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Abstract
We consider a problem of placing generators of re-
wards to be collected by randomly moving agents
in a network. In many settings, the precise mobil-
ity pattern may be one of several possible, based
on parameters outside our control, such as weather
conditions. The placement should be robust to
this uncertainty, to gain a competent total reward
across possible networks. To study such scenarios,
we introduce the Robust Reward Placement prob-
lem (RRP). Agents move randomly by a Marko-
vian Mobility Model with a predetermined set of
locations whose connectivity is chosen adversari-
ally from a known set Π of candidates. We aim to
select a set of reward states within a budget that
maximizes the minimum ratio, among all candi-
dates in Π, of the collected total reward over the op-
timal collectable reward under the same candidate.
We prove that RRP is NP-hard and inapproximable,
and develop Ψ-Saturate, a pseudo-polynomial time
algorithm that achieves an ϵ-additive approxima-
tion by exceeding the budget constraint by a factor
that scales as O(ln |Π|/ϵ). In addition, we present
several heuristics, most prominently one inspired
by a dynamic programming algorithm for the max–
min 0–1 KNAPSACK problem. We corroborate our
theoretical analysis with an experimental evalua-
tion on synthetic and real data.

1 Introduction
In many graph optimization problems, a stakeholder has to se-
lect locations in a network, such as a road, transportation, in-
frastructure, communication, or web network, where to place
reward-generating facilities such as stores, ads, sensors, or
utilities to best service a population of moving agents such as
customers, autonomous vehicles, or bots [Zhang and Vorob-
eychik, 2016; Ostachowicz et al., 2019; Zhang et al., 2020;
Rosenfeld and Globerson, 2016; Amelkin and Singh, 2019].
Such problems are intricate due to the uncertainty surround-
ing agent mobility [Krause et al., 2008; Chen et al., 2016;
He and Kempe, 2016; Horčı́k et al., 2022].
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Figure 1: Moving agent under two settings; sunny and rainy; tables
show numbers of steps and initial probabilities.

For instance, consider outdoor ad placement. We represent
the road map as a probabilistic network in which agents move.
If every agent follows the same movement pattern regardless
of environmental conditions, then the problem of placing ads
to maximize the expected number of ad views admits a greedy
algorithm with an approximation ratio [Zhang et al., 2020].
Still, the problem becomes more involved under malleable
environmental conditions that alter movement patterns. As
a toy example, Figure 1 shows a probabilistic network. An
agent randomly starts from an initial location and takes two
steps by the probabilities shown on edges representing street
segments, under two environmental settings, sunny and rainy.
Assume a stakeholder has a budget to place an ad-billboard
at a single location. Under the sunny setting, the best choice
of placement is B, as the agent certainly passes by that point
regardless of its starting position; under the rainy setting, the
agent necessarily passes by D within two steps, hence that
is most preferable. However, under the rainy setting B yields
expected reward 0.6, and so does D under the sunny one. Due
to such uncertainty, a risk-averse stakeholder would prefer the
location that yields, in the worst case, the highest ratio of the
collected to best feasible reward, i.e., in this case, C, which
yields expected reward 0.9 under both settings.

In this paper, we introduce the problem of robust reward
placement (RRP) in a network, under uncertainty about the
environment whereby an agent is moving according to any
of several probabilistic mobility settings. We express each
such setting by a Markov Mobility Model (MMM) π ∈ Π.
The cumulative reward a stakeholder receives grows when-
ever the agent passes by one of the reward states SR. RRP
seeks to select a set of such states S∗

R within a budget,
that maximizes the worst-case ratio, across all settings Π,
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of the collected reward F (SR|π) over the highest reward
that can be collected under the same setting F (S∗

π|π), i.e.,
S∗

R = arg maxSR minπ∈Π
F (SR|π)
F (S∗

π|π) . This max-min ratio
objective is used in risk-averse portfolio optimization and ad-
vertising [Ordentlich and Cover, 1998; Li and Yang, 2020].
Our Contribution. Our contributions stand as follows:

1. We introduce the problem of Robust Reward Place-
ment (RRP) over a set of Markov Mobility Models, that
has real-world applications across various domains.

2. We study the properties of RRP and show that it is NP-
hard (Theorem 1). Due to the additivity and monotonic-
ity properties of the reward function (Lemma 3), it ad-
mits an optimal solution in pseudo-polynomial time un-
der a single setting, i.e. |Π| = 1 (Lemma 4), yet it is
inapproximable when |Π| > 1 unless we exceed the bud-
get constraint by a factor O(ln |Π|) (Theorem 2).

3. We adopt techniques from robust influence maximiza-
tion to develop Ψ-Saturate, a pseudo-polynomial time
algorithm that finds a solution within ϵ distance of the
optimal, i.e. OPT − ϵ, while exceeding the budget con-
straint by an O(ln |Π|/ϵ) factor (Lemma 6).

4. We present several heuristics as alternative solutions,
most prominently one based on a dynamic programming
algorithm for the max–min 0–1 KNAPSACK problem,
to which RRP can be reduced (Lemma 5).

We corroborate our analysis with an experimental evalua-
tion on synthetic and real data. Due to space constraints, we
relegate some proofs to the full version [Petsinis et al., 2024].

2 Related Work
The Robust Reward Placement problem relates to robust max-
imization of spread in a network, with some distinctive char-
acteristics. Some works [Du et al., 2013; He and Kempe,
2016; Chen et al., 2016; Logins et al., 2020; Logins et al.,
2022] study problems of selecting a seed set of nodes that ro-
bustly maximize the expected spread of a diffusion process
over a network. However, in those models [Kempe et al.,
2003] the diffusion process is generative, whereby an item
propagates in the network by producing unlimited replicas of
itself. On the other hand, we study a non-generative spread
function, whereby the goal is to reach as many as possible out
of a population of network-resident agents. Our spread func-
tion is similar to the one studied in the problem of Geode-
mographic Influence Maximization [Zhang et al., 2020], yet
thereby the goal is to select a set of network locations that
achieves high spread over a mobile population under a single
environmental setting. We study the more challenging prob-
lem of achieving competitive spread in the worst case under
uncertainty regarding the environment.

Several robust discrete optimization problems [Kouvelis
and Yu, 1997] address uncertainty in decision-making by op-
timizing a max–min or min–max function under constraints.
The robust MINIMUM STEINER TREE problem [Johnson et
al., 2000] seeks to minimize the worst-case cost of a tree that
spans a graph; the min–max and min–max regret versions
of the KNAPSACK problem [Aissi et al., 2009] have a modu-
lar function as a budget constraint; other works examine the
robust version of submodular functions [Krause and Golovin,

2014; He and Kempe, 2016] that describe several diffusion
processes [Adiga et al., 2014; Krause et al., 2008]. To our
knowledge, no prior work considers the objective of maxi-
mizing the worst-case ratio of an additive function over its
optimal value subject to a knapsack budget constraint.

3 Preliminaries
Markov Mobility Model (MMM). We denote a discrete-
time MMM as π = (S, I, T ,M), where S is a set of n
states, I is a vector of n elements in [0, 1] expressing an ini-
tial probability distribution over states in S , T is an n × n
right-stochastic matrix, where T [s, s′] is the probability of
transition from state s ∈ S to another state s′ ∈ S , and M
is an n × K matrix with elements in [0, 1], where K is the
maximum number of steps andM[s, k] expresses the cumu-
lative probability that an agent starting from state s ∈ S
takes k′ ∈ [k, K] steps. Remarkably, an MMM describes
multiple agents and movements, whose starting positions are
expressed via initial distribution I and their step-sizes viaM.
Rewards. Given an MMM, we select a set of states to be re-
ward states. We use a reward vector R ∈ {0, 1}n to indicate
whether state s ∈ S is a reward state and denote the set of re-
ward states as SR = {s ∈ S|R[s] = 1}. In each timestamp t,
an agent at state s moves to state s′ and retrieves rewardR[s′].
For a set of reward states SR, and a given MMM π, the cu-
mulative reward F (SR|π) of an agent equals:

F (SR|π) =
∑

k∈[K]

Fπ(SR|k) (1)

Fπ(SR|k) = R⊤ (
T k(I ◦Mk)

)
, (2)

where Fπ(SR|k) is the expected reward at the kth step,Mk

is the kth column ofM, and ◦ denotes the Hadamard product.
Connection to Pagerank. The Pagerank algorithm [Brin
and Page, 1998], widely used in recommendation systems,
computes the stationary probability distribution of a random
walker in a network. The Pagerank scores are efficiently com-
puted via power-iteration method [von Mises and Pollaczek-
Geiringer, 1929]. Let PR be an N × 1 column-vector of
the Pagerank probability scores, initialized as PR(0), T is
an N × N matrix featuring the transition probabilities of
walker, and 1 be the all-ones vector. For a damping factor a,
the power method computes the scores in iterations as:

PR(t) = a ·T ·PR(t− 1) + 1− a

N
1. (3)

We repeat this process until convergence, i.e., until |PR(t)−
PR(t − 1)| ≤ ϵ for a small ϵ ≥ 0. We denote the PageRank
score at the ith node as PR[i]. For a sufficiently large num-
ber of steps K for each state withMk = 1 ∀k ∈ [K], Equa-
tion (2) becomes Fπ(k) = R⊤ (

T kI
)
. Likewise, for damp-

ing factor a = 1, Equation (3) becomes PR(t) = TtPR(0),
thus the two equations are rendered analogous with T = T
and PR(0) = I. Then, considering that the iteration con-
verges from step k̂ onward, the expected reward from reward
state si per step k ≥ k̂, Fπ({si}|k), is the PageRank score of
the ith node, that is PR[i]. To see this, letRi = 1i be the re-
ward vector when si ∈ S is the only reward state; then it holds
that PR[i] = 1⊤

i

(
TkPR(0)

)
= R⊤

i

(
T kI

)
= Fπ({si}|k).
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4 Problem Formulation
In this section we model the uncertain environment where in-
dividuals navigate and introduce the Robust Reward Place-
ment (RRP) problem over a set of Markov Mobility Models
(MMMs), extracted from real movement data, that express
the behavior of individuals under different settings.
Setting. Many applications generate data on the point-to-
point movements of agents over a network, along with a dis-
tribution and their total number of steps. Using aggregate
statistics on this information, we formulate, without loss of
generality, the movement of a population by a single agent
moving probabilistically over the states of an MMM π =
(S, I, T ,M). Due to environment uncertainty, the agent may
follow any of |Π| different settings1 Π = {π1, π2, . . . , π|Π|}.
Robust Reward Placement Problem. Several resource al-
location problems can be formulated as optimization prob-
lems over an MMM π, where reward states SR correspond to
the placement of resources. Given a budget L and a cost func-
tion c : S → N+, the Reward Placement (RP) problem seeks
a set of reward states S∗

R ⊆ S that maximizes the cumulative
reward F (S∗

R|π) obtained by an agent, that is:

S∗
R = arg max

SR
F (SR|π) s.t.

∑
s∈SR

c[s] ≤ L.

However, in reality the agent’s movements follow an
unknown distribution sampled from a set of settings
Π = {π1, π2, . . . , π|Π|} represented as different MMMs.
Under this uncertainty, the Robust Reward Placement (RRP)
problem seeks a set of reward states SR, within a budget, that
maximizes the worst-case ratio of agent’s cumulative reward
over the optimal one, when the model π ∈ Π is unknown.
Formally, we seek a reward placement S∗

R ⊆ S such that:

S∗
R = arg max

SR
min
π∈Π

F (SR|π)
F (S∗

π|π) s.t.
∑

s∈SR

c[s] ≤ L, (4)

where S∗
π = arg max

SR
F (SR|π) is the optimal reward place-

ment for a given model π ∈ Π within budget L. This formu-
lation is equivalent to minimizing the maximum regret ratio
of F (SR|π), i.e., 1− F (SR|π)

F (S∗
π|π) . The motivation arises from the

fact that stakeholders are prone to compare what they achieve
with what they could optimally achieve. The solution may
also be seen as the optimal placement when the model π ∈ Π
in which agents are moving is chosen by an omniscient ad-
versary, i.e. an adversary who chooses the setting π after ob-
serving the set of reward states SR.

5 Hardness and Inapproximability Results
In this section we examine the optimization problem of
RRP and we show that is NP-hard in general. First, in The-
orem 1 we prove that even for a single model (|Π| = 1) the
optimal solution cannot be found in polynomial time, due to
a reduction from the 0–1 KNAPSACK problem [Karp, 1972].
Theorem 1. The RRP problem is NP-hard even for a single
model, that is |Π| = 1.

1We use the terms ‘setting’ and ‘model’ interchangeably.

Proof. In the 0–1 KNAPSACK problem [Karp, 1972] we are
given a set of items U , each item u ∈ U having a cost c(u)
and, wlog, an integer value F (u) and seek a subset V ⊆ U
that has total cost

∑
v∈V c(v) no more than a given budget L

and maximum total value
∑

v∈V F (v). In order to reduce
0–1 KNAPSACK to RRP, we set a distinct state s ∈ S for
each item u ∈ U with the same cost, i.e., S = U , assign to
each state a self-loop with transition probability 1, let each
state be a reward state, and set a uniform initial distribution
of agents over states equal to 1/|S| and steps probability equal
toM[s, k] = 1, ∀k ∈ [1, . . . , F (u)]. For a single setting, an
optimal solution to the RRP problem of Equation (4) is also
optimal for the NP-hard 0–1 KNAPSACK problem.

Theorem 2 proves that RRP is inapproximable in polyno-
mial time within constant factor, by a reduction from the HIT-
TING SET problem, unless we exceed the budget constraint.
Theorem 2. Given a budget L and set of models Π, it is NP-
hard to approximate the optimal solution to RRP within a
factor of Ω(1/n1−ϵ), for any constant ϵ > 0, unless the cost of
the solution is at least βL, with β ≥ ln |Π|.

Proof. We reduce the HITTING SET problem [Karp, 1972] to
RRP and show that an approximation algorithm for RRP im-
plies one for HITTING SET. In the HITTING SET problem,
given a collection of X items, C = {c1, c2, . . . , cX} and a
set of M subsets thereof, Bi ⊆ C, i ∈ {1, . . . , M}, we seek
a hitting set C ′ ⊆ C such that Bi∩C ′ ̸= ∅ ∀i ∈ {1, . . . , M}.

Given an instance of HITTING SET, we reduce it to RRP
as follows. For each subset Bi we set a state sl

i ∈ S l and
for each item ci we set a state sr

i ∈ Sr. Aslo, for each sub-
set Bi we set an MMM πi (|Π| = M) over the same set of
states S = Sl ∪ Sr with Sl ∩ Sr = ∅. We set the initial
probabilities I as uniform for all states in Sl, equal to 1/|Sl|
for all models. Each model πi ∈ Π features transition prob-
abilities 1 from each state sl

j to state sl
i, with i ̸= j, and

uniform transition probabilities from sl
i to each state sr

j if and
only if cj ∈ Bi. States in Sr are absorbing, i.e., each state
has a self-loop with probability 1. Figure 2 shows a small
example of a HITTING SET instance and its RRP equivalent.
We set the cost for absorbing states in Sr to 1 and let each
node in Sl have a cost exceeding L. By this construction,
if the reward placement SR does not form a hitting set, then
there exists at least one subset Bi, such that Bi ∩ SR = ∅,
hence minπ

F (SR|π)
F (S∗

π|π) = 0. In reverse, if SR forms a hitting

set, it holds that minπ
F (SR|π)
F (S∗

π|π) ≥
1

|Sr| > 0. Thus, a hitting

set exists if and only if minπ
F (SR|π)
F (S∗

π|π) > 0. In effect, if we

Figure 2: HITTING SET (left) and RRP reduction (right).
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obtained an approximation algorithm for RRP by increasing
the budget to βL, for β > 1, then we would also approximate,
with a budget increased by a factor of β, the HITTING SET
problem, which is NP-hard for β < (1− δ) ln |Π| and δ > 0
[Dinur and Steurer, 2014].

6 Connections to Knapsack Problems
In this section, we establish connections between RRP and
KNAPSACK problems, which are useful in our solutions.
Monotonicity and Additivity. Lemma 3 establishes that
the cumulative reward function F (SR|π) is monotone and
additive with respect to SR. These properties are vital in eval-
uating F (SR|π) while exploiting pre-computations.
Lemma 3. The cumulative reward F (SR|π) in Equation (1)
is a monotone and additive function of reward states SR.

Proof. By Equation (1) we obtain the monotonicity property
of the cumulative reward function F (·|π). Given a model
π ∈ Π and two sets of reward states A ⊆ B ⊆ S every term
of F (A|π) is no less than its corresponding term of F (B|π)
due to Equation (2). For the additivity property it suffices to
show that any two sets of reward states A,B ⊆ S satisfy:

F (A|π) + F (B|π) = F (A ∪ B|π) + F (A ∩ B|π).

Assume w.l.o.g. that the equality holds at time t, i.e. rt
A +

rt
B = rt

A∩B +rt
A∪B, rt

X being the cumulative reward at time t
for reward states X . It suffices to prove that the additivity
property holds for t + 1. At timestamp t + 1, the agent at
state s ∈ S moves to s′ ∈ S . We distinguish cases as follows:

1. If s′ /∈ A ∪ B then s′ /∈ A ∩ B, s′ /∈ A and s′ /∈ B, thus
additivity holds.

2. If s′ ∈ A ∪ B and s′ /∈ A ∩ B then either s′ ∈ A
or s′ ∈ B. Assume wlog that s′ ∈ A, then it holds
that: rt+1

A = rt
A + T [s, s′], rt+1

A∪B = rt
A∪B + T [s, s′],

rt+1
B = rt

B and rt+1
A∩B = rt

A∩B.
3. If s′ ∈ A ∩ B then s′ ∈ A and s′ ∈ B. Then, it

holds that: rt+1
A = rt

A + T [s, s′], rt+1
B = rt

B + T [s, s′],
rt+1

A∪B = rt
A∪B + T [s, s′], and rt+1

A∩B = rt
A∩B+T [s, s′].

In all cases the cumulative reward function is additive.

Next, Lemma 4 states that RRP under a single model π
(|Π| = 1), i.e., the maximization of F (SR|π) within a bud-
get L, is solved in pseudo-polynomial time thanks to the ad-
ditivity property in Lemma 3 and a reduction from the 0–1
KNAPSACK problem [Karp, 1972]. Lemma 4 also implies
that we can find the optimal reward placement with the max-
imum expected reward by using a single expected setting π.
Lemma 4. For a single model π (|Π| = 1) and a budget L,
there is an optimal solution for RRP that runs in pseudo-
polynomial time O(Ln).

Proof. For each state si ∈ S we set an item ui ∈ U with
cost c(ui) = c[si] and value F (ui) = F ({si}|π). Since
the reward function is additive (Lemma 3), it holds that
F (SR|π) =

∑
si∈SR

F ({si}|π) =
∑

ui∈U F (ui). Thus, we
can optimally solve single setting RRP in pseudo-polynomial
time by using the dynamic programming solution for 0–1
KNAPSACK [Martello and Toth, 1987].

In the MAX–MIN 0–1 KNAPSACK problem (MNK), given
a set of items U , each item u ∈ U having a cost c(u), and a
collection of scenarios X , each scenario x ∈ X having a
value Fx(u), we aim to determine a subset V ⊆ U , with total
cost no more than L, and maximizes the minimum total value
across scenarios, i.e., argV max minx

∑
u∈V Fx(u). The fol-

lowing lemma reduces the RRP problem to MAX–MIN 0–1
KNAPSACK [Yu, 1996] in pseudo-polynomial time.

Lemma 5. RRP is reducible to MAX–MIN 0–1 KNAPSACK
in O(|Π|Ln) time.

7 Approximation Algorithm
Here, we introduce Ψ-Saturate,2 a pseudo-polynomial
time binary-search algorithm based on the Greedy-Saturate
method [He and Kempe, 2016]. For any ϵ > 0, Ψ-Saturate
returns an ϵ-additive approximation of the optimal solution
by exceeding the budget constraint by a factor O(ln |Π|/ϵ).

Algorithm 1 Ψ-Saturate Algorithm
Input: MMMs Π, steps K, budget L, precision ϵ, param. β.
Output: Reward Placement S∗

R of cost at most βL.
1: for π ∈ Π do
2: S∗

π ← Knapsack(π, L)
3: end for
4: ηmin ← 0, ηmax ← 1, S∗

R ← ∅
5: while (ηmin − ηmax) ≥ ϵ do
6: η ← (ηmax + ηmin)/2
7: SR ← ∅
8: while

∑
π∈Π

min
(

η, F (SR|π)
F (S∗

π|π)

)
< (η · |Π| − η · ϵ/3) do

9: s ← arg max
s∈S\SR

∑
π∈Π

1
c(s)

(
min

(
η, F (SR∪{s}|π)

F (S∗
π|π)

)
−

min
(

η, F (SR|π)
F (S∗

π|π)

) )
10: SR ← SR ∪ {s}
11: end while
12: if

∑
s∈SR

c[s] > βL then
13: ηmax ← η
14: else
15: ηmin ← η · (1− ϵ/3)
16: S∗

R ← SR
17: end if
18: end while
19: return S∗

R

The Ψ-Saturate Algorithm. Algorithm 1 presents the
pseudocode of Ψ-Saturate. As a first step, in Lines 1–2, the
algorithm finds the optimal reward placement S∗

π for each
model π ∈ Π; this is needed for evaluating the denominator
of the RRP objective value in Equation (4). By Lemma 4, S∗

π
is computed in pseudo-polynomial time using the dynamic
programming algorithm for the KNAPSACK problem. Then,
in Lines 5–18 the algorithm executes a binary search in the
range of the min–max objective ratio (Line 4). In each itera-
tion, the algorithm makes a guess η of the optimal min–max

2Ψ for ‘pseudo-’, from Greek ‘ψευδής’.
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objective value (Line 6), and then seek a set of reward states
SR (Line 7), of minimum cost, with score at least η (Line 8),
within distance ϵ > 0. Finding SR of the minimum cost,
implies an optimal solution for the NP-hard RRP problem.
Thus, in Lines 9–10, Ψ-Saturate approximates this solution
by using the Greedy algorithm in [Wolsey, 1982] for function
min

(
η, F (SR|π)

F (S∗
π|π)

)
which, for fixed π and η, is monotone and

submodular.3 If the formed solution exceeds the budget con-
straint, the algorithm decreases the upper bound of the search
scope (Lines 12–13), otherwise it increases the lower bound
and updates the optimal solution S∗

R (Lines 14–16). Finally,
it returns the optimal solution found (Line 19).

In Lemma 6 we prove that by setting β = 1 + ln 3|Π|
ϵ ,

Ψ-Saturate approximates the optimal value within distance ϵ.

Lemma 6. For any constant ϵ > 0, let β = 1 + ln 3|Π|
ϵ .

Ψ-Saturate finds a reward placement SR of cost at most βL

with minπ
F (SR|π)
F (S∗

π|π) ≥ minπ
F (S∗

R|π)
F (S∗

π|π) − ϵ = OPT − ϵ, and

S∗
R = argSR

max minπ
F (SR|π)
F (S∗

π|π) s.t.
∑

s∈SR
c[s] ≤ L.

Proof. We seek to solve a max–min regret optimization
problem of an additive function under a knapsack con-
straint. While finding the optimal score in the denominator of
the max–min ratio is NP-hard due to Theorem 1, in Line 2
we evaluate it by a pseudo-polynomial time Knapsack algo-
rithm, as Lemma 4 allows. In Lines 5–18, we perform a bi-
nary search to find a reward placement of cost at most βL. By
the analysis in [He and Kempe, 2016], the Ψ-Saturate algo-
rithm provides an (β, OPT− ϵ) bicriteria approximation for
RRP, where OPT is the optimal objective ratio score.

Unlike the pseudo-polynomial-time dynamic program-
ming algorithm (Knapsack, Line 2) we employ, the Greedy-
Saturate algorithm [He and Kempe, 2016] uses the Greedy4

algorithm to approximate the optimal reward placement S∗
π

(Lines 1–2), which provides an 1/2-approximation of the
optimal solution for a monotone additive function over a
knapsack constraint [Garey and Johnson, 1979]. As our re-
ward function is monotone and additive (Lemma 3), Greedy-
Saturate offers an ( 1

2 OPT− ϵ, βL) bicriteria approximation.
Notably, for β = 1, Ψ-Saturate returns an non-constant

approximation of the optimal solution within the budget con-
straint L. In particular, the next corollary holds.

Corollary 7. For any constant ϵ > 0, let γ = 1+ln 3|Π|
ϵ . For

β = 1, Ψ-Saturate satisfies the budget constraint and returns
an 1

γ (OPT ′−ϵ) approximation factor of the optimal solution,

with OPT ′ = maxSR minπ
F (SR|π)
F (S∗

π|π) s.t.
∑

s∈SR
c[s] ≤ L

γ .

We stress that the approximation in Corollary 7 is non-
constant and can be arbitrarily small, as implied by the in-
approximability result of Theorem 2.

3The minimum of a constant function (η) and a monotone ad-

ditive function
(

F (SR|π)
F (S∗

π|π) , Lemma 3
)

is monotone and submodular.

The term F (S∗
π|π) is constant as it has been computed in Line 2.

4 The algorithm iteratively selects the element, within the budget,
that offers the maximal marginal gain divided by its cost.

8 Heuristic Solutions
Inspired from previous works on node selection in net-
works [He and Kempe, 2016; Zhang et al., 2020] and the con-
nection of RRP with Knapsack problems, we propose four
heuristic methods. For a single model (|Π| = 1) and under
uniform costs (c[s] = c ∀s ∈ S), these four heuristics find an
optimal solution. However, contrary to Ψ-Saturate algorithm
(Lemma 6), they may perform arbitrarily badly in the general
multi-model case, even by exceeding the budget constraint.
To accelerate the selection process, we use the Lazy Greedy
technique that updates values selectively [Minoux, 1978] in
all heuristics, except the one using dynamic programming.
All Greedy. The All Greedy method optimally solves the
RRP problem for each model π ∈ Π separately using the
Knapsack dynamic programming algorithm (Lemma 4) and
then picks, among the collected solutions, the one yielding
the best value of the objective in Equation (4). All Greedy is
optimal for a single model with an arbitrary cost function.
Myopic. A greedy algorithm that iteratively chooses the re-
ward state s∗ ∈ S , within the budget, that offers the maximal
marginal gain ratio to the RRP objective divided by the cost,
that is s∗ = arg max

s∈S\SR

min
π∈Π

(
1

c[s]
F (SR∪{s}|π)−F (SR|π)

F (S∗
π|π)

)
.

Best-Worst Search (BWS). This algorithm uses as a score
the minimum, over settings, cumulative reward for a set SR,
that is H(SR) = minπ F (SR|π) and iteratively chooses the
reward state s∗ ∈ S , within the budget, that offers the max-
imal marginal gain to that score divided by the cost, that is
s∗ = arg max

s∈S\SR

(
H(SR∪{s})−H(SR)

c[s]

)
.

Dynamic Programming (DP-RRP). In Lemma 5 we re-
duced RRP to MAX–MIN 0–1 KNAPSACK (MNK) in
pseudo-polynomial time. While MNK admits an optimal
solution using a pseudo-polynomial time dynamic program-
ming algorithm, its running time grows exponentially with
the number of settings |Π| [Yu, 1996]. To overcome this
time overhead, we propose a more efficient albeit non-optimal
dynamic-programming algorithm for the RRP problem, noted
as DP-RRP. For reward placement SR, we denote the cu-
mulative reward for each setting as the following |Π|-tuple:
g(SR) =

(
F (SR|π1), F (SR|π2), . . . , F (SR|π|Π|)

)
. We

use an (n + 1) × (L + 1) matrix M whose entries are |Π|-
tuples of the form g(·). Let min g(SR) = minπi

F (SR|πi)
be the minimum reward, across |Π| settings. We de-
fine the maximum of two entries g(SR1) and g(SR2), as
arg maxSR∈{SR1 ,SR2 } min g(SR), i.e. the one holding the
largest minimum reward. We initialize M [·, 0] = M [0, ·] =
(0, 0, . . . , 0) and recursively compute M [i, j] as follows:

M [i, j] = max{M [i−1, j], M [i−1, j−c[i]]+g({i})}, (5)

where M [i, j] stands for a solution using the first i states,
by some arbitrary order, and j units of budget. In the recur-
sion of Equation (5), the first option stands for not choosing
state si as a reward state, while the latter option stands for
doing so while paying cost c[i] and gaining the additive re-
ward g({i}). We compute M [n, L] as above in space and
time complexity Θ(|Π|Ln) and backtrack over M to retrieve
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the selected reward states in the final solution. Note that, for a
single model, i.e. |Π| = 1 and arbitrary cost function, Equa-
tion (5) returns an optimal solution.

Worst-case performance. While all heuristics5 approach
the optimal solution under a single setting, they may perform
arbitrarily badly with multiple settings. In Lemma 8 we prove
that this holds even when exceeding the budget constraint,
contrariwise to the Ψ-Saturate algorithm (Lemma 6).

Lemma 8. The heuristics for RRP may perform arbitrarily
badly even when they exceed the budget constraint from L

to βL, with β = 1 + ln 3|Π|
ϵ and ϵ > 0.

9 Experimental Analysis
In this section we evaluate the running time and performance
of algorithms on synthetic and real-world data. We use dif-
ferent problem parameters as Table 1 shows, marking the de-
fault value of each parameter in bold. To satisfy the budget
constraint for the Ψ-Saturate algorithm, we fix β = 1 as in
Corollary 7 and set precision to ϵ = (|Π| · 103)−1. We set the
budget L as a percentage of the total cost

∑
s∈S c[s]. To ben-

efit from the additivity property of Lemma 3, we precompute
the cumulative reward F ({s}|π) for each state s ∈ S and
model π ∈ Π. We implemented6 all methods in C++ 17 and
ran experiments on a 376GB server with 96 CPUs @2.6GHz.

Parameter Values
n 2500, 5000, 7500, 100001000010000, 12500
⟨d⟩ 3,6,9,12
pβ 0.6, 0.7, 0.8, 0.9
|Π| 2,5,10,15,20
K 2,4,6,8,10
L 10%, 25%, 50%, 75%

Table 1: Parameter settings.

9.1 Synthetic Data
We use two different types of synthetic datasets to represent
stochastic networks (i.e., MMMs). In each type, we generate
a directed graph and then sample edge weights from a normal
distribution to create different settings. In more detail:

Erdős-Rényi: We generate 20 directed graphs for each of
the 5 sizes shown in Table 1. In all cases, we set the edge cre-
ation probability to achieve the desired average in-degree ⟨d⟩.
Scale-Free: We generate 20 directed scale-free graphs for
each of the 5 sizes shown in Table 1. Following [Bollobás
et al., 2003], we use three parameters to construct the net-
work: pα (pγ), the probability to add a new node connected
to an existing one chosen randomly by its in-degree (out-
degree), and pβ , the probability to add an edge (u, v), with u
and v selected by their out-degree and in-degree respectively.
In all datasets, we tune pβ and set pγ = 1−pβ

3 and pα = 2pγ ,
so that pα + pβ + pγ = 1.

5All algorithms work, without modification, with rewards of ar-
bitrary non-negative values and when a partial solution is given.

6https://anonymous.4open.science/r/RRP-F6CA

Given a graph structure, we generate |Π| = 20 distinct set-
tings, corresponding to different models. For each setting πi,
we sample the weight of edge (u, v) from a normal distribu-
tion with mean µ = 1/du and standard deviation σi = i/10du.
When we sample a negative value, we set the edge weight to
zero. In each resulting directed graph, we set transition prob-
abilities T as normalized edge weights. Moreover, we set
the initial probabilities I proportionally to the sum of nodes’
outgoing weights and the cost of a node as the rounded-down
average number of its in-neighbors among settings.
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Figure 3: Preprocessing and running time vs. n, L for Erdős-Rényi
(left) and Scale-Free (right) datasets.

Time efficiency. Figure 3 plots the average (over 20 graphs)
preprocessing time vs. graph size and running time for all
algorithms vs. graph size and budget. Notably, the precom-
putation takes time superlinear in graph size n, as the time
complexity needed for the power iteration is O(K(n + m))
for K steps maximum and m edges. The runtime of most
algorithms grows linearly with graph size and budget, indi-
cating their efficiency, except of DP-RRP, whose time com-
plexity is at least quadratic in n, Θ(|Π|Ln) while L = Ω(n).

Reward placement robustness. Figure 4 illustrates the al-
gorithms’ average performance (over 20 graphs) in the re-
ward placement robustness objective as several parameters
vary. On the Erdős-Rényi data, Ψ-Saturate outperforms all
heuristics vs. graph size n and in other measurements, while
on Scale-Free data, DP-RRP performs best overall. With a
single setting, i.e., when |Π| = 1, all heuristics find an al-
most optimal solution. However, as expected, performance
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Figure 4: Reward placement robustness scores on Erdős-Rényi (top) and Scale-Free (bottom) datasets.

decreases as the number of models |Π| grows, whence the
adversary possesses a larger pool of models to select from.
Similarly, as the number of steps K grows, the feasible agent
movements expand, causing the optimal cumulative reward
per setting to rise more than the worst-case reward in general,
hence the robustness score falls. In contrast, the score of all
algorithms rises with budget L. Intuitively, a higher budget
offers more flexibility to hedge against worst-case outcomes,
hence better robustness scores. This effect is more evident
on the Scale-Free dataset, which has fewer lucrative nodes of
high in-degree. The growth of robustness scores vs. ⟨d⟩ on
Erdős-Rényi data confirms the importance of in-degree. On
the other hand, the growth of pβ results in Scale-Free net-
works with more skewed power-law in-degree distributions,
on which robustness scores suffer.

9.2 Real Data
To further validate our observations, we create graphs using
real-world movement data. We gathered movement records
from Baidu Map, covering Xuanwu District in Nanjing7 from
July 2019 to September 2019; these records comprise se-
quential Points of Interest (POIs) with timestamps, allow-
ing us to calculate the probability of transitioning between
POIs based on the Markovian assumption. Using these prob-
abilities, we construct graphs where nodes represent POIs
and edges express transition probabilities. Each graph cap-
tures a 7-day period, resulting in a total of 13 graphs. The
combined dataset features a total of 51 943 different nodes.
Out of practical considerations, we assign data-driven costs
to POIs based on their visit frequency and a fixed value:
c[x] = ⌊frequency(x)/25 + 50⌋. The initial and steps proba-
bilities follow the same default setup as the synthetic datasets.

Time and Performance. Preprecessing the Xuanwu
dataset where n = 51 943 and |Π| = 13 takes 118 seconds.
Figure 5 shows how the running time and robustness scores
vary as the budget grows. DP-RRP is the most time-
consuming, followed by Ψ-Saturate, while BWS emerges as
the most time-efficient solution. Interestingly, the robustness

7https://en.wikipedia.org/wiki/Nanjing
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Figure 5: Time and robustness score vs. L on the Xuanwu dataset.

score does not follow a clear upward trend vs. budget with
these real-world data; after all, the objective of Equation (4)
is not a monotonic function of budget; while a higher budget
allows for more flexibility in allocating resources, it also
allows the optimal reward to grow correspondingly. Nev-
ertheless, DP-RRP consistently outperforms all algorithms
across budget values, corroborating its capacity to uncover
high quality solutions even in hard scenarios, even while the
performance of Ψ-Saturate and other heuristics fluctuates.

10 Conclusions

We introduced the NP-hard problem of Robust Reward
Placement (RRP). Assuming an agent is moving on an un-
known Markov Mobility Model (MMM), sampled by a set
of Π candidates, RRP calls to select reward states within a
budget that maximize the worst-case ratio of the expected re-
ward (agent visits) over the optimal one. Having shown that
RRP is strongly inapproximable, we propose Ψ-Saturate, an
algorithm that achieves an ϵ-additive approximation by ex-
ceeding the budget constraint by a factor of O(ln |Π|/ϵ). We
also developed heuristics, most saliently one based on a dy-
namic programming algorithm. Our experimental analysis on
both synthetic and real-world data indicates the effectiveness
of Ψ-Saturate and the dynamic-programming-based solution.
In the future, we aim to examine the robust configuration of
agent-based content features [Ivanov et al., 2017] under a set
of adversarial mobility models.
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