
Scalable Landmark Hub Labeling
for Optimal and Bounded Suboptimal Pathfinding

Sabine Storandt
Universität Konstanz, Germany
sabine.storandt@uni-konstanz.de

Abstract
Hub Labeling and A* are two well-established al-
gorithms for shortest path computation in large
graphs. Hub Labeling offers excellent query times
for distance computation, but at the cost of a high
space consumption for label storage. Landmark-
based A* search requires less space but answers
queries much slower. Recently, Landmark Hub La-
beling (LHL) has been proposed, which combines
both concepts and achieves a smaller space con-
sumption than Hub Labeling and also much better
query times than A*. However, the known algo-
rithms for computing a LHL do not scale to large
graphs, limiting its applicability. In this paper, we
devise novel algorithms for LHL construction that
work on graphs with millions of edges. We also fur-
ther improve the LHL query answering algorithm
and investigate how to reduce the space consump-
tion of labeling techniques by performing bounded
suboptimal pathfinding. In an extensive experi-
mental study, we demonstrate the effectiveness of
our methods and illuminate that sensible trade-offs
between space consumption, query time, and path
quality can be achieved with LHL.

1 Introduction
Given a weighted graph G(V,E, c) and two nodes s, t ∈ V ,
a path query asks for a shortest path π = s, . . . , t from s to t,
and a distance query asks for the path cost c(s, t) = c(π).

To answer such queries efficiently, precomputing informa-
tion that help to reduce the search space of the query answer-
ing algorithm is a common paradigm. If the full shortest path
trees from all nodes are precomputed and stored appropri-
ately, distance queries can be answered with a single look-up
in O(1) and path queries in O(k), where k denotes the num-
ber of edges in the shortest path. However, the resulting huge
space consumption of O(n2) with |V | = n makes the ap-
proach impractical. Thus, a variety of preprocessing-based
techniques have been designed that only store partial short-
est path information and offer reasonable trade-offs between
space consumption, preprocessing time, and query time.

A classical pathfinding algorithm is A*, which requires an
admissible heuristic to work. One way to get such a heuris-

tic is by precomputing the shortest path distances from all
nodes to a set of special nodes L, so-called landmarks [Gold-
berg and Harrelson, 2005]. For any node pair s, t ∈ V
and any l ∈ L, it follows from the triangle inequality that
|c(s, l)− c(t, l)| ≤ c(s, t). This information can be exploited
to reduce the search space size compared to running Dijk-
stra’s algorithm. The space consumption is in O(n · |L|) and
thus can be tweaked based on the landmark selection.

Using the Hub Labeling (HL) technique [Cohen et al.,
2003], each node v is assigned a label, consisting of a set of
nodes L(v) and their shortest path distances from v. The goal
is to find labels that fulfill the so called cover property, which
demands that for any node pair s, t the set L(s) ∩ L(t) con-
tains at least one node on the shortest path from s to t. That
node is also called a perfect hub for s, t. Based thereupon,
query answering boils down to computing I := L(s) ∩ L(t)
and c(s, t) := minw∈I c(s, w) + c(t, w). Using presorted la-
bels, these steps only take time linear in |L(s)|+|L(t)|. Thus,
the distance query time is in O(Lmax) and the space con-
sumption is in O(Lavg) with Lmax/Lavg denoting the max-
imum/average label size. However, while path retrieval with
A* can be performed efficiently by backtracking, HL requires
either a query per edge in the shortest path or the storage of
additional information in each label. The latter then adds to
the already high space consumption that is usually needed to
store label sets that adhere to the cover property.

Landmark Hub Labeling (LHL) [Storandt, 2022] has
been proposed to achieve a good compromise between the
strengths and weaknesses of these two techniques. It inte-
grates the computation of lower bounds as used for landmark-
based A* into the labeling framework. More precisely, a
landmark l is called perfect for a node pair s, t, if |c(s, l) −
c(t, l)| = c(s, t). The intersection of the label setsL(s)∩L(t)
is now required to either contain a hub or a perfect landmark
for s, t. Query answering is slightly more intricate in this
case, as one needs to test for w ∈ L(s) ∩ L(t) whether it
assumes the role of a hub or a landmark. On the other hand,
this increases the flexibility of constructing label sets and thus
allows for smaller labelings. The main hindrance of applying
LHL to large graphs is the time- and space-consuming pre-
processing phase that currently relies on computing a hitting
set for all maximal shortest paths in the given graph.

In this paper, we propose new preprocessing algorithms
with significantly improved scalability. Furthermore, we also

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6788

devise methods to accelerate query answering and investigate
how bounded suboptimal pathfinding can be integrated with
labeling techniques.

1.1 Related Work

A* is one of the most well-established pathfinding algorithms
with a long history of research on how to come up with strong
heuristics, improved query times, and theoretical guarantees
[Korf, 1988; Foead et al., 2021]. One general approach to get
an admissible heuristic for A* is via landmark-based lower
bounds. The respective algorithms is also known as ALT (A*
+ landmarks + triangle inequality) [Goldberg and Harrelson,
2005]. Sensible landmark selection is vital for the perfor-
mance of ALT and thus has been the subject of many exper-
imental studies [Delling et al., 2006; Goldberg et al., 2007;
Efentakis and Pfoser, 2013; Peque et al., 2017]. Minimizing
the search space size of ALT with a fixed number of land-
marks was proven to be NP-hard [Bauer et al., 2010].

Constructing a Hub Labeling (HL) of minimum size is NP-
hard as well. While an approximation algorithm with a factor
of O(log n) is known, its running time of O(n3 log n) pro-
hibits application to large networks [Babenko et al., 2015;
Delling et al., 2014b]. However, numerous fast heuristics for
HL construction have been proposed [Delling et al., 2014a;
Delling et al., 2014b; Ouyang et al., 2018; Chen et al., 2021].
To reduce the large space consumption needed to store the
label sets, label compression techniques have been proposed
[Delling et al., 2013b].

Combining the concepts of ALT and HL was first explored
in [Potamias et al., 2009]. Given precomputed distances to
landmarks, not only lower bounds but also upper bounds for
the shortest path distance can be computed on query time. In
HL, this upper bound is required to be tight. Here, however,
the goal is mainly to get a good distance estimate and thus it
suffices to obtain close-to-optimal lower and upper bounds.
If that is not the case, ALT is used as a fall-back. It was
further shown that the problem of choosing a landmark set
of smallest size such that for all node pairs the precomputed
distances to the landmarks yield tight upper bounds is NP-
hard. An approximation algorithm with a guaranteed factor
of O(log n) and a running time of O(n3) was presented.

In [Storandt, 2022], Landmark Hub Labeling (LHL) was
introduced. It retains the idea of HL that label sets are se-
lected individually for each node and that the distance bound
derived from the labels must be tight. But the tightness might
either be ensured by the lower or the upper bound. This al-
lows to produce smaller labelings, as demonstrated in a proof-
of-concept study on small road networks. Experiments on
large graphs were not conducted, as the proposed LHL con-
struction algorithm is too slow and too space consuming to
be applied to big instances. Indeed, the used preprocessing
heuristic requires to compute all-pair shortest paths, which
takes O(n3) time. Further, a O(log n)-approximation algo-
rithm with an impractical running time of O(n6) was pro-
posed. Consequently, it remained open whether the promis-
ing performance of LHL shown on small instances transfers
to large inputs.

1.2 Contribution
In this paper, we enhance the applicability of Landmark Hub
Labeling (LHL) in several ways. First, we devise novel pre-
processing algorithms that scale to much larger instances than
previous ones. This includes effective pruning methods that
generate an LHL with a reduced label size from a given Hub
Labeling. Second, we show how to speed up query answer-
ing. Part of the query algorithm for LHL consists of deciding
whether the correct shortest path distance is realized via a hub
or a perfect landmark. We develop a constant-time edge ora-
cle that already leads to conclusive results for a high percent-
age of queries and thus saves the use of more time-consuming
algorithms. Third, we study the interplay of labeling tech-
niques and bounded suboptimal pathfinding. The main dis-
advantage of labeling methods is their high space consump-
tion. We show that label sizes can be reduced significantly if
slightly suboptimal paths are acceptable.

We evaluate the performance of our new LHL algorithms
on various grid networks as well road networks. The experi-
mental results demonstrate their effectiveness and the flexibil-
ity to trade-off preprocessing time, space consumption, query
time and result quality depending on the application.

2 Preliminaries
In this section, we provide formal definitions, notations and
algorithms used throughout the paper. We always assume to
be given a connected weighted graph G(V,E, c) with posi-
tive edge weights c : E → R+. For ease of exposition, we
assume the graph to be undirected, and shortest path to be
unique. In the experiments, the latter is ensured by symbolic
edge weight perturbation [Hershberger and Suri, 2001]. With
c(s, t) = c(t, s) = c(π) we refer to the cost of the shortest
path π between s ∈ V and t ∈ V .

2.1 Hub Labeling (HL)
The standard Hub Labeling is defined as follows.

Definition 1 (Hub Labeling). A HL is a labeling L : V → 2V

which fulfills the (hub) cover property, i.e., for any two nodes
s, t ∈ V there is a node w ∈ L(s) ∩ L(t) which is a hub, i.e.
w is on the shortest path from s to t.

For any element w ∈ L(s) ∩ L(t), we get an upper bound
UB = c(s, w) + c(w, t) on the shortest path distance. By
the cover property, this bound needs to be tight for at least
one element in the intersection. Thus, keeping track of the
smallest upper bound gives an answer to distance queries. For
path queries, one can store with each label node w ∈ L(v)
the first edge of the shortest path from v to w. This allows
to detect the path edge by edge, by repeatedly asking a new
query for the end point of the current edge and the target to
get the respective next edge.

Clearly, the goal is to find small labels that obey the cover
property, to optimize both space consumption and query time.

A HL is called a hierarchical Hub Labeling (HHL), if for
some node ranking r : V → N the nodes in L(v) all have
rank at least r(v). Given a node ranking r, it was shown in
[Babenko et al., 2015] that the HHL with minimum total size
is the so called canonical HHL in which w ∈ L(v) if and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6789

only if there is a shortest path emerging from v on which w
(and only w) has maximum rank. For a fixed node ranking,
the canonical HHL can be computed in polytime. A popular
method to retrieve a good HHL is to first compute another
hierarchical data structure for efficient shortest path finding
called Contraction Hierarchies (CH) [Geisberger et al., 2012]
and use its node ranking function to obtain a HHL.

2.2 Landmark Hub Labeling (LHL)
The main focus of the paper is on Landmark Hub Labelings.

Definition and Properties
The formal definition is an extension of the HL definition,
that allows landmarks to fulfill the cover property.
Definition 2 (Landmark Hub Labeling). A LHL is a labeling
L : V → 2V which fulfills the landmark hub cover property,
i.e., for any two nodes s, t ∈ V there is a node w ∈ L(s) ∩
L(t) which either is a hub or a perfect landmark for s, t.

As shown in [Storandt, 2022], hub labelings in general and
LHL in particular benefit from being path-consistent (PC).
Definition 3 (Path-Consistent Labeling). In a path-consistent
labeling, for each w ∈ L(v), we also have w ∈ L(u) for all
u on the shortest path from v to w.

It was proven in [Storandt, 2022] that each canonical HHL
is PC. One big advantage of PC labelings is improved path
query answering. Instead of storing with each labelw ∈ L(v)
the first edge (v, v′) of the shortest path as needed for HL,
one can store a direct pointer to w ∈ L(v′), which needs to
exist due to the PC property. Thus, shortest paths to label
nodes can be retrieved by simply following the pointers, re-
ducing the query time from O(k · Lmax) to O(k + Lmax),
where Lmax denotes the maximal individual label size and k
the number of shortest path edges. We use PC-LHL to refer
to a path-consistent LHL. Furthermore, we use HPC-LHL to
denote a hierarchical path-consistent LHL. Similar to HHL, a
canonical HPC-LHL can be defined.
Definition 4 (Canonical HPC-LHL). For a given node or-
dering r : V → [n], the canonical HPC-LHL that respects r
assigns to each node v a label that consists of the nodes of
highest rank on each maximal shortest path that contains v.

A maximal shortest path is one that cannot be extended by
any edge without losing the shortest path property.

Preprocessing
To compute a canonical HPC-LHL, it was suggested in
[Storandt, 2022] to closely follow its definition and first com-
pute the set of all maximal shortest paths Π in the given graph.
To store the paths in a compressed fashion, paths with the
same start node are stored as predecessor trees derived from
the respective Dijkstra runs. This allows to extract the paths
on demand in time linear in their size. Then, a greedy hitting
set is computed for Π, where the order of selection yields the
inverse node ranking. That means, that a node that hits many
maximal shortest paths is deemed to be more important and
thus gets a higher ranking. We will refer to this algorithm
as MaxHit. The issue is that extracting all maximal shortest
paths takes O(n3) time and (with path compression) up to
O(n2) space, which is impractical for large instances.

Query Answering
In PC-LHL query answering, we compute both the shortest
path distance upper bound

UB := min
w∈L(s)∩L(t)

c(s, w) + c(t, w)

as well as the lower bound

LB := max
w∈L(s)∩L(t)

|c(s, w)− c(t, w)|.

By the landmark cover property, at least one of them is tight.
If UB = LB, both are tight and one can return UB in case of
a distance query or the respective path in case of a path query.

If UB > LB, it needs to be tested whether the respective
landmark l ∈ L(s) ∩ L(t) that implied the lower bound is
perfect. To this end, one extracts the shortest path from the
node that is further from the landmark, w.l.o.g. s, to l up to a
distance of LB. If t is found on this path at distance LB, we
know that the LB is tight. Otherwise, it follows directly that
UB is tight. Exploiting the PC property, the path extraction
can be done efficiently as discussed above.

3 Scalable PC-LHL Computation
Since MaxHit does not scale to large instances due to its
high space consumption and preprocessing time, we now de-
scribe alternative HPC-LHL algorithms that offer more prac-
tical trade-offs between label size and computational effort.

3.1 Tree-based LHL
To avoid the precomputation of the global set of all maximal
shortets paths, we propose the TreeSelect algorithm, in which
each node computes its label set individually. It produces a
HPC-LHL and thus relies on some node ranking function r to
be given. We will discuss in the experimental section how to
obtain a suitable r.

TreeSelect is quite simple. For each node v ∈ V , we com-
pute the shortest path tree from v to all other nodes. On any
shortest path from v to a leaf, we identify the node w of high-
est rank (which might also be w = v) and include w in the
label of all nodes on the shortest v-w-path.
Theorem 1. The tree selection algorithm produces a valid
HPC-LHL in O(n3 log n) time and O(nLavg) space.

Proof. Let s, t ∈ V and π the shortest path between them.
Obviously, π is a (sub)path from s to a leaf in the shortest
path tree rooted in s and also a (sub)path from t to a leaf in the
shortest path tree rooted in t. Assume that for either s or t, the
node p of highest rank on a root-to-leaf path that contains π as
a subpath lies beyond π. Then p will be included in the labels
of all nodes in π to ensure the PC property. Accordingly,
p ∈ L(s)∩L(t) and p is a perfect landmark for s, t. The only
remaining case is that for both s and t the respective other
node is a leaf in its shortest path tree and hence the node p
of highest rank on π will be selected for both. Accordingly,
p ∈ L(s) ∩ L(t) and p is a hub for s, t.

In both cases, the labels are hierarchical and the PC-
property is fulfilled due the inclusion of p into the labels of all
nodes on the respective path. The running time for all shortest
path tree computations is in O(n3) and takes space linear in

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6790

n per individual tree. Identifying the node of highest rank on
each root-to-leaf path can be accomplished in linear time for
each shortest path tree. Each node might be assigned O(n)
new label nodes for each shortest path tree. The same label
p might be assigned multiple times to the same node, though.
To prune such nodes efficiently, we keep the labels in sorted
order (by rank), which is what we want to achieve in the out-
put anyway. Then adding a node and checking whether it
is already in there takes O(log n). Also, the label size never
exceeds the final size. Thus, the label assignment can be com-
pleted in O(n3 log n) time and O(n · Lavg) space.

TreeSelect has a significantly reduced space consumption
compared to MaxHit but a comparable theoretical running
time. However, we can accelerate the computation in prac-
tice as follows: Instead of computing the shortest path tree
from v to collect its labels, we compute its shortest path tree
to find the nodes that have to have v in their label. Here, the
advantage is that the tree computation can be stopped as soon
as a node of higher rank is found on all active paths in the
respective Dijkstra run, which is especially helpful for nodes
of low rank.

3.2 LHL from HHL
By definition, a canonical HHL is also a valid HPC-LHL.
Thus, any algorithm that produces a canonical HHL algo-
rithm can be used to produce a HPC-LHL of equal size. But
of course our goal is to produce labelings that are smaller than
the best possible HHL. Therefore, we will discuss how to ef-
ficiently prune a given canonical HHL while upholding the
landmark cover property as well as path-consistency.

In previous work, it was shown that a canonical HHL can
be computed efficiently based on first constructing a Contrac-
tion Hierarchies (CH) data structure [Geisberger et al., 2012].
In a CH, a node ranking r is chosen and then the input graph is
augmented with so called shortcut edges (v, w) for all short-
est paths on which the end points v, w have higher rank than
all intermediate nodes. In an s, t query, a bi-directional Di-
jkstra run is conducted which only considers edges that go
upwards in the hierarchy. The set of nodes visited by such
an upward search from a node v is referred to as the search
space S(v). By construction, it is guaranteed that S(s)∩S(t)
contains the so called peak node, the node of highest rank
on the shortest s-t-path, with correct distances settled from
both sides. To get a valid HHL from a CH, it suffices to set
L(v) = S(v) and use the distances from v to w ∈ S(v) com-
puted via the upward search. The peak nodes ensure the cover
property. However, this HHL is not necessarily canonical. In-
deed, it might happen that S(v) contains nodes w for which
the shortest path from v to w has a peak of rank higher than
the rank of w. In that case, the distance computed in the up-
wards search is too large and w could be pruned from L(v)
without compromising exact query answering. This can be
checked by issuing a HHL query from v to w and comparing
the respective distance to the one stored with w. If the correct
distance is smaller, w can be safely pruned. If all such nodes
are pruned, the resulting HHL is canonical. The running time
for the pruning step is in O(n · L2

max).

3.3 Exhaustive Pruning
Given a canonical HHL, we can deduce a canonical HPC-
LHL as follows: We consider for each nodew the set of nodes
v with w ∈ L(v). We call this the inverted label L−1(w).
By the PC property, the nodes in L−1(w) from a connected
partial shortest path tree emerging from w. We call this the
label tree T (w). This tree can be easily constructed based
on the stored pointers. Now, for each node pair s and t we
check based on the given labels their correct shortest path
distance and the highest node p in their label intersections
that implies a tight distance bound. Then we mark s and t
in T (p). After having checked all nodes, we iterate through
all label trees and recursively cut off unmarked leaf nodes as
long as this is possible. Then pruned label sets are constructed
by assigning w to each node in its remaining label tree. This
process maintains the PC property, the label hierarchy, and
the landmark cover property. Overall, it takes O(n2Lmax).

3.4 Economic Pruning
To reduce the pruning time while still achieving a label size
reduction, we focus on nodes w ∈ L(v) in the given HHL
that only assume the role of the peak node solely for the query
v, w but not for any other query v, x 6= w. If there is a node l
of rank higher than w in L(v) ∩ L(w), such that l is a perfect
landmark for v, w, we can discard w from L(v). The latter
part can be easily checked by inspecting L(v) ∩ L(w) and
computing the respective lower bounds. To perform the first
part of the check without having to issue a HHL query for v
and each target node, we observe that it suffices to check for
all v, x, where x is adjacent to w in the original graph and has
lower rank than w, if w is the respective peak node. If this
is not the case for any x, then w can be pruned. The reason
this suffices is that any shortest path that starts in v and has
w as peak node needs to end in a node of rank lower than w
and thus needs to traverse one of its incident edges that goes
downwards with respect to the node ordering. Note that if w
is not a peak node for a node pair s, t, it is clearly also not
a peak node for any node pair s′, t′ with s ∈ π(s′, w) and
t ∈ π(w, t′). This ensures that the PC property is maintained.
With m denoting the number of edges in the input graph, the
time for this economical pruning variant is in O(m · L2

max).

4 Improved Query Answering
PC-LHL query answering demands to compute the shortest
path cost upper bound UB as well as the lower bound LB.
In case these two do not match, a check whether the target is
indeed at a distance of LB from the source or not is needed.
This check might dominate the overall query time.

To reduce the computational effort, we construct an ora-
cle based on the following observations: (i) If a node w ∈
L(s) ∩ L(t) is a perfect landmark for s, t, then the last edge
on the shortest paths from s to w and from t to w needs to be
identical. (ii) If a node w ∈ L(s) ∩ L(t) is a perfect hub for
s, t, then the last edge on the shortest paths from s to w and
from t to w needs to be different. Accordingly, if we store in-
formation about the last edge with each label, we can quickly
check for each w ∈ L(s) ∩ L(t) whether it should be eval-
uated as hub or landmark. Figure 1 illustrates the possible

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6791

s t

w1

w2 w3

w4

Figure 1: Let L(s) ∩ L(t) = {w1, w2, w3, w4}. Without the edge
oracle, all four nodes in the intersection would be evaluated for both,
the upper and lower bound. Using the edge oracle, only w2 and w4

are evaluated as hubs and only w1 and w3 as landmarks.

scenarios. Ideally, this leads to a higher percentage of queries
where UB and LB match, or, where we only get one of the
bounds at all. In both of these cases, the correct cost can be
reported immediately.

While storing additional information per label increases the
space consumption, it is important to note that we do not need
to store global edge IDs here, but it suffices to have local ID
for the edges incident to w. Therefore, with ∆(w) denoting
the degree of w, we only need log ∆(w) additional bits.

5 Bounded Suboptimal PC-LHL
For many applications, finding a path from s to t that has
close to optimal cost is sufficient [Shen et al., 2022]. The
goal of a bounded suboptimal pathfinding algorithm is to ef-
ficiently identify a path π′ with c(π′) < α · c(π) where π is
the optimal path and α is the chosen approximation factor.

A simple way to reduce query time of LHL when per-
forming bounded suboptimal pathfinding is to check whether
UB ≤ α · LB. In this case, reporting the path that corre-
sponds to the UB is sufficient. If one is only interested in a
distance estimate within a factor α of the correct value, it even
suffices to have UB ≤ 2α ·LB and then to report the average
of UB and LB similar to the approach proposed in [Potamias
et al., 2009]. While this accelerates query answering, it does
not tap into the potential of constructing a smaller labeling
that adheres to α in the first place. Next, we will investigate
methods to obtain such labelings. We start by describing a
labeling method that ensures a bounded additive detour, that
is, c(π′) ≤ c(π) + β. We call such a labeling a β-labeling.
Subsequently, we discuss how to use a given β-labeling to
answer LHL queries with an α-approximate guarantee.

5.1 Center Hub Labeling
The basic idea of constructing a concise labeling with additive
detour bound β is to only allow a (small) subset of nodes to
become hubs. These hubs should be nicely spread over the
graph. To achieve this, we map our hub selection problem to
that of identifying centers in a graph. The famous k-center
problem asks for a given graph G(V,E) to select a subset
C ⊂ V, |C| = k of center nodes, such that the largest shortest
path distance of any node to its nearest center is minimized.
The problem is NP-hard but a simple greedy algorithm yields
a 2-approximation [Gonzalez, 1985]. The algorithm starts
by selecting an arbitrary node in the first round. Then, in
the following k − 1 rounds, it always selects the node with
largest distance to all previously selected ones. Accordingly,

the objective function value decreases monotonically over the
course of the algorithm. We use this algorithm for selecting a
set of center-hubs C by not fixing k a priori but proceeding to
select new nodes until the shortest path distance of any node
to its nearest center falls below the threshold of β/2.

Given a valid HHL and a set of center hubs C, we proceed
as follows to obtain a β-labeling: We first run Dijkstra’s algo-
rithm on all nodes in C at once. The resulting forest consists
exactly of |C| shortest path trees where each tree contains the
nodes that have the tree root as their closest center. We store
this center information C(w) with each node w ∈ V . Fur-
thermore, we compute the full shortest path trees from each
node in C individually. Then, for every v ∈ V , we modify
its labeling by replacing w ∈ L(v) with C(w) and also up-
dating the corresponding distance value based on the precom-
puted shortest path trees. The hope, of course, is that many
w ∈ L(V) are mapped to the same center hub and thus the la-
bel size decreases. After the label modifications are done, all
other precomputed information can be deleted. The resulting
labeling is a valid β-labeling, as for any two nodes s, t with a
perfect hub h there is now C(h) in L(s)∩L(t) and the detour
from h to C(h) is at most 2 · β/2 = β.

5.2 Bounded Suboptimal LHL Queries
For PC-LHL, we proceed as described above for HHL and
replace all label nodes with their closest centers and also up-
date the distances accordingly. During query answering, we
first perform the PC-LHL query algorithm as before, getting
a lower and an upper bound. As both these bounds are still
valid with respect to c(π), upper bound path reporting can be
used if the two bounds are within a factor of α. If that is not
the case, the lower bound needs to be checked. Here, we run
into the problem that a nodew that was a perfect landmark for
s, t before might now have been replaced with a node C(w)
such that w.l.o.g t is no longer on the shortest path from s to
C(w). To compensate for that, we run A* from s, using the
distances to the center nodes as landmark information. More
precisely, we determine the set of center nodes in L(s)∩L(t)
that imply a lower bound smaller than UB. Then, in the A*
search, we only consider those center nodes as landmarks.
Nodes that do not have any of these center nodes in their la-
bel can be immediately excluded from the search. Once t is
found, we have the exact shortest path. The search can also
be aborted if the search radius exceeded the weakest lower
bound that is under inspection or if the best distance estimate
to the target exceeds UB/α. In these cases, upper bound (re-
porting) provides a query result within the specified α-bound.

Note that while β needs to be known to the preprocessing
algorithm, α can be chosen on query time.

6 Experimental Study
We implemented all described algorithms in C++. As bench-
marks, we used grid and road networks of different size. For
grid networks, we used the Baldurs Gate II game maps from
an established 2D pathfinding benchmark [Sturtevant, 2012].
This set contains 120 octile maps in their original size (BGI-
Iori) and 75 maps scaled to a 512x512 grid (BGII512). The
maps contain up to 231,469 accessible grid cells. To have

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6792

ALT-10 ALT-25 ALT-50
CH KC CH KC CH KC

ROAD1M 0.30 0.11 0.24 0.05 0.16 0.03
BGII512 0.37 0.12 0.16 0.09 0.15 0.08

Table 1: Fraction of nodes visited by ALT over Dijkstra with dif-
ferent landmark sets and selection strategies for road networks with
106 nodes and grids with 17,665 to 231,496 nodes.

road networks of different sizes, we ran Dijkstra’s algorithm
from randomly selected nodes in the European road network
(extracted from OpenStreetMap1) until n nodes were settled,
and used their induced subgraphs. Experiments were con-
ducted on a single core of an AMD Ryzen 7 PRO 6850U
Processor clocked at 3,2GHz and using up to 32 GB RAM.

6.1 Node Ranking and Landmark Selection
All preprocessing algorithms for HPC-LHL computation pre-
sented in this paper rely on a node ranking r. For MaxHit, the
ranking results from the order in which the greedy hitting set
algorithm selects the nodes. For TreeSelect and HHL prun-
ing, r can be chosen freely. As discussed above, HHL can be
computed on the basis of a CH and by this inherits its rank-
ing function. We use the CH implementation described by
[Geisberger et al., 2012] and refer to the resulting r as CH-
order. HHL with CH-order is the baseline we use to com-
pare the label sizes of our HPC-LHL against. We could also
use CH-order for HPC-LHL. However, in a CH-order nodes
with a high rank are typically in the middle part of many long
shortest paths. This is ideal for CH and also for HHL. But
HPC-LHL integrates landmark-based bounds in the labeling.
These bounds are the weakest if the node is in the middle of
the shortest path between source and target (as then their ab-
solute path difference towards the landmark is close to zero).
To also have strong landmarks with high ranks, we proceed
as follows: We first compute a greedy k-center order as de-
scribed for bounded suboptimal pathfinding. Then, we take
the first 5% of the nodes in this order and assign them the
highest ranks. For the remaining nodes, we proceed with the
CH-order. The resulting order is used below for TreeSelect as
well as the HHL pruning algorithms.

To illustrate that the k-center ranking, referred to as KC-
order from now on, indeed produces good landmarks, we con-
ducted the following experiment: We implemented the clas-
sical ALT algorithm [Goldberg and Harrelson, 2005] and let
the landmarks be the nodes of highest rank either in the CH-
order or in the KC-order. For both variants, we measured the
fraction of nodes visited in the A* search and in the Dijkstra
search. Table 1 shows the average results over 100 random
queries per instance in BGII512 and 100 road networks with
n = 106, using 10, 25 or 50 landmarks. We see a signifi-
cant reduction across all instances when using the KC-order
over the CH-order. Indeed, 50 landmarks chosen in CH-order
are not even as powerful as 10 landmarks chosen in KC-order.
Although a larger number of landmarks leads to an even more
pronounced reduction in the size of the search space, it also
takes longer to compute the distance estimate. Using 25 land-

1https://i11www.iti.kit.edu/resources/roadgraphs.php

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000

MaxHit
TreeSelect

HHL
HHL-eco

HHL-exha

Figure 2: Average label sizes of different HPC-LHL algorithms.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5000 10000 15000 20000 25000

MaxHit
TreeSelect

HHL
HHL-eco

HHL-exha

Figure 3: Running times of HPC-LHL algorithms in seconds. Note
the log-scale of the y axis.

marks resulted in the best query times on average. Thus, we
use ALT with the top 25 nodes according to the KC-order as
the baseline for query answering below.

6.2 Preprocessing Algorithms
Next, we strive to compare the different preprocessing algo-
rithms for exact HPC-LHL discussed in the paper: MaxHit,
TreeSelect, HHL, exhaustive HHL pruning (HHL-exha) as
well as economic HHL pruning (HHL-eco). To have compar-
ative results for all methods, we first consider the 116 maps in
BGIIori with up to 25,000 nodes. Figure 2 shows the average
label sizes and Figure 3 depicts the running times for each
instance. Table 2 shows the running times and the average
and maximum label sizes averaged over all instances. Our
main observations are as follows: HHL-exha performs best
with respect to average and maximum label size. While it is

time Lavg Lmax

MaxHit 400.2 44.4 87.3
TreeSelect 8.9 99.5 218.9
HHL 60.6 149.4 312.7
HHL-eco 166.2 53.6 8 118.4
HHL-exha 376.6 39.3 77.9

Table 2: Averaged results for HPC-LHL prepossessing on grid maps
from BGIIori with up to 25,000 nodes.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6793

https://i11www.iti.kit.edu/resources/roadgraphs.php

a bit slower than MaxHit, it only needs a fraction of its space.
Indeed, for inputs with about 10,000 nodes, the number of
maximal shortest paths was already well above 10 million.
For the map AR001 with 22,216 nodes it was close to 116
million paths. For maps with more than 25,000 nodes, Max-
Hit exceeded our storage capabilities. TreeSelect is very fast
on small graphs but does produce label sizes more than twice
als large as those of MaxHit and HHL-exha. The canonical
HHL is also fast to compute but we see that both pruning
approaches, HHL-eco and HHL-exha, lead to a remarkable
reduction in label size. This already illustrates that the flex-
ibility of LHL to ensure tight distance bounds via hubs or
landmarks is clearly beneficial on grid networks.

For the large grid instances (BGII512), we restricted our
tests to TreeSelect, HHL and HHL-eco. The trends observed
for the smaller data sets continued here. TreeSelect remained
about on order of magnitude faster than HHL, with an aver-
age running time of 8 to 10 minutes, while the running time
for HHL computation was about 1 to 2 hours, depending on
the structure of the network. HHL-eco took another 4 to 8
hours per instance. This complies well with our theoretical
analysis of HHL and HHL-eco, where HHL takes time pro-
portional to nL2

max and HHL-eco proportional to mL2
avg and

m being roughly a factor of 4 larger than n in octile grids.
But the investment of preprocessing time is worthwhile, as
the number of labels was reduced on average by more than
50% with HHL-eco compared to TreeSelect and by more than
70% compared to HHL, for both average and max label size.

For road networks, we obtained results that deviated from
those for grid maps: For a comparable number of nodes, HHL
sizes were significantly lower for road networks. For exam-
ple, for road networks with around 100,000 nodes the average
HHL label size was only about 50 to 60 while the average for
grids was 500 to 1000. As a result, canonical HHL compu-
tation was much faster on road networks and even outper-
formed TreeSelect. For 100,000 nodes, HHL only took about
30 seconds while the running time of TreeSelect approached
half an hour. HHL-exha produced labels that are up to 50%
smaller than the ones in the HHL. But the running time was
already over 3 hours for 100,000 nodes and thus we did not
apply it to even larger road networks. HHL-eco was almost
as fast as HHL computation itself, which complies with our
running time analysis and the average node degree of slightly
above 2 in typical road networks. However, HHL-eco only
provided a reduction in average label size of about 5-10%,
which is a significantly smaller reduction margin than the one
achieved on grids. But the maximum label size was reduced
by up to 27%. For graphs with 1 million nodes, we got for
HHL Lavg = 133.4 and Lmax = 286.2 in roughly 45 min-
utes. After applying HHL-eco, which took another hour, we
got Lavg = 123.8 and Lmax = 198.8. Despite the reduction
in label size being not as pronounced as for grids, every sub-
traction from Lavg implies a space reduction proportional to
n. Furthermore, a reduced maximum label size is beneficial
for query answering as we will discuss in more detail below.

6.3 Query Answering
For HPC-LHL query answering, we measured how often only
the upper bound UB was tight, how often only the lower

Figure 4: β-radius (in meters) over the course of the center selection
algorithm for ROAD1M. Note the log-scale of the y-axis.

bound LB was tight, and how often they were equal. Further-
more, in case LB < UB, we counted how often the proposed
edge oracle led to conclusive results without the need of a
lower bound path check. On average over 1000 queries per
large instance, using HHL-eco, we got 77.6% queries where
the UB is tight, 53.3% queries in which the LB was tight,
30.9% in which both are tight and 69,1% in which an LB
check was needed. The edge oracle was conclusive in 23%
of the cases in question. The speed-up over ALT for both dis-
tance and path queries was over 50,000 for HPC-LHL. For
path queries, HPC-LHL was even faster than HHL, as the
smaller label sizes outweighed the path check time. For dis-
tance queries, HHL was about 1.4 times faster than HPC-LHL
but here the running time was anyway in the order of 1-2 mi-
croseconds. We conclude that HPC-LHL maintains the high
speed-up of labeling techniques while reducing the label size.

6.4 Bounded Suboptimal LHL
Finally, we examine how the label sizes and the query times
are affected if the query algorithm is allowed to return a path
that is at most α times longer than the optimal path. Figure
4 shows the maximum distance (also called β-radius) of any
node to its nearest selected center after each round of selec-
tion. We see a steep decay in this radius which implies that
restricting the labels to a small subset of the nodes suffices
to get a valid β-labeling for given β. Using β =5 kilometers
in road networks with n = 106 nodes yielded a center set
of size 1,494 and reduced the average label size from 131.7
to 81.5. Choosing α = 1.05, in over 98% of random queries,
upper bound path reporting was valid. In the remaining cases,
the refined ALT search space was only about 3 to 5 times the
number of nodes on the shortest path. Other trade-offs can
easily be achieved by adjusting α and β. For grids, we used
hop-bounds for β and also observed great flexibility in trad-
ing path quality against label size and query time.

7 Conclusions and Future Work
We showed that LHL is a very effective labeling technique,
which produces significantly smaller label sizes than previous
approaches (especially on grid networks) while also achiev-
ing very fast query times. One possible direction for future
work is the careful parallelization of the pruning algorithms
to make them applicable to even larger inputs. With methods
like PHAST [Delling et al., 2013a], which is CH-based, all
pair shortest paths can be computed in reasonable time even
for large road networks. Adapting this method to accelerate
pruning seems to be promising. Furthermore, there might be
ranking functions that lead to even smaller labelings than the
ones produced by our combination of center-order and CH-
order. Incorporating other known methods that select good
landmarks for A* could result in further improvements.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6794

References
[Babenko et al., 2015] Maxim A. Babenko, Andrew V.

Goldberg, Haim Kaplan, Ruslan Savchenko, and Mathias
Weller. On the complexity of hub labeling (extended ab-
stract). In Proc. 40th Int. Symp. Mathematical Foundations
of Computer Science (MFCS ’15), volume 9235 of Lecture
Notes in Computer Science, pages 62–74. Springer, 2015.

[Bauer et al., 2010] Reinhard Bauer, Tobias Columbus, Bas-
tian Katz, Marcus Krug, and Dorothea Wagner. Prepro-
cessing speed-up techniques is hard. In International Con-
ference on Algorithms and Complexity, pages 359–370.
Springer, 2010.

[Chen et al., 2021] Zitong Chen, Ada Wai-Chee Fu, Minhao
Jiang, Eric Lo, and Pengfei Zhang. P2H: efficient distance
querying on road networks by projected vertex separators.
In Proc. 2021 Int. Conf. Management of Data (SIGMOD
’21), pages 313–325. ACM, 2021.

[Cohen et al., 2003] Edith Cohen, Eran Halperin, Haim Ka-
plan, and Uri Zwick. Reachability and distance queries via
2-hop labels. SIAM J. Comput., 32(5):1338–1355, 2003.

[Delling et al., 2006] Daniel Delling, Peter Sanders, Do-
minik Schultes, and Dorothea Wagner. Highway hierar-
chies star. In The Shortest Path Problem, pages 141–174,
2006.

[Delling et al., 2013a] Daniel Delling, Andrew V Goldberg,
Andreas Nowatzyk, and Renato F Werneck. Phast:
Hardware-accelerated shortest path trees. Journal of Par-
allel and Distributed Computing, 73(7):940–952, 2013.

[Delling et al., 2013b] Daniel Delling, Andrew V Goldberg,
and Renato F Werneck. Hub label compression. In Proc.
12th Int. Symp. Experimental Algorithms (SEA ’13), vol-
ume 7933 of Lecture Notes in Computer Science, pages
18–29. Springer, 2013.

[Delling et al., 2014a] Daniel Delling, Andrew V. Goldberg,
Thomas Pajor, and Renato F. Werneck. Robust distance
queries on massive networks. In Proc. 22th Ann. Eu-
rop. Symp. Algorithms (ESA ’14), volume 8737 of Lec-
ture Notes in Computer Science, pages 321–333. Springer,
2014.

[Delling et al., 2014b] Daniel Delling, Andrew V. Goldberg,
Ruslan Savchenko, and Renato F. Werneck. Hub labels:
Theory and practice. In Proc. 13th Int. Symp. Experimen-
tal Algorithms (SEA ’14), volume 8504 of Lecture Notes
in Computer Science, pages 259–270. Springer, 2014.

[Efentakis and Pfoser, 2013] Alexandros Efentakis and Di-
eter Pfoser. Optimizing landmark-based routing and pre-
processing. In Proceedings of the Sixth ACM SIGSPATIAL
International Workshop on Computational Transportation
Science, pages 25–30, 2013.

[Foead et al., 2021] Daniel Foead, Alifio Ghifari,
Marchel Budi Kusuma, Novita Hanafiah, and Eric
Gunawan. A systematic literature review of a* pathfind-
ing. Procedia Computer Science, 179:507–514, 2021.

[Geisberger et al., 2012] Robert Geisberger, Peter Sanders,
Dominik Schultes, and Christian Vetter. Exact routing in

large road networks using contraction hierarchies. Trans-
portation Science, 46(3):388–404, 2012.

[Goldberg and Harrelson, 2005] Andrew V Goldberg and
Chris Harrelson. Computing the shortest path: A search
meets graph theory. In SODA, volume 5, pages 156–165.
Citeseer, 2005.

[Goldberg et al., 2007] Andrew V Goldberg, Haim Kaplan,
and Renato F Werneck. Better landmarks within reach.
In International Workshop on Experimental and Efficient
Algorithms, pages 38–51. Springer, 2007.

[Gonzalez, 1985] Teofilo F Gonzalez. Clustering to mini-
mize the maximum intercluster distance. Theoretical com-
puter science, 38:293–306, 1985.

[Hershberger and Suri, 2001] John Hershberger and Sub-
hash Suri. Vickrey prices and shortest paths: What is an
edge worth? In Proceedings 42nd IEEE symposium on
foundations of computer science, pages 252–259. IEEE,
2001.

[Korf, 1988] Richard E Korf. Optimal path-finding algo-
rithms. In Search in artificial intelligence, pages 223–267.
Springer, 1988.

[Ouyang et al., 2018] Dian Ouyang, Lu Qin, Lijun Chang,
Xuemin Lin, Ying Zhang, and Qing Zhu. When hierarchy
meets 2-hop-labeling: Efficient shortest distance queries
on road networks. In Proc. 2018 Int. Conf. Management
of Data (SIGMOD ’18), pages 709–724. ACM, 2018.

[Peque et al., 2017] Genaro Peque, Junji Urata, and Taka-
masa Iryo. Implementing an alt algorithm for large-scale
time-dependent networks. In 22nd International Con-
ference of Hong Kong Society for Transportation Stud-
ies: Transport and Society, HKSTS 2017, pages 515–522.
Hong Kong Society for Transportation Studies Limited,
2017.

[Potamias et al., 2009] Michalis Potamias, Francesco
Bonchi, Carlos Castillo, and Aristides Gionis. Fast
shortest path distance estimation in large networks. In
Proceedings of the 18th ACM conference on Information
and knowledge management, pages 867–876, 2009.

[Shen et al., 2022] Bojie Shen, Muhammad Aamir Cheema,
Daniel D Harabor, and Peter J Stuckey. Fast optimal and
bounded suboptimal euclidean pathfinding. Artificial In-
telligence, 302:103624, 2022.

[Storandt, 2022] Sabine Storandt. Algorithms for landmark
hub labeling. In 33rd International Symposium on Algo-
rithms and Computation (ISAAC 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

[Sturtevant, 2012] N. Sturtevant. Benchmarks for grid-based
pathfinding. Transactions on Computational Intelligence
and AI in Games, 4(2):144 – 148, 2012.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6795

	Introduction
	Related Work
	Contribution

	Preliminaries
	Hub Labeling (HL)
	Landmark Hub Labeling (LHL)
	Definition and Properties
	Preprocessing
	Query Answering

	Scalable PC-LHL Computation
	Tree-based LHL
	LHL from HHL
	Exhaustive Pruning
	Economic Pruning

	Improved Query Answering
	Bounded Suboptimal PC-LHL
	Center Hub Labeling
	Bounded Suboptimal LHL Queries

	Experimental Study
	Node Ranking and Landmark Selection
	Preprocessing Algorithms
	Query Answering
	Bounded Suboptimal LHL

	Conclusions and Future Work

