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Abstract
In recent years, there has been growing interest in
utilizing modern machine learning techniques to
learn heuristic functions for forward search algo-
rithms. Despite this, there has been little theoretical
understanding of what they should learn, how to
train them, and why we do so. This lack of un-
derstanding has resulted in the adoption of diverse
training targets (suboptimal vs optimal costs vs ad-
missible heuristics) and loss functions (e.g., square
vs absolute errors) in the literature. In this work, we
focus on how to effectively utilize the information
provided by admissible heuristics in heuristic learn-
ing. We argue that learning from poly-time admis-
sible heuristics by minimizing mean square errors
(MSE) is not the correct approach, since its result is
merely a noisy, inadmissible copy of an efficiently
computable heuristic. Instead, we propose to model
the learned heuristic as a truncated gaussian, where
admissible heuristics are used not as training targets
but as lower bounds of this distribution. This results
in a different loss function from the MSE commonly
employed in the literature, which implicitly models
the learned heuristic as a gaussian distribution. We
conduct experiments where both MSE and our novel
loss function are applied to learning a heuristic from
optimal plan costs. Results show that our proposed
method converges faster during training and yields
better heuristics.

1 Introduction
Motivated by the success of Machine Learning (ML) ap-
proaches in various decision making tasks [Mnih et al., 2015;
Silver et al., 2016], an increasing number of papers are tack-
ling the problem of learning a heuristic function for forward
state space search in recent years. Despite this interest, there
has been little theoretical understanding of what these systems
should learn, how to train them and why we do so. As a result,
heuristic learning literature has adopted many different train-
ing targets (corresponding to either admissible heuristics [Shen
et al., 2020], suboptimal solution costs [Arfaee et al., 2011;
Ferber et al., 2022; Marom and Rosman, 2020] or optimal so-
lution costs [Ernandes and Gori, 2004; Shen et al., 2020]) and
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Figure 1: The probability density functions (PDFs) of Truncated
Gaussian distributions p(x) = T N (µ = 0, σ = 1, l, u) with several
lower/upper bounds (l, u). In the heuristic learning setting, x is the
optimal solution cost h∗ sampled from the dataset and µ = µθ(s)
is the prediction associated with a state s. The (l, u) = (0.2, 1.7)
variant (yellow) shows that the mean Ep(x)[x], which we use as the
search heuristic, respects the bounds (l, u) even when the predicted
µ = 0 lies outside (l, u).

training losses (e.g., square errors [Shen et al., 2020], abso-
lute errors [Ernandes and Gori, 2004] and piecewise absolute
errors [Takahashi et al., 2019]).

In this work, we try to answer these questions from a sta-
tistical lens, focusing on how to effectively utilize admissible
heuristics in the context of heuristic learning. We argue that
learning from poly-time admissible heuristics, such as hLMcut

[Helmert and Domshlak, 2009], by minimizing mean square
errors (MSE) does not provide any practical benefits, since its
result is merely a noisy, inadmissible copy of a heuristic that
is already efficient to compute. Then, if admissible heuristics
should not be used as training targets, how can we leverage
them? In order to answer this question, we first analyze the
statistical implications behind the commonly used loss func-
tion, the MSE, which implicitly models the learned heuristic
as a Gaussian distribution. Nonetheless, we contend that a
better modeling choice for heuristics is given by the Truncated
Gaussian distribution (Fig. 1), due to the existence of bounds
on the values a heuristic can take (e.g., heuristics never take
on negative values).

The main contribution of this paper is a theoretically-
motivated, statistical method for learning an inadmissible
heuristic while exploiting an admissible heuristic. We pro-
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Figure 2: Comparison of the training curve (x-axis: training step)
for the validation MSE loss (y-axis, logarithmic) between Gaussian
(orange) and Truncated Gaussian (blue) models, independent runs
recorded on 5 random seeds each. The losses converge faster for the
latter due to the additional information provided by the admissible
lower bound l = hLMcut.

pose to model the learned heuristic as a Truncated Gaussian,
where an admissible heuristic provides the lower bound of
this distribution, thus constraining heuristic predictions. This
modeling choice results in a loss function to be minimized
that is different from the standard MSE loss. We conduct
extensive experimentation where both loss functions are ap-
plied to learning heuristics from optimal plan costs in several
classical planning domains. Results show that those methods
which model the learned heuristic as a Truncated Gaussian,
i.e., which are trained with our novel loss function, learn faster
and result in better heuristics than those which model it as an
ordinary Gaussian, i.e., which are trained with the standard
MSE loss. To the best of our knowledge, this is the first work
that proposes the use of admissible heuristics to constrain
heuristic predictions and improve learning.1

2 Backgrounds
2.1 Classical Planning and Heuristics
We define a propositional STRIPS Planning problem as
a 4-tuple ⟨P,A, I,G⟩ where P is a set of propositional
variables, A is a set of actions, I ⊆ P is the initial
state, and G ⊆ P is a goal condition. Each action a ∈
A is a 4-tuple ⟨PRE(a), ADD(a), DEL(a), COST(a)⟩ where
COST(a) ∈ Z0+ is a cost, PRE(a) ⊆ P is a precondition and
ADD(a), DEL(a) ⊆ P are the add-effects and delete-effects,
respectively. A state s ⊆ P is a set of true propositions (all of
P \ s are false), an action a is applicable when s ⊇ PRE(a)
(read: s satisfies PRE(a)), and applying action a to s yields a
new successor state a(s) = (s \ DEL(a)) ∪ ADD(a).

The task of classical planning is to find a sequence of actions
called a plan (a1, · · · , an) where, for 1 ≤ t ≤ n, s0 = I ,
st ⊇ PRE(at+1), st+1 = at+1(st), and sn ⊇ G. A plan is
optimal if there is no plan with lower cost-to-go

∑
t COST(at).

A plan is otherwise called satisficing. In this paper, we assume
unit-cost: ∀a ∈ A; COST(a) = 1.

1Our full code and data can be found in github.com/pddl-heuristic-
learning/pddlsl. We provide the Appendix in the Arxiv version of our
paper: arxiv.org/abs/2308.11905.

A domain-independent heuristic function h in classical plan-
ning is a function of a state s and the problem ⟨P,A, I,G⟩. It
returns an estimate of the shortest (optimal) path cost from
s to one of the goal states (states that satisfy G), typically
through a symbolic, non-statistical means such as delete-
relaxation, a technique that ignores the delete-effects of ac-
tions in order to efficiently estimate the cost from s to G.
The optimal cost-to-go, or a perfect heuristic, is denoted by
h∗. A heuristic is called admissible if it never overestimates
it, i.e., ∀s; 0 ≤ h(s) ≤ h∗(s), and inadmissible otherwise.
Notable admissible heuristics include hLMcut, hmax and h+

[Helmert and Domshlak, 2009; Bonet and Geffner, 2001;
Betz and Helmert, 2009], whereas hFF, hadd and hGC

[Hoffmann and Nebel, 2001; Bonet and Geffner, 2001;
Fikes et al., 1972] are prominent examples of inadmissible
heuristics.

2.2 Task: Supervised Learning for Heuristics
Let p∗(x) be the unknown ground-truth probability distribution
of (an) observable random variable(s) x and let p(x) be our
current estimate of it. Given a dataset X =

{
x(1), . . . , x(N)

}
of N data points, we denote an empirical data distribution as
q(x), which draws samples from X uniformly. While often
q(x) may also be informally called a ground-truth distribution,
q(x) is entirely different from either p(x) or p∗(x) because
it is a distribution over a finite set of points, i.e., a uniform
mixture of dirac’s delta δ distributions (Eq. 1). Our goal is
to obtain an estimate p(x) that resembles p∗(x) as closely as
possible. To do so, under the Maximum Likelihood Estimation
(MLE) framework, we maximize the expectation of p(x) over
q(x). In other words, MLE tries to maximize the expected
probability p(x) of observing each data point x ∼ q(x):

q(x) =
∑

i

q(x|i)q(i) =
N∑
i=1

δ(x = x(i)) · 1

N
(1)

p∗(x) = argmax
p

Eq(x)p(x)

= argmin
p

Eq(x) − log p(x) (2)

Typically, we assume p∗(x) and p(x) are of the same family of
functions parameterized by θ, such as a set of neural network
weights or the trees in random forests, i.e., p∗(x) = pθ∗(x),
p(x) = pθ(x). This makes MLE a problem of finding the θ
maximizing Eq(x)pθ(x). Also, we typically minimize a loss
such as the negative log likelihood (NLL) − log p(x), since log
is monotonic and preserves the optima θ∗ (Eq. 2). Furthermore,
Eq(x) . . . is often estimated by Monte-Carlo sampling, e.g.,
Eq(x) − log p(x) ≈ 1

N

∑N
i=1 − log p(xi), where each xi is

sampled from q(x).
We further assume p(x) to follow a specific distribution

such as a Gaussian distribution N (µ, σ):

p(x) = N (x | µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2 . (3)

We emphasize that the choice of the distribution determines
the loss. When the model designer assumes p(x) = N (µ, σ),
then the NLL is a shifted and scaled squared error:

− log p(x) = (x−µ)2

2σ2 + log
√
2πσ2. (4)
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Likewise, a Laplace distribution L(x|µ, b) = 1
2be

− |x−µ|
b repre-

sents the absolute error because its NLL is |x−µ|
b + log 2b.

The NLL loss is thus more fundamental and theoretically
grounded than losses such as the Mean Squared Error, al-
though it is “more complicated” due to the division 1

2σ2 and
the second term. A reader unfamiliar with statistics may right-
fully question why such complications are necessary or why σ
is not commonly used by the existing literature. It is because
many applications happen to require only a single prediction
for a single input (point estimate): When we model the output
distribution as a Gaussian N (µ, σ), we often predict µ, which
is simultaneously the mean and the mode of the distribution
and does not depend on σ.

Moreover, the MSE is a special case of the NLL that can be
derived from it. To derive the MSE, we first simplify the loss
into the squared error (x−µ)2 by setting σ to an arbitrary con-
stant, such as σ = 1√

2
, because the variance/spread of the pre-

diction does not matter in a point estimation of µ. As a result,
we can also ignore the second term which is now a constant.
We then compute the expectation Eq(x)(x − µ)2 with a Monte-
Carlo estimate that samples N data points x1, . . . xN ∼ q(x),
predict µ = µθ(xi) for each xi using a machine learning
model µθ, and compute the average: 1

N

∑N
i=1(xi − µθ(xi))

2.
In other words, the MSE loss is nothing more than the
Monte-Carlo estimate of the NLL loss of a Gaussian with
a fixed σ = 1√

2
. In contrast, distributional estimates repre-

sent the entire p(x); e.g., if p(x) = N (µ, σ), then the model
predicts both µ and σ.

The MLE framework can be applied to the supervised
heuristic learning setting as follows. Let q(s, x) be the empiri-
cal data distribution, where s is a random variable representing
a state-goal pair (from now on, we will implicitly assume
that states s also contain goal information) and x a random
variable representing the cost-to-go (regardless of whether
it corresponds to a heuristic estimate, optimal or suboptimal
cost). Then, the goal is to learn p∗(x | s) where:

p∗(x | s) = argmax
θ

Eq(s,x)pθ(x|s), (5)

pθ(x | s) = N (x | µ = µθ(s), σ = 1√
2
), (6)

and µθ(s) is the main body of the learned model, such as a
neural network parameterized by the weights θ. Supervised
heuristic learning with distributional estimates is formalized
similarly, where the only difference is that an additional model
(e.g. a neural network) with parameters θ2 predicts σ:

p(θ1,θ2)(x | s) = N (x | µ = µθ1(s), σ = σθ2(s)). (7)

2.3 The Principle of Maximum Entropy
The discussion above models p(x) as a Gaussian distribution.
While the assumption of normality (i.e., following a Gaussian)
is ubiquitous, one must be able to justify such an assumption.
The principle of maximum entropy [Jaynes, 1957] states that
p(x) should be modeled as the maximum entropy (max-ent)
distribution among all those that satisfy our constraints or as-
sumptions, where the entropy is defined as Ep(x)⟨− log p(x)⟩.
A set of constraints defines its corresponding max-ent distri-
bution which, being the most random among those that satisfy

those constraints, minimizes assumptions other than those as-
sociated with the given constraints. Conversely, a non max-ent
distribution implicitly encodes additional or different assump-
tions that can result in an accidental, potentially harmful bias.
For example, if we believe that our random variable x has a
finite mean, a finite variance and a support/domain/range equal
to R, then it must be modeled as a Gaussian distribution ac-
cording to this principle because it is the max-ent distribution
among all those that satisfy these three constraints.

In other words, a person designing a loss function of a
machine learning model must devise a reasonable set of con-
straints on the target variable x to identify the max-ent distri-
bution p(x) of the constraints, which automatically determines
the correct NLL loss for the model. This paper tries to follow
this principle as faithfully as possible.

3 Utilizing Bounds for Learning
In the previous section, we provided some statistical back-
ground on heuristic learning. We now leverage this back-
ground to analyze many of the decisions taken in the existing
literature, sometimes unknowingly, putting particular focus
on how admissible heuristics are used during training. Based
on this analysis, we argue that the proper way of utilizing
the information provided by admissible heuristics is using
them as the lower bound of a Truncated Gaussian distribution
representing the learned heuristic.

We previously explained that the heuristic to be learned
is modeled as a probability distribution (e.g., a Gaussian),
instead of a single value: The ML model is unsure about the
true heuristic value h∗ associated with a state s. When it
predicts µ, it believes not only that µ is the most likely value
(the mode) for h∗, but also that other values are still possible.
The uncertainty of this prediction is given by σ: The larger this
parameter is, the more unsure the model is about its prediction.
The commonly used MSE loss is derived from the ad-hoc
assumption that σ is fixed, i.e., independent from s, which
means that the model is equally certain (or uncertain) about
h∗ for every state s. This is unrealistic in most scenarios: it is
generally more difficult to accurately predict h∗ for states that
are further from the goal, for which the uncertainty should be
larger. Therefore, the model should predict σ in addition to µ,
i.e., it should output a distributional estimate of h∗ instead of
a point estimate.

Another crucial decision involves selecting what to learn,
i.e., the target / ground truth to use for the training. It is easy
to see that training a model on a dataset containing a practical
(i.e., computable in polynomial time) heuristic, admissible
or otherwise, such as hLMcut or hFF, does not provide any
practical benefits because, even if the training is successful,
all we get is a noisy, lossy, slow copy of a heuristic that is
already efficient to compute. Worse, trained models always
lose admissibility if the target is admissible. To outperform
existing poly-time heuristics, i.e., achieve a super-symbolic
benefit from learning, it is imperative to train the model on
data of a better quality, such as h+ as proposed in [Shen et
al., 2020] or optimal solution costs h∗. Although obtaining
these datasets may prove computationally expensive in prac-
tice, e.g., h+ is NP-hard, we can aspire to learn a heuristic

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6763



that outperforms the poly-time heuristics by training on these
targets.

If poly-time admissible heuristics are not ideal training tar-
gets, are they completely useless for learning a heuristic? Intu-
itively this should not be the case, given the huge success of
heuristic search where they provide a strong search guidance
toward the goal. Our main question is then how we should
exploit the information they provide. To answer this question,
we must revise the assumption we previously made by using
squared errors: That x = h∗ follows a Gaussian distribution
N (µ, σ). The issue with this assumption is that N (µ, σ) as-
signs a non-zero probability p(x) to every x ∈ R, but we
actually know that h∗ cannot take some values: Given some
admissible heuristic like hLMcut, we know that hLMcut ≤ h∗

holds for every state; therefore p(x) = 0 when x < hLMcut.
Analogously, if for some state s we know the cost hsat of a
satisficing (non-optimal) plan from s to the goal, then hsat

acts as an upper bound of h∗.
According to the principle of maximum entropy, which

serves as our why, if we have a lower l and upper u bound for
h∗, then we should model h∗ using the max-ent distribution
with finite mean, finite variance, and a support equal to (l, u),
which is the Truncated Gaussian distribution T N (x|µ, σ, l, u)
as proven in [Dowson and Wragg, 1973], formalized as Eq. 8:

T N (x|µ, σ, l, u) =

{
1
σ

ϕ( x−µ
σ )

Φ(u−µ
σ )−Φ( l−µ

σ )
l ≤ x ≤ u

0 otherwise,
(8)

where ϕ(x) = 1√
2π

exp x2
2 , Φ(x) =

1
2 (1 + ERF(x)),

l is the lower bound, u is the upper bound, µ is the pre-
truncation mean, σ is the pre-truncation standard deviation,
and ERF is the error function. T N has the following NLL
loss:

− log T N (x|µ, σ, l, u) = (x − µ)2

2σ2
+ log

√
2πσ2 (9)

+ log
(
Φ
(
u−µ
σ

)
− Φ

(
l−µ
σ

))
.

Modeling h∗ as a T N instead of N presents several advan-
tages. Firstly, T N constrains heuristic predictions to lie in the
range (l, u) given by the bounds of the distribution. Secondly,
T N generalizes N as T N (µ, σ,−∞,∞) = N (µ, σ) when
no bounds are provided. Finally, T N opens the possibility
for a variety of training scenarios for heuristic learning, with
a sensible interpretation of each type of data, including the
satisficing solution costs.

In this work, we focus on the scenario where an admissi-
ble heuristic h is provided along with the optimal solution
cost h∗ for each state, leaving other settings for future work.
In this case, h acts as the lower bound l of h∗, which is
modeled as a T N (x = h∗|µ, σ, h,∞), where µ and σ are
predicted by an ML model. Note that we cannot use h∗ as
T N (h∗|µ, σ, h∗, h∗) since, during evaluation/test time, we
do not have access to the optimal cost h∗. Also, this mod-
eling decision is feasible even when no admissible heuris-
tic is available (e.g., when the PDDL description of the en-
vironment is not known, as in Atari games [Bellemare et
al., 2013]) since we can always resort to the blind heuristic

hblind(s) or simply do l = 0, which still results in a tighter
bound than the one provided by an untruncated Gaussian
N (µ, σ) = T N (µ, σ,−∞,∞).

Finally, our setting is orthogonal and compatible with resid-
ual learning [Yoon et al., 2008], where the ML model does
not directly predict µ but rather a residual or offset ∆µ over
a heuristic h, where µ = h +∆µ. Residual learning can be
seen as initializing the model output µ around h which, when
h is a good unbiased estimator of h∗, facilitates learning. This
technique can be used regardless of whether h∗ is modeled
as a T N or N because it merely corresponds to a particular
implementation of µ = µθ(s), which is used by both distribu-
tions. Residual learning is analogous to the data normalization
commonly applied in standard regression tasks, where fea-
tures are rescaled and shifted to have mean 0 and variance 1.
However, residual learning is superior in the heuristic learning
setting because target data (e.g., h∗) is skewed above 0 and
because the heuristic used as the basis for the residual can
handle out-of-distribution data due to its symbolic nature.

3.1 Planning with a Truncated Gaussian
At planning time, we must obtain a point estimate of the output
distribution, which will be used as a heuristic to determine the
ordering between search nodes. As a point estimate, we can
use any statistic of central tendency, thus we choose the mean.
It is important to note that the µ parameter of T N (µ, σ, l, u)
is not the mean of this distribution since µ corresponds to
the mean of N (µ, σ) (i.e., the mean of the distribution before
truncation) and does not necessarily lie in the interval (l, u).
The mean of a Truncated Gaussian is obtained according to
Eq. 10. Note that a naive implementation of this formula
results in rounding errors (See the Appendix for a numerically
stable implementation).

E[x] = µ+ σ
ϕ( l−µ

σ )− ϕ(u−µ
σ )

Φ(u−µ
σ )− Φ( l−µ

σ )
(10)

Eq. 10 satisfies l ≤ E[x] ≤ u. This means that, when a
lower bound l is provided (e.g., by an admissible heuristic),
the heuristic prediction returned by the model will never be
smaller than l. Analogously, when an upper bound u is also
provided (e.g., by a satisficing solution cost), the model will
never predict a heuristic value larger than u. With this, we hope
that the use of a T N during planning helps the model make
predictions that are closer to h∗ than the bounds themselves,
potentially helping it achieve a super-symbolic improvement
over admissible heuristics.

In contrast, the mode argmaxx p(x) of T N is uninterest-
ing: While we could use it as another point estimate, it is
the same as the untruncated mean µ when the predicted µ is
within the bounds, and equal to one of the upper/lower bounds
otherwise (see Fig. 1). However, this inspires a naive alterna-
tive that is applicable even to N , which is to clip the heuristic
prediction E[x] (equal to µ for N ) to the interval [l, u]. We
expect only a marginal gain from this trick because it only
improves really bad predictions, i.e., those which would lie
outside [l, u] otherwise, and does not affect predictions that
correctly lie inside [l, u]. In our experiments, we show that
this approach is inferior to our first method.
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We re-emphasize that despite the use of admissible heuris-
tics during training the learned heuristic is inadmissible, just
like any learning-based heuristics proposed so far. In case a
distributional estimate is used, i.e., when the ML model also
learns to predict σ, we could discuss likely-admissibility [Er-
nandes and Gori, 2004; Marom and Rosman, 2020]. However,
this extension is left for future work.

4 Experimental Evaluation
We evaluate the effectiveness of our new loss function under
the domain-specific generalization setting, where the learned
heuristic function is required to generalize across different
problems of a single domain. Due to space limitations, we
focus on the high-level descriptions and describe the detailed
configurations in the Appendix.
Data Generation. We trained our system on four classi-
cal planning domains: blocksworld-4ops, ferry, gripper, and
visitall. Using PDDL domains as benchmarks for evaluating
planning performance is a standard practice, as exemplified
by the International Planning Competitions (IPCs) [Vallati
et al., 2015]. For each domain, we generated three sets of
problem instances (train, validation, test) with parameterized
generators used in the IPCs. We provided between 456 and
1536 instances for training (the variation is due to the differ-
ence in the number of generator parameters in each domain),
between 132 and 384 instances for validation and testing (as
separate sets), and 100 instances sampled from the test set for
planning. The Appendix describes the domains and generator
parameters. Notably, the test instances are generated with
larger parameters in order to assess the generalization capabil-
ity. To generate the dataset from these instances, we optimally
solved each instance with A∗ [Hart et al., 1968] and hLMcut

in Fast Downward [Helmert, 2006] under 5min runtime / 8GB
memory (train,val) and 30min runtime / 8GB memory (test).
Whenever it failed to solve a instance within the limits, we
retried generation with a different random seed for a maximum
of 20 times until success, thus ensuring a specified number of
instances were generated. We also discarded trivial instances
that satisfied the goal conditions at the initial state. For each
state s in the optimal plan, we archived h∗ and the values of
several heuristics (e.g., hLMcut and hFF). Therefore, each
instance was used to obtain several data points.
Model Configurations. We evaluated three different ML
methods to show that our statistical model is implementation-
agnostic. Neural Logic Machine (NLM) [Dong et al., 2019] is
an architecture designed for inductive learning and reasoning
over symbolic data which has been successfully applied to
classical planning domains for learning heuristic functions
[Gehring et al., 2022] with Reinforcement Learning (RL)
[Sutton and Barto, 2018]. STRIPS-HGN [Shen et al., 2020,
HGN for short] is another architecture based on the notion
of hypergraphs. Lastly, we used linear regression with the
hand-crafted features proposed in [Gomoluch et al., 2017],
which comprise the goal-count [Fikes et al., 1972] and FF
[Hoffmann and Nebel, 2001] heuristics, along with the total
and mean number of effects ignored by FF’s relaxed plan.

We analyze our learning & planning system from several
orthogonal axes. Gaussian vs. Truncated: Using µ(s) as the

parameter of a Gaussian N (µ(s), σ(s)) or Truncated Gaussian
T N (µ(s), σ(s), l,∞) distribution. Learned vs. fixed sigma:
Predicting σ(s) or using a constant value σ(s) = 1√

2
, as it

is done for the MSE loss. Lower bounds: Computing the
lower bound l with the hLMcut heuristic. When we use a
Gaussian distribution, l is used to clip the heuristic prediction
E[x] = µ(s) to the interval [l,∞). Ablation studies with
l = hmax(s) [Bonet and Geffner, 2001] and l = hblind(s) are
included in the Appendix. Residual learning: Either using
the model to directly predict µ(s) or to predict an offset ∆µ(s)
over a heuristic h(s), so that µ(s) = ∆µ(s) + h(s). We use
h = hFF as our unbiased estimator of h∗, as proposed in
[Yoon et al., 2008]. In the Appendix, we conduct experiments
with hLMcut as the basis of the residual.
Training. We trained each configuration with 5 different
random seeds on a training dataset that consists of 400 problem
instances subsampled from the entire training problem set
(456-1536 instances, depending on the domain). Due to the
nature of the dataset, these 400 problem instances can result
in a different number of data points depending on the length
of the optimal plan of each instance. We performed 4× 104

weight updates (training steps) using AdamW [Loshchilov and
Hutter, 2017] with batch size 256, weight decay 10−2 to avoid
overfitting, gradient clip 0.1, learning rate of 10−2 for the
linear regression and NLM, and 10−3 for HGN. All models
use the NLL loss for training, motivated by the theory, but note
that the NLL of N (µ, σ = 1/

√
2) matches the MSE up to a

constant, as previously noted. For each model, we saved the
weights that resulted in the best validation MSE metric during
the training. On a single NVIDIA Tesla V100, each NLM
training took ≈ 0.5 hrs except in visitall (≈ 2 hrs). HGN was
much slower (≈ 3 hrs except ≈ 15 hrs in blocksworld). Linear
models trained much faster (12-20 minutes).
Evaluation Scheme. We first report two different metrics
on the test set: “MSE” and “MSE+clip”. Here, MSE is the
mean square error between h∗(si) and h(si) = E[x], i.e.,
1
N

∑N
i=1(h(si)− h∗(si))

2, for i-th state si of N states in the
test dataset. E[x] of T N is given by Eq. 10 while E[x] of N
is simply µ. “+clip” variants are exclusive to N and they clip
µ to l, i.e., use max(µ, l) in place of µ to compute the MSE.
We also obtained the MSE for h = hFF and h = hLMcut.

We then evaluate the planning performance using the point
estimate provided by each model as a heuristic function to
guide a search algorithm. Since the learned heuristic is inad-
missible, we evaluate our heuristics in an agile search setting,
where Greedy Best-First Search [Bonet and Geffner, 1999,
GBFS] is the standard algorithm. We do not use A∗ because it
does not guarantee finding the optimal (shortest) plan [Russell
and Norvig, 2010] with inadmissible heuristics and it is slower
than GBFS in the agile search as it must explore all nodes
below the current best f = g + h value, which is unnecessary
for finding a satisficing solution. In our experiments, we eval-
uate search performance as the combination of the number
of solved instances and the number of heuristic evaluations
required to solve each instance, with a limit of 10000 evalua-
tions per problem. We do not use runtime as our metric so that
results are independent of the hardware and software configu-
ration. Additionally, we evaluated GBFS with the off-the-shelf
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hFF heuristic as a baseline. The planning component is based
on Pyperplan [Alkhazraji et al., 2020].

4.1 Heuristic Accuracy Evaluations
We focus on the results obtained by the NLM models, as our
conclusions from the Linear and the HGN models (See Ap-
pendix) were not substantially different. Table 1 shows the
MSE metric of the heuristics obtained by different configura-
tions evaluated on the test instances (which are significantly
larger than the training instances). Compared to the mod-
els trained with the NLL loss of N , those trained with our
proposed T N loss often result in significantly more accu-
rate heuristics. For example, in ferry and gripper, some N
models completely fail to learn a useful heuristic, as shown
by the large heuristic errors (e.g., the base N /fixed/none
model on ferry obtains an MSE of 118.59). In these situa-
tions, the clipping trick often reduces errors significantly (e.g.,
the N + clip/fixed/none model on the same domain obtains
an MSE of 10.50). However, this simply indicates that the
N models are falling back to the hLMcut heuristic for those
(many) predictions which are smaller than hLMcut. This is
why, even with clipping, N models fail to match the accu-
racy of T N models in many cases: For example, the MSE of
N+clip/learn/none on gripper is 7.7 points larger than the one
of T N /learn/none. This confirms our hypothesis that admis-
sible heuristics such as hLMcut should be used as the lower
bound of T N , instead of simply to perform post-hoc clipping
of heuristic predictions.

Additional detailed observations follow. First, T N tends
to converge faster during training, as shown in Fig. 2. Second,
residual learning often improves accuracy considerably, thus
proving to be an effective way of utilizing inadmissible heuris-
tics. Third, we observed that the trained heuristics, including
those that use residual learning from hFF, tend to be more
accurate than hFF. This rejects the hypothesis that residual
learning is simply copying hFF values. Fourth, learning σ
helps T N exclusively. For every N and T N model, Table 1
contains 2 comparisons related to σ (learn/none vs. fixed/none
and learn/hFF vs. fixed/hFF) across 4 domains, resulting in a
total of 8 comparisons. Out of 8, learning σ degrades the MSE
of N in 5 cases, while it improves the MSE of T N in 7 cases.
This happens because σ affects the expected value E[x] of T N
used as the heuristic prediction but it does not for N . In other
words, T N models requires both µ and σ in order to achieve
good heuristic accuracy. This explains why T N /fixed/hFF is
not as competitive as N /fixed/hFF: fixed/hFF is an ill-defined
configuration for T N .

4.2 Search Performance Evaluations
We compared the search performance of GBFS using heuris-
tic functions obtained by the different models as well as the
State-of-the-Art off-the-shelf hFF heuristic. We included our
proposed learn/hFF configuration and the baseline fixed/none
configuration. Results for learn/none and fixed/hFF can be
found in the Appendix. Table 2 shows the average±stdev of
the ratio of problem instances solved (i.e., coverage), where
a value of 1 means all instances are solved, and the average
number of node evaluations per problem over 5 seeds. The

second metric is introduced to differentiate between methods
that solve most or all of the instances.

We observed that, with our proposed learn/hFF configura-
tion, the learned heuristics significantly outperform the off-
the-shelf hFF heuristic. Additionally, T N outperforms N
and N+clip in every domain when both the ratio of solved
instances and number of node evaluations are considered (the
second metric is used to break ties in the first one).

Conversely, with the traditional but less ideal fixed/none
configuration, several learned heuristics are surpassed by hFF

and, also, T N is outperformed by N or N+clip in some cases.
These results align with those shown in Table 1. Firstly, N
models which do not use clipping sometimes learn dismal
heuristics (e.g., in gripper, N /fixed/none fails to solve any
instance). Secondly, T N models need to predict σ (in addition
to µ) in order to learn heuristics of good quality.

5 Related Work
Using admissible heuristics as lower bounds of a T N dis-
tribution may appear trivial in the hindsight. Existing work
use T N for machine learning most often in the context of
safety-aware planning, where the upper/lower bounds are arbi-
trary constraints imposed by the environment or by a domain
expert. For example, [Murray et al., 2023] uses T N to model
a Simple Temporal Network with Uncertainty (STNU) which
can model a distribution of time within a specific start time /
deadline. [Eisen et al., 2019] uses T N to optimize wireless
device allocations, where the truncation encodes the range
of signal power. In robotics, T N is often used to limit the
measurement uncertainty [Kamran et al., 2021].

In contrast, the admissible heuristics used as lower bounds
in our work are formal bounds automatically proved by sym-
bolic algorithms. For example, hLMcut is computed by deriv-
ing a so-called landmark graph, and then reducing the costs on
the edges that constitute a cut of the graph. To our knowledge,
our work is the first to show that such formally derived bounds
for combinatorial tasks can be combined with T N .

For instance, in applications of machine learning to Op-
erations Research problems (e.g., Vehicle Routing Problem,
TSP), existing work often tries to learn to solve them without
the help of heuristics [Nazari et al., 2018]. Although [Xin et
al., 2021] uses the optimal solution obtained by a traditional
optimal method (e.g. Concorde solver) for training and com-
bines it with existing admissible heuristics (LKH heuristic)
during testing, it does not use the heuristic for training.

In the context of heuristic learning in automated planning,
off-the-shelf heuristics have only been used as a training target
[Shen et al., 2020], or as a residual basis [Yoon et al., 2008].

In RL [Sutton and Barto, 2018], it is a common practice
to accelerate the training through reward shaping, which is
theoretically equivalent to residual learning [Ng et al., 1999].
An extension of reward shaping [Cheng et al., 2021] utilizes
hand-crafted heuristics. [Gehring et al., 2022] used hFF to
shape rewards for classical planning. However, to our knowl-
edge, none has leveraged admissible heuristics as lower/upper
bounds. [Cheng et al., 2021] also discussed the pessimistic
and admissible heuristics as desirable properties of RL and
planning heuristics, but their method does not explicitly use
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learn/hFF learn/none fixed/hFF fixed/none

domain metric hFF hLMcut N T N N T N N T N N T N
blocks MSE 22.8 25.06 .76±.1 .65±.1 3.26±.6 2.71±.4 .83±.1 .66±.1 2.97±.9 2.44±.3

+clip .76±.2 2.91±.4 .83±.2 2.74±.6

ferry MSE 9.77 11.10 3.73±.7 3.45±.8 141.05±29.4 8.63±2.7 2.98±1.4 3.85±.9 118.59±10.4 9.58±1.5
+clip 3.72±.6 10.44±28.4 2.98±1.1 10.50±9.6

gripper MSE 9.93 15.82 3.65±.9 3.70±.9 68.12±16.0 5.65±1.3 3.69±.9 3.72±.9 68.22±16.1 11.97±2.2
+clip 3.65±.7 13.37±15.2 3.69±.8 13.38±14.5

visitall MSE 13.9 36.4 7.67±.4 5.30±.6 25.31±7.9 9.70±1.6 6.49±.6 6.62±.9 21.71±2.6 14.11±1.0
+clip 7.60±.4 18.79±7.3 6.35±.6 16.38±2.3

Table 1: Test metrics for NLM (smaller the better). Each number represents the mean±std of 5 random seeds. For each configuration, we
performed 104 training steps, saving the checkpoints with the best validation MSE metric. We tested several orthogonal configurations: 1)
Learning σ (learn) or fixing it to 1√

2
(fixed) and 2) Using residual learning (hFF) or not (none). For each configuration, we compare the test

MSE metric of the Gaussian (N ) and Truncated Gaussian (T N ) models. Rows labeled as +clip denote a N model where µ is clipped above
hLMcut. For each configuration, the best average MSE among N , N+clip, and T N is highlighted in bold, if the value gap to the second-best
is larger than 0.1. Results for linear regression and STRIPS-HGN models are provided in the Appendix.

learn/hFF (proposed) fixed/none (baseline)
domain hFF N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher the better)

blocks .13 .84±.19 .85±.19 .88±.14 .79±.29 .50±.35 .55±.33
ferry .82 .91±.19 .91±.19 .98±.05 .01±.01 .57±.10 .58±.13
gripper .96 1 1 1 0 .92±.12 1
visitall .86 .97±.07 .98±.06 .98±.05 .82±.33 1 1

Average node evaluations (smaller the better)

blocks 9309 2690±2128 2681±2121 2060±1607 4118±2663 6268±2675 5903±2685
ferry 5152 3216±1964 3117±1967 2477±1093 9933±92 6675±582 6475±725
gripper 3918 1642±139 1643±141 1637±492 10000±0 2941±1513 1709±658
visitall 3321 2156±1451 2148±1511 1683±1290 3384±3448 591±216 612±363

Table 2: Planning results on NLM weights saved according to the best validation MSE metric, comparing the average±stdev of the ratio of
solved instances under 104 node evaluations and the average number of evaluated nodes across problems. The number of evaluated nodes is
counted as 104 on instances the planner failed to solve. For each configuration (learn/hFF or fixed/none), we highlight the best results in bold.

the upper/lower bound property for training.

6 Conclusion and Future Work
In this paper, we studied the problem of supervised heuristic
learning under a statistical lens, focusing on how to effec-
tively utilize the information provided by admissible heuristics.
Firstly, we provided some statistical background on heuris-
tic learning which was later leveraged to analyze the deci-
sions made (sometimes unknowingly) in the literature. We
explained how the commonly used MSE loss implicitly mod-
els the heuristic to be learned as a Gaussian distribution. Then,
we argued that this heuristic should instead be modeled as a
Truncated Gaussian, where admissible heuristics are used as
the lower bound of the distribution. We conducted extensive
experimentation, comparing the heuristics learned with our
truncated-based statistical model versus those learned by mini-
mizing squared errors. Results show that our proposed method
improves convergence speed during training and yields more
accurate heuristics that result in better planning performance,

thus confirming that it is the correct approach for utilizing
admissible bounds in heuristic learning.

Our findings serve to answer the three important questions
we raised in the introduction: What should the model learn?
To achieve super-symbolic benefits, we should use expensive
metrics such as h∗, not poly-time heuristics or sub-optimal
plan costs. How should we train the model? We maximize
the likelihood of the observed h∗ assuming a Truncated Gaus-
sian distribution lower bounded by an admissible heuristic.
Why so? The principle of maximum entropy: the Truncated
Gaussian distribution encodes our prior knowledge without
any extra assumptions that may cause harmful bias.

In future work, we will extend our proposed method to other
learning settings. One interesting scenario is given by iterative
search algorithms [Richter et al., 2010; Richter et al., 2011],
where the cost of the best solution found so far could be used
as the upper bound of a Truncated Gaussian. Another avenue
for future work is to explore the RL setting where a value
function is learned instead of a heuristic, extending the work
on residual learning for RL [Gehring et al., 2022].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6767



Acknowledgements
This work has been partially funded by the Grant
PID2022-142976OB-I00, funded by MICIU/AEI/
10.13039/501100011033 and by “ERDF/EU”, as well
as the Andalusian Regional predoctoral grant no. 21-111-
PREDOC-0039 and by “ESF Investing in your future”.

References
[Alkhazraji et al., 2020] Yusra Alkhazraji, Matthias Frorath,
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Thiébaux. Learning domain-independent planning heuris-
tics with hypergraph networks. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), volume 30, pages 574–584, 2020.

[Silver et al., 2016] David Silver, Aja Huang, Chris J. Maddi-
son, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Tim-
othy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[Takahashi et al., 2019] Takeshi Takahashi, He Sun, Dong
Tian, and Yebin Wang. Learning heuristic functions for
mobile robot path planning using deep neural networks.
In Proc. of the International Conference on Automated
Planning and Scheduling (ICAPS), volume 29, pages 764–
772, 2019.

[Vallati et al., 2015] Mauro Vallati, Lukás Chrpa, Marek
Grzes, Thomas Leo McCluskey, Mark Roberts, and Scott
Sanner. The 2014 international planning competition:
Progress and trends. AI Magazine, 36(3):90–98, 2015.

[Xin et al., 2021] Liang Xin, Wen Song, Zhiguang Cao, and
Jie Zhang. NeuroLKH: Combining Deep Learning Model
with Lin-Kernighan-Helsgaun Heuristic for Solving the
Traveling Salesman Problem. Proc. of the Advances in
Neural Information Processing Systems (Neurips), 34:7472–
7483, 2021.

[Yoon et al., 2008] Sungwook Yoon, Alan Fern, and Robert
Givan. Learning control knowledge for forward search plan-
ning. J. Mach. Learn. Res.(JMLR), 9(4):683–718, 2008.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6769


	Introduction
	Backgrounds
	Classical Planning and Heuristics
	Task: Supervised Learning for Heuristics
	The Principle of Maximum Entropy

	Utilizing Bounds for Learning
	Planning with a Truncated Gaussian

	Experimental Evaluation
	Heuristic Accuracy Evaluations
	Search Performance Evaluations

	Related Work
	Conclusion and Future Work

