specifically designed for HTN planning, the most success-
ful approach is one that re-uses existing heuristics for (non-
hierarchical) classical planning [Höller et al., 2018; 2020b].
It relaxes a given HTN search node into a classical planning
problem and then deploys an existing classical heuristic to it.
Our proposal for obtaining FOND HTN heuristics bases on
the very same idea.

Given a FOND HTN search node, we turn it into a de-
terministic one by using the all-outcome-determinization put
forward in Section 3. Then, instead of developing novel
heuristics for FOND HTN planning, we can use any from
deterministic HTN planning. By transitivity (i.e., by using
the encoding by Höller et al., 2018; 2020b), we can even use
classical heuristics to guide search in the FOND HTN setting.
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Theorem 2. The all-outcome-determinization preserves
safety, goal-awareness, and admissibility of deterministic
HTN heuristics.

Proof. Let h be a deterministic HTN heuristic, P be a FOND
HTN problem, and P ′ be its all-outcome-determinized relax-
ation. Safety means that if h(n) = ∞, then h∗(n) = ∞.
This follows directly from Theorem 1, as it implies that P ′

is a problem relaxation. Goal awareness means that if n is a
solution, we get h(n) = 0. If a FOND search node is a solu-
tion, it is by definition empty, in which case the encoding will
also be empty. We thus get h(n) = 0 since h is goal-aware by
assumption. Admissibility means that h(n) ≤ h∗(n) for all
search nodes n. This also follows from Theorem 1 (combined
with h being admissible by assumption).

7 Experimental Results
We evaluated our system using the following configuration:
We used our proposed grounding procedure (Alg. 1) with the
deterministic HTN grounder by Behnke et al. [2020] as our
oracle. For the required heuristic, we again used our pro-
posed approach that makes deterministic hierarchical plan-
ning heuristics available to the FOND setting using a cascade
of problem relaxations. More precisely, we use the RCMax,
RCFF, and RCAdd heuristics [Höller et al., 2018; 2020b] on
the all-outcome-determinization, which in turn relax the re-
spective deterministic HTN problem into a classical problem
and then use the classical planning heuristics Max [Bonet and
Geffner, 1999], FF [Hoffmann and Nebel, 2001], and Add
[Bonet and Geffner, 2001], respectively. We configured our
heuristic to use action costs of one for each action from the
HTN model (including those encoding method preconditions)
and zero for each of the actions compiled by the RC encoding.
Heuristics thus estimate final plan length (including method
preconditions). Our implementation is a new system, called
Koala, implemented in Rust (see Introduction for a link).

For the benchmarks, we have created five novel FOND do-
mains with 15 instances each1, all based on the hierarchical
track of the International Planning Competition (IPC) 2020.
All of them are totally ordered, but only two domains have
exclusively totally ordered initial task networks, making the
problems totally ordered (namely Childsnack and Depot), so
the rest is partially ordered. All domains are acyclic. We use
the Agile IPC Score2 to assess our planner. We ran our experi-
ments on a machine running Ubuntu 22.04 with one CPU core
(Intel i7 13700), 8GB of RAM, and a 30 minute cut-off time.
A summary of the result is provided in Table 1. All failed in-
stances are a result of timeout. The characteristics (and mod-
ifications) of the domains are as follows. In our version of
Depots, hoists are human-operated, and junior operators may
fail to load/unload a truck. In case of failure, a supervisor

1All of the problems, and their respective domains are available
at https://github.com/koala-planner/domains.

2Given a maximum of T seconds to solve a problem, the score
for a problem that is solved within 1 second is 1, within t seconds
(1 < t ≤ T ) is 1 − log t

log T
, and 0 otherwise. The final score for a

domain is the sum of scores for all of the problems in that domain.

must be called to assist in the operation. The main charac-
teristic of this domain is that unfavorable outcomes are fixed
in a few steps. In the Satellite domain, the phenomenons
of interest may not be stationary. In the latter case, the mo-
tion trajectory must be calculated and compensated for by the
satellite. This domain illustrates cases where the uncertainty
can be eliminated by taking uncertainty-reducing actions such
as observing the movement pattern at execution time. Child-
Snack is modified so the tray may get dirty and require wash-
ing in the kitchen. In the new Rover domain, the camera may
not be able to take an image. Thus, the rover must report
this incident for new instructions. Finally, we have modi-
fied Transport such that the package recipient may not be
at home, in which case the truck driver(s) cannot unload the
package. Thus, unfavorable outcomes lead to the accumula-
tion of packages in trucks, triggering capacity constraints.

D
om

ain

Heuristic IPC
Score Coverage Avg. Execution Structure

# of Nodes CP Length

D
epots

RCAdd 6.92 10 of 15 150.80 127.20
RCFF 6.99 10 of 15 150.80 127.90
RCMax 7.26 10 of 15 149.70 126.20

R
over

RCAdd 5.16 6 of 15 28.00 21.83
RCFF 5.00 5 of 15 23.80 17.80
RCMax 5.00 5 of 15 23.00 17.00

C
hildSnack

RCAdd 1.66 3 of 15 64.00 45.00
RCFF 1.59 3 of 15 64.00 45.00
RCMax 1.66 3 of 15 64.00 45.00

Satellite

RCAdd 5.92 7 of 15 33.86 16.86
RCFF 4.16 7 of 15 33.71 16.86
RCMax 5.92 7 of 15 32.57 15.86

Transport

RCAdd 3.48 5 of 15 400.60 45.40
RCFF 4.04 5 of 15 99.20 33.80
RCMax 3.32 4 of 15 94.50 31.75

Table 1: Evaluation results. CP is an abbreviation for Critical Path,
which is the number of nodes of the policy’s longest path minus one.
This corresponds to the number of action and method applications
(and includes the number of used methods with preconditions, since
those are compiled into actions and thus part of the policy).

As for the first step, grounding was always possible within
at most 8 seconds (including the time that PANDA’s grounder
needed for a determinized problem), also for the unsolved
ones. As a matter of fact, most problems were grounded in
less than a second. More interestingly, the overhead added
by our grounding procedure on top of that of the black-box
grounder was at most 1 second, which is thus negligible. This
is hardly surprising because investigating Alg. 1 shows that
its runtime is linear in the number of groundings produced
by the deterministic base-grounder. So, in total, we showed
that our procedure can successfully make use of deterministic
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grounders with almost zero overhead.
The next step, i.e., the search, has more interesting results.

The performance of the algorithm varies on two axes: the
intrinsic difficulty of a problem in a particular domain (i.e.,
branching factor and solution depth) and the choice of heuris-
tic function for the relaxed problem. The intrinsic difficulty
is captured by the IPC Score and the number of solved in-
stances as reported in Table 1. The details of our experimen-
tal setup is available online [Yousefi and Bercher, 2024]. The
choice of a heuristic function (in our case RCMax, RCFF, and
RCAdd) has an impact on the performance of the algorithm.
There were cases where the algorithm with one heuristic was
able to solve a particular problem, while it could not with
the others. This is noticeably reflected in the average solution
structure in the transport domain where a particularly difficult
instance was solved only with the Add heuristic. However,
the total number of solved problems for each domain were
almost the same. The time needed to compute the RCAdd

and RCMax heuristics are significantly less, allowing the al-
gorithm to reach more depth in the search graph and explore
more nodes. However, the cost of this property is usually de-
creased accuracy.

In conclusion, our investigation suggests that even though
FOND HTN planning in theory seems intractable (more
specifically of higher complexity classes than their determin-
istic counterparts [Chen and Bercher, 2021; 2022]), a great
deal of problems can be solved within the practical con-
straints of the IPC.

8 Conclusion
We addressed a critical gap in the field of HTN planning by
laying the foundational groundwork for tackling problems
in non-deterministic domains. Since there was no approach
available to solve FOND HTN problems, we had to provide
the entire infrastructure, including a grounder, search pro-
cedure, and heuristics. Specifically, we provided a problem
encoding that relaxes FOND HTN problems to deterministic
ones that serves as the basis for using existing determinis-
tic grounders in the FOND setting as well as existing HTN
or classical heuristics. Due to non-existing competitors, we
could not compare against existing approaches, but our eval-
uation showed that grounding is efficient and problems of re-
alistic size can be solved within the constraints of the IPC.
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