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Abstract
General policies represent reactive strategies for
solving large families of planning problems like
the infinite collection of solvable instances from a
given domain. Methods for learning such policies
from a collection of small training instances have
been developed successfully for classical domains.
In this work, we extend the formulations and the re-
sulting combinatorial methods for learning general
policies over fully observable, non-deterministic
(FOND) domains. We also evaluate the resulting
approach experimentally over a number of bench-
mark domains in FOND planning, present the gen-
eral policies that result in some of these domains,
and prove their correctness. The method for learn-
ing general policies for FOND planning can ac-
tually be seen as an alternative FOND planning
method that searches for solutions, not in the given
state space but in an abstract space defined by fea-
tures that must be learned as well.

1 Introduction
General policies express reactive strategies for solving large
families of planning problems such as all Blocks world prob-
lems [Srivastava et al., 2008; Hu and De Giacomo, 2011;
Belle and Levesque, 2016; Bonet and Geffner, 2018; Illanes
and McIlraith, 2019; Celorrio et al., 2019]. Methods for
learning such policies have been developed successfully for
classical domains appealing to either combinatorial or deep
learning approaches [Rivlin et al., 2020; Bonet et al., 2019;
Ståhlberg et al., 2022a]. While the learning methods do not
guarantee that the resulting general policies are correct and
will solve all the problems in the target class, the policies ob-
tained from combinatorial methods are more transparent and
can be analyzed and shown to be correct on an individual ba-
sis [Francès et al., 2021; Drexler et al., 2022b].

Methods for learning general policies for Markov De-
cision Problems (MDPs) have also been developed [Toyer
et al., 2020; Bajpai et al., 2018; Groshev et al., 2018;
Chevalier-Boisvert et al., 2019], in most cases relying on
deep learning and deep reinforcement learning (DRL) tech-
niques [Goodfellow et al., 2016; Sutton and Barto, 1998;
François-Lavet et al., 2018], but the performance of the

learned policies is evaluated experimentally as their correct-
ness cannot be assessed.

The goal of this work is to extend the combinatorial ap-
proaches developed for learning general policies for classical
domains to non-deterministic, fully observable (FOND) do-
mains [Cimatti et al., 2003]. The motivations are twofold. On
the one hand, FOND planning is closely related to both classi-
cal and MDP planning. Indeed, the FOND planners that scale
up best are those relying on classical planners [Muise et al.,
2012; Yoon et al., 2007; Muise et al., 2024], and the policies
that reach the goal states of an MDP with probability 1 are
precisely the policies that solve the FOND problem underly-
ing the MDP; i.e., where the possible transitions are the ones
that have positive probabilities [Geffner and Bonet, 2013;
Ghallab et al., 2016]. This means that FOND models cap-
ture the qualitative structure of Goal MDPs, and that general
policies that solve classes of FOND problems will also solve
correctly a larger class of Goal MDPs.

On the other hand, while the best FOND planners rely on
classical planners, FOND planning is harder, requiring not
just exponential time but exponential space.1 So the for-
mal relation between the two planning tasks is not so clear.
Interestingly, this relation becomes clearer in the general-
ized setting, where, as we will see, generalized FOND plan-
ning reduces to generalized classical planning plus FOND
dead-end detection. In other words, a general policy for a
class Q of FOND problems can be obtained from a gen-
eral policy for a class QD of classical problems obtained by
the outcome relaxation from those in Q [Yoon et al., 2007;
Muise et al., 2012], along with a description of the dead-end
states to be avoided. The resulting method for learning gen-
eral policies for FOND planning can also be seen as an alter-
native FOND planning method that solves a FOND problem
by solving a number of classical problems, not in the given
state space but in an abstract space defined by features that
must be learned as well.

The rest of the paper is organized as follows. We review
related work and background first, and then introduce general
FOND policies and a method for learning them, followed by
an evaluation and analysis of the results.

1Classical planning is PSPACE-hard [Bylander, 1994], while
FOND planning is EXP-hard [Littman et al., 1998; Rintanen, 2004].
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2 Related Work
General Policies for Classical Domains. The problem of
learning general policies for classical domains has a long
history [Khardon, 1999; Martı́n and Geffner, 2004; Fern et
al., 2006], and general policies have been formulated in
terms of logic [Srivastava et al., 2011a; Illanes and McIl-
raith, 2019], and more recently in terms of features and
rules [Bonet and Geffner, 2018; Bonet et al., 2019] that
can be learned using combinatorial methods [Francès et al.,
2021]. The rule language has also been used to express
problem decompositions or sketches [Drexler et al., 2021;
Drexler et al., 2022b], and in this work it will be used to ex-
press general policies for FOND problems.

General Policies for MDPs. Deep learning (DL) and deep
reinforcement learning (DRL) methods have also been used
to learn general policies for classical domains [Groshev et
al., 2018; Chevalier-Boisvert et al., 2019; Rivlin et al., 2020;
Ståhlberg et al., 2022b; Ståhlberg et al., 2023] and MDPs
[Boutilier et al., 2001; Wang et al., 2008; van Otterlo, 2012;
Toyer et al., 2020; Bajpai et al., 2018; Rivlin et al., 2020;
Sanner and Boutilier, 2009]. DL and DRL methods scale up
better than combinatorial methods and do not need to assume
an existing pool of features, but the resulting policies are not
transparent and cannot be understood or shown to be correct.

FOND Planning. FOND planning has become increas-
ingly important as a way of solving other types of problems,
including MDPs [Teichteil-Königsbuch et al., 2010; Cama-
cho et al., 2016], problems with extended temporal goals [Pa-
trizi et al., 2013; Camacho et al., 2019; Bonassi et al., 2023]
and generalized planning problems [Srivastava et al., 2011b;
Bonet et al., 2017]. FOND planners rely on different tech-
niques like OBDDs [Cimatti et al., 2003; Kissmann and
Edelkamp, 2009], SAT [Geffner and Geffner, 2018], graph
search [Mattmüller et al., 2010; Ramı́rez and Sardina, 2014;
Pereira et al., 2022], and classical planning algorithms [Kuter
et al., 2008; Fu et al., 2011; Muise et al., 2012; Muise et al.,
2024], but problems are solved individually from scratch.

Dead-Ends. Dead-ends in planning refer to states from
which there is no solution. There has been work in learn-
ing to identify dead-ends in classical planning [Lipovetzky et
al., 2016; Steinmetz and Hoffmann, 2017], and in FOND and
MDP planning [Kolobov et al., 2010; Camacho et al., 2016].
Closer to this work is the learning of general dead-end rep-
resentations [Ståhlberg et al., 2021]. While dead-ends in the
all-outcome relaxation of FOND problems [Yoon et al., 2007]
are dead-ends of the FOND problem, the reverse is not true.

3 Background
We review classical, generalized, and FOND planning.

3.1 Classical Planning
A classical planning problem is a pair P = ⟨D, I⟩, where D
is a first-order domain and I contains information about a do-
main instance [Geffner and Bonet, 2013; Ghallab et al., 2016;
Haslum et al., 2019]. The domain D is a set of action
schemas involving a number of domain predicates. The

action schemas have preconditions and positive effects ex-
pressed by atoms p(x1, . . . , xk) and the negative (delete) ef-
fects are negations of such atoms, where p is a predicate sym-
bol of arity k, and each term xi is a schema argument.

The instance information is a tuple I = ⟨O, s0, G⟩ where
O is a set of objects (constants); s0 is the initial state, and G
is the goal. The ground atoms p(o1, . . . , ok) in the problem
instance P = ⟨D, I⟩ are the atoms p(x1, . . . , xk) that result
from replacing the terms xi by objects oi ∈ O, and the ground
actions result from grounding the action schemas in a similar
way. The states s are sets of ground atoms; those which are
true in the state. The initial state s0 is a set of ground atoms,
while G is a set of ground goal atoms.

A classical planning problem P = ⟨D, I⟩ defines a state
model M = ⟨S, s0, SG, Act, A, f⟩ where S is the set of
states, s0 ∈ S is the initial state, SG ⊆ S is the set of goal
states, Act is a set of (ground) actions, A(s) ⊆ Act is the set
of actions applicable in the state s, and f(a, s) for a ∈ A(s) is
a deterministic state transition function. In the model M(P )
determined by P , the states s ∈ S are collection of ground
atoms from P , s0 is given, SG contains the states that include
G, Act is the set of ground actions, a ∈ A(s) if the precon-
ditions of a are true in s, and s′ = f(a, s) if a ∈ A(s) and
s′ contains the positive effects of a and the atoms in s except
those deleted by a.

It is convenient to consider non-deterministic policies for
classical planning problems instead of (open loop) plans. A
policy π for a problem P is a partial function mapping states
s of P into sets π(s) of actions from P , possibly empty. A π-
trajectory in P is a sequence of states s0, . . . , sn that starts in
the initial state of P such that si+1 = f(ai, si) if ai ∈ A(si)
and ai ∈ π(si). The trajectory is cyclic if it contains the same
state infinitely often and maximal if (1) sn is the first goal
state of the sequence, (2) it is cyclic and does not contain goal
states, (3) there is no action an in both π(sn) and A(sn), or
(4) π(sn) is undefined. The policy π solves P if the maximal
π-trajectories all reach a goal state of P .

3.2 Generalized Classical Planning
Departing slightly from previous work, a general policy π for
a classQ of classical instances over the same domain is taken
to be a mapping that assigns a (concrete) policy πP to each
problem P in Q. The general policy π solves Q if πP solves
P for each P in Q.

A general policy π can be represented in many forms from
formulas or rules to value functions. Following [Bonet and
Geffner, 2018; Bonet et al., 2019], we consider general poli-
cies π for classes of problems Q expressed by sets of rules
C 7→ E in terms of a collection Φ of Boolean features p
and numerical features n that take value in the non-negative
integers. The condition C is a set (conjunction) of Boolean
feature conditions and the effect description E is a set (con-
junction) of feature value changes. A Boolean feature condi-
tion is of the form p, ¬p, n = 0, and n > 0 for Boolean and
numerical features p and n in Φ, and feature value changes
are of the form p, ¬p, p? for Boolean p, and n↓, n↑, and n?
for numerical n.

The general policy π for a class of problems Q defined by
a set R of rules C 7→ E determines for each problem P in
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Q the policy πP that maps a reachable state s in P into the
set of actions πP (s), where a ∈ πP (s) iff a is applicable in
s, a ∈ A(s), and the successor state s′ = f(a, s) is such
that the transition (s, s′) satisfies a rule in R. The transition
(s, s′) satisfies a rule C 7→ E if all feature conditions in C
are true in s, and the values of the features change from s to
s′ according to E; i.e., if p (resp. ¬p) is in E, then p(s′) = 1
(resp. p(s′) = 0), if n↓ (resp. n↑) is in E, n(s) > n(s′) (resp.
n(s) < n(s′)), if p (resp. n) is not mentioned at all in E,
p(s) = p(s′) (resp. n(s) = n(s′)), and if n=0 (resp. n> 0)
is in E, n(s′) = 0 (resp. n(s′) > 0). The transition (s, s′)
satisfying rule R is also said to be compatible with rule R
and if (s, s′) is compatible with some rule R of policy π, it is
called compatible with the policy π.

Methods for learning rule-based general policies for clas-
sical planning from small training instances have been devel-
oped [Bonet et al., 2019; Francès et al., 2021]. For this, a set
of rules involving a set of features of minimum complexity is
obtained by finding a satisfying assignment to a propositional
theory T (S,F) of minimum cost, where S is the collection
of state transitions appearing in the training instances, and F
is a large pool of features obtained from the domain pred-
icates in a domain-independent manner using a description
logic grammar [Baader et al., 2008]. The complexity of fea-
ture f in F is given by the number of grammar rules needed
to generate the unary predicate p(x) associated with f . Such
unary predicate gives rise to the numerical feature np whose
value in a state s is given by the number of objects o for which
p(o) is true in s, and the Boolean feature bp that is true in s
if np is positive in s. Since problems P in the target class Q
often have different goals, it is assumed that the states s in
P are extended with a suitable “copy” of the goal atoms; for
each goal atom p(o1, . . . , ok), the states s in P are extended
with the atom pG(o1, . . . , ok) where pG is a new predicate
[Martı́n and Geffner, 2004].

3.3 FOND Planning
A FOND model is a tuple M = ⟨S, s0, SG, Act, A, F ⟩ sim-
ilar to the one underlying classical planning except that the
state transition function F is non-deterministic and maps an
action a applicable in a state s into a non-empty set of suc-
cessor states s′ ∈ F (a, s). The syntax for FOND problems
is an extension of the syntax for classical planning where
the actions a ∈ A are sets a = {b1, . . . , bk} of classi-
cal, deterministic actions bi, all sharing the same precondi-
tions. The application of a results in the random applica-
tion of one of the actions bi so that if a ∈ A(s), F (a, s) =
{f(b1, s), . . . , f(bk, s)}. A (non-deterministic) policy π for
a FOND problem P is a partial function that maps states
into sets of actions of P . The π-trajectories s0, . . . , sn for
FOND problems P are defined in the same way as for clas-
sical problems except that for each ai ∈ π(si), the condition
si+1 = f(ai, si) is replaced by si+1 ∈ F (ai, si). In addi-
tion, a notion of fairness is needed in FOND planning that
can be specified by considering π-trajectories that include the
actions as s0, a0, s1, a1, . . . , sn where ai ∈ π(si). One such
trajectory is deemed fair if it is finite, or if it is infinite, and in-
finite occurrences of states si followed by the same action ai
are in turn followed by each of the possible successor states

si+1 ∈ F (ai, si) an infinite number of times. A policy π is a
strong cyclic solution or simply a solution of P if the maximal
π-trajectories that are fair all reach the goal.

3.4 Dead-Ends and Deterministic Relaxations
A state s is reachable in a classical or FOND problem P if
there is a trajectory s0, . . . , sn that reaches s, where s = sn
and si+1 = f(ai, si) or si+1 ∈ F (ai, si) for i = 0, . . . , n−1
and suitable actions ai in P . For a reachable state s in P ,
P [s] defines the problem that is like P but with initial state s.
A reachable state s in P is alive if P [s] has a solution and a
dead-end otherwise. Since a general policy π is often aimed
at solving all solvable instancesQ in a given domain, it is nat-
ural to ask for the classQ to be closed, in the sense that if P is
inQ, then P [s] is inQ if s is not a dead-end. The set of dead-
ends in a FOND problem P is related to the set of dead-end
states in the classical problem PD that results from P when
each non-deterministic action a = {b1, . . . , bm} is replaced
by the set of deterministic actions b1, . . . , bm. The classi-
cal problem PD is the so-called deterministic relaxation or
all-outcome relaxation [Yoon et al., 2007] and it plays an im-
portant role in FOND planners that rely on classical planning
algorithms [Muise et al., 2012]. Clearly, if s is a dead-end
state in PD, s will be a dead-end state in the FOND problem
P , but the inverse implication is not true.

4 General Policies for FOND Planning
We consider the semantics of general FOND policies and the
language to describe them.

4.1 Semantical Considerations
The semantics of general policies for classes Q of FOND
problems is clear and direct: a general policy π forQmust de-
termine a policy πP for each problem P inQ, and π solvesQ
if each problem P inQ is solved by πP ; i.e., if πP is a strong
cyclic policy for P . The language for representing general
policies for classes of FOND problems, however, is a bit more
subtle than in the case of classical planning. Nonetheless, a
tight relation between general policies for FOND problems
and general policies for classical problems can be established
that will serve to motivate the language for expressing and
then learning general FOND policies.

Let Q be a collection of solvable FOND problems P that
is closed in the following sense: if P is inQ and s is an alive
state reachable in P , then P [s] is also inQ. LetQD stand for
the determinization of Q; namely, the collection of classical
problems PD obtained from the deterministic (all-outcome)
relaxation of the FOND problems P in Q. Let us also say
that a general policy πD for the determinization QD of Q is
safe in PD if for every reachable state s of PD and every (de-
terministic) action bi ∈ πD(s), there is a (non-deterministic)
action a such that bi ∈ a and no s′ ∈ F (a, s) is a dead-end.
Finally, πD is safe in QD if it is safe in every PD ∈ QD.
We can show the following relation between the general poli-
cies that solve the class of FOND problemsQ and the general
policies that solve the class of classical problems QD:2

2Proofs can be found in [Hofmann and Geffner, 2024b].
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Theorem 1. Let Q be a collection of solvable FOND prob-
lems P that is closed, and let QD be determinization of Q.
(1) If π is a general policy that solves the FOND problems
Q, a general safe policy πD can be constructed from π
that solves the class of classical problems QD.

(2) If πD is a general safe policy that solves the classical
problems QD, a general policy π that solves the FOND
problems Q can be constructed from πD.

This result expresses a basic intuition and the conditions
that make the intuition valid; namely, that the uncertainty in
the action effects of FOND problems can be “pushed” as un-
certainty in the set of possible initial states, resulting in a col-
lection of classical problems, and hence, a generalized clas-
sical planning problem. This suggests that one way to get a
general policy for a class Q of FOND problems is by finding
a general policy for the classical problems in the determiniza-
tionQD. The theorem qualifies this intuition by requiring that
the policy that solves QD must be safe and not visit a dead-
end state of P , because a state may be a dead-end in P but
not in its determinization PD. The intuition that FOND plan-
ning can leverage classical planning in this way is present in
a slightly different form in one of the most powerful FOND
planners [Muise et al., 2012]. The correspondence between
FOND and classical planning can be captured more explicitly
in the generalized planning setting as a FOND problem does
not map into a single classical planning problem but into a
collection of them.

4.2 Expressing General FOND Policies
The correspondence captured by Theorem 1 implies that gen-
eral policies π for a class of FOND problems Q can be ob-
tained from the general policies π′ for QD that are safe, i.e.,
those policies that avoid dead-ends in the “original” FOND
problem P .

This observation suggests that a suitable language for
defining general FOND policies can be obtained by combin-
ing the rule language for describing general policies for clas-
sical domains with constraints that ensure that the general
policies that solve the classical problems QD are safe and do
not visit dead-end states of the FOND problem:
Definition 1. The language for representing a general policy
over a class Q of FOND problems is made up of a set R of
rules C 7→ E like for general classical policies, and a set
of constraints B, each one being an (implicit) conjunction of
Boolean feature conditions like C.

Both the rules R and the constraints B are defined over a
set Φ of Boolean and numerical features that are well defined
over the reachable states of the problems P ∈ Q. The general
FOND policy defined by a pair of rules R and constraints B
is as follows:
Definition 2. A set of rules R and constraints B define a gen-
eral FOND policy π = πR,B over Q such that in a problem
P ∈ Q, the concrete policy πP is such that a ∈ πP (s) iff

• there is a state s′ ∈ F (a, s) such that the transition
(s, s′) satisfies a rule C 7→ E in R, and

• there is no state s′ ∈ F (a, s) such that s′ satisfies a
constraint in B.

Let us say that a set of constraints B is sound relative to
a class of FOND problems Q if every reachable dead-end
state s in a problem P in Q satisfies a constraint in B. Fur-
thermore, a general classical policy π is B-safe if for every
reachable state s and every (deterministic) action bi ∈ π(s),
there is a (non-deterministic) action a such that bi ∈ a and
no s′ ∈ F (a, s) satisfies a constraint in B. The basic idea of
the method for learning general FOND policies that we will
pursue can then be expressed as follows:
Theorem 2. Let Q be a class of FOND problems, QD its
determinization, and B a sound set of constraints relative to
Q. If the rules R encode a general classical policy that solves
QD which is B-safe, then the general FOND policy πR,B that
follows from Definition 2 solves Q.

5 Learning General FOND Policies
Following Theorem 2, we will learn general policies πR,B

that solve classes of FOND problems Q as follows: we sam-
ple a subclass of small FOND problemsQ′ fromQ and learn
rules R and constraints B such that the general policy πR

solves the classical problems inQ′
D and is B-safe for a sound

set of constraints B. With Definition 2, we then obtain a gen-
eral FOND policy πR,B that solves the FOND problems in
Q′ (but not necessarily all FOND problems in the target class
Q). By looking for the simplest such policies in terms of the
cost of the features involved, we will see that general policies
that solve Q can be obtained.

5.1 Min-Cost SAT Formulation
Following [Francès et al., 2021; Bonet et al., 2019], the prob-
lem of learning a general policy for a class of classical prob-
lemsQ′

D is cast as a combinatorial optimization problem, and
more specifically as min-cost SAT problem over a proposi-
tional theory T = T (S,F) where S is the set of (possible)
state transitions (s, s′) over the instances Pi in Q with states
Si, and F is the pool of features constructed from predicates
in the common domain of these instances. The policy rules
R are then extracted from the transitions (s, s′) that are la-
beled as “good” in the min-cost satisfying assignment of T by
looking at how the selected features change across the transi-
tions. The constraints B will be extracted from T by enforc-
ing a separation between the states that are dead-ends in Q′

from those that are not. The states appearing in S are pre-
partitioned into alive, dead-end, and goal states, as explained
below in Section 5.2.

The cost of an assignment is given by adding the costs of
the features selected from the pool F . Every feature f ∈ F
has a weight w(f) defined by the number of grammar rules
needed to derive the unary predicate p(x) that defines f . The
numerical feature np expresses the number of grounded p(o)
atoms in a state s (i.e., the number of objects that satisfy p in
s), while the Boolean feature bp is true if np is positive.
The propositional variables in T (S,F) are the following:

• Good(s, s′) is true if the transition (s, s′) is good,
• Select(f) is true if the feature f is selected,
• V (s, d) is true if the distance of s to a goal is at most d,

where 0 ≤ d ≤ |Si| for s ∈ Si.
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The formulas in T (S,F) are in turn:

(1) For every alive state s:∨
a∈Safe(s)

∨
s′∈F (a,s)

Good(s, s′)

where a ∈ Safe(s) if no s′ ∈ F (a, s) is a dead-end.
(2) For every goal state s: V (s, 0)

(3) For every alive state s: Exactly-1d∈N : {V (s, d)}
(4) For every transition (s, s′):

Good(s, s′) ∧ V (s, d)→∧
a∈A(s):
s′∈F (a,s)

∨
s′′∈F (a,s)

V (s′′, d′′)→ d′′ < d

(5) For every alive state s and dead state s′: ¬Good(s, s′)

(6) For every goal state s and non-goal state s′:∨
f :Jf(s)K ̸=Jf(s′)K

Select(f)

(7) For every alive state s and dead state s′:∨
f :Jf(s)K ̸=Jf(s′)K

Select(f)

(8) For all transitions (s1, s′1) and (s2, s
′
2):

Good(s1, s
′
1) ∧ ¬Good(s2, s

′
2)→

D(s1, s2) ∨D2(s1, s
′
1, s2, s

′
2)

where

D(s1, s2) =
∨

f :Jf(s1)K ̸=Jf(s2)K

Select(f)

and

D2(s1, s
′
1, s2, s

′
2) =

∨
f :∆f (s1,s′1)̸=∆f (s2,s′2)

Select(f)

The expressions Jf(s)K and ∆f (s, s
′) stand for the value of

feature f in s, and the way in which the value of f changes
in the transition from s to s′ (up, down, and same value, for
both Boolean and numerical features). The formulas express
the following. For every alive state, there must be a good
transition such that the corresponding FOND action is safe,
i.e., none of the outcomes lead to a dead-end (1) and such that
one good transition leads towards a goal (2, 3, 4). A transition
leading to a dead-end may never be good (5). Furthermore,
the selected features must be able to distinguish goal from
non-goal states (6), alive states from dead-ends (7) and good
from non-good transitions (8).

The satisfying assignments of T (S,F) yield the rules R
and the constraints B such that B is sound relative to the
sampled class Q′ of FOND problems, and the classical pol-
icy πR given by the rules R constitute a general policy for the
classical problems Q′

D that is B-safe. From Theorem 2, the
resulting πR,B FOND policy that follows from Definition 2
solves the collection of FOND problems Q′.

Algorithm 1 Dead-End Detection
Input: FOND model M(P ) = ⟨S, s0, SG,Act , A, F ⟩
Output: FOND dead-end set D ⊆ S

1: D ← ∅;
2: repeat
3: for all s ∈ S \D do
4: for all a ∈ A(s) do
5: if F (a, s) ∩D ̸= ∅ then
6: Remove a from A(s)
7: for all s ∈ S \D do
8: if ¬∃path s

a1−→ . . .
ak−→ sg. ai ∈ A(si), sg ∈ SG

then
9: Add s to D

10: until D does not change
11: return D

Theorem 3. The theory T (S,F) is satisfiable iff there is a
general FOND policy πR,B over the features in the pool F
that solves the set of sampled FOND problems Q′, such that
the selected features distinguish dead, alive, and goal states.

Since we aim to learn a policy that generalizes beyond the
sample instances, the sum of the weights w(f) of selected
features f is minimized to penalize overfitting. Given a sat-
isfying assignment T (S,F), the rules R and the constraints
B that define the general FOND policy πR,B are extracted
as follows. First, the features Φ are obtained from the true
Select(f) atoms. Then, for each true atom Good(s, s′), a
rule C 7→ E is obtained where C is the Boolean feature
valuation true in s (literals p, ¬p, n = 0, or n > 0), and
n↑ ∈ E if ∆n(s, s

′) = ↑, n↓ ∈ E if ∆n(s, s
′) = ↓, p ∈ E if

∆p(s, s
′) = ↑, and ¬p ∈ E if ∆p(s, s

′) = ↓. Duplicate rules
are pruned. Finally, the state constraints B are extracted from
the Boolean feature evaluations of the dead-end states.

5.2 Dead-End Detection
To identify the sets D of dead-end states in the sampled
FOND problems Pi, similar to [Daniele et al., 2000], we it-
eratively exclude every action a from the set of applicable
actions A(s) when a state s′ ∈ F (a, s) is in D, and place s
in D when there is no path from s to the goal using the appli-
cable sets A(s) that result. The resulting algorithm, shown in
Algorithm 1, is sound and complete:
Theorem 4. Algorithm 1 is sound and complete, i.e., state
s ∈ D iff there is no solution of the FOND problem P [s].

6 Evaluation
We evaluate the approach on a number of FOND benchmarks,
and analyze some of the learned general policies.3

6.1 Experimental Results
We modeled and solved the min-cost SAT problem repre-
sented by the theory T (S,F) as an Answer Set Program
(ASP) [Lifschitz, 2016] in clingo [Gebser et al., 2011]. We
use the library pddl [Favorito et al., 2023] for PDDL parsing

3The source code, benchmark domains, and results are available
at [Hofmann and Geffner, 2024a].
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Q |P | |S| |T | |O |T |O |P tsolve/s twall/s mem/MB |F| |Φ| |C| k∗ cΦ

acrobatics 18 18 3 3 9 <0.1 139 49 23 3 1 4 6
beam-walk 9 9 2 3 9 <0.1 13 41 22 2 0 4 5
blocks3ops 95 95 4 4 20 224 1968 22 237 194 3 0 5 11
blocks-clear 95 95 2 3 20 1 37 185 34 2 0 4 6
blocks-on 190 190 2 3 20 116 158 1966 704 3 0 6 11
doors 19 19 5 7 33 78 1476 2805 625 4 1 10 19
first-responders 99 15M 2 5 36 2020 13 929 212 496 332 5 2 7 20
islands 300 300 4 32 83 3903 13 871 72 895 1182 4 1 7 13
miner 69 13I 2 9 184 1 071 294 48 964 199 942 1073 8 4 6 28
spiky-tireworld 170 36I 3 6 23 5162 9114 73 985 479 8 5 8 36
tireworld 980 7C 1 3 100 <0.1 382 370 27 5 4 4 12
triangle-tireworld 10 1I 1 6 231 <0.1 1868 70 973 27 3 1 4 9

Table 1: Evaluation results, where |P | is the total number of problems, |T | is the number of problems used in training, and |S| is the number
of solved problems, that includes training and testing. |O|T is the maximum number of objects in all training instances, |O|P is the maximum
number of objects in all instances, tsolve is the solver’s CPU time needed for finding the best policy, twall is the total wall time, mem is the
maximum memory consumption, |F| is the size of the feature pool, |Φ| is the number of selected features, |C| is the number of constraints,
k∗ is the maximum cost of the selected features, and cΦ is the total cost of all selected features. When the incremental learning approach does
not deliver FOND policies that generalize to all problems in the distribution, the reason for the failure is indicated: I indicates that the number
of facts exceeded the clingo limits, C indicates that no solution was found with max complexity 15, and M indicates that the solver ran out
of memory.

and DLPlan [Drexler et al., 2022a] for feature generation in
the same way as [Drexler et al., 2022b; Francès et al., 2021].
As optimizations, instead of using the ranking V (s, d), we in-
crementally label all states where all selected transitions lead
to the goal as safe and require that all alive states are also
safe. Additionally, we do not try to distinguish all dead states
from alive states and instead only compare alive states to crit-
ical states, which are those states that are dead-ends but have
an incoming transition from an alive state. Finally, we pre-
process the state space S by pruning all dead states that are
not critical.

The FOND domains considered were taken from the
FOND-SAT distribution [Geffner and Geffner, 2018], leav-
ing out domains with unsupported features. All instances are
either randomly generated or taken from the original bench-
marks. In acrobatics, beam-walk, and doors, we augmented
the existing problem set with smaller instances. The prob-
lems in the blocks variants are generated by scaling from
small problems with only three blocks up to 20 blocks. In
blocks3ops, the goal is to build a tower of blocks using a
three-operator encoding (without a gripper). The domains
blocks-clear and blocks-on use a four-operator encoding (in-
cluding the gripper) and the goal is to clear a single block and
stack a single pair of blocks. In islands, we created five vari-
ations of each problem from the original problem set. Miner
and triangle-tireworld use the original problem set, while the
instances for spiky-tireworld and tireworld are randomly gen-
erated. For all domains, the largest generated instances are of
similar size or larger than the largest instances in the original
benchmarks.

All experiments were run on Intel Xeon Platinum 8352M
CPUs with 32 threads, a memory limit of 220 GB, and a max-
imal feature complexity cmax = 15. The results are shown in
Table 1. The suite of problems P in each domain is ordered
by size, with the smallest problems used for training and the

largest problems for testing. More precisely, starting with a
singleton training set consisting of the smallest instance of
P , the solver learns a new policy and iteratively tests whether
the policy solves the next problem. If this validation fails,
the failed instance is added to the training set and the process
repeats. Since the instances in these domains become quite
large and the min-cost SAT solver does not scale up to large
instances, if the policies learned from the smallest instances
do not generalize, the approach fails, as shown by the rows
in the table with coverage numbers |S| in bold; namely, 5 of
the 12 domains. In 7 of the 12 domains, on the other hand,
the learning method delivers general FOND policies, some of
which will be shown to be correct in the next section.

6.2 Correctness
For proving the correctness of learned general FOND poli-
cies, we adapt a method from [Francès et al., 2021; Seipp et
al., 2016] based on complete and descendent policies:
Definition 3. A FOND policy π is
(1) dead-end-free if no π-trajectory visits a dead-end state,
(2) complete for an instance P if for every alive state s, we

have π(s) ∩A(s) ̸= ∅,
(3) descending over P if there is some function γ that maps

states of P to a totally ordered set U such that for ev-
ery alive state s and action a ∈ π(s) ∩ A(s), we have
γ(s′) < γ(s) for some s′ ∈ F (a, s).

Typically, one can show that a FOND policy π is de-
scending by providing a fixed tuple ⟨f1, . . . , fn⟩ of state
features. If for every π-compatible transition (s, s′), we
have ⟨f1(s′), . . . , fn(s′)⟩ < ⟨f1(s), . . . , fn(s)⟩ with lexico-
graphic order <, then π is descending. It can be shown that
such a policy indeed solves P :
Theorem 5. If π is a policy that is dead-end-free, complete
and descending for an instance P , then π solves P .
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Acrobatics
An acrobat needs to reach the end of a beam consisting of
n segments. The only ladder to climb up the beam is at its
beginning. The acrobat may walk left or right on the beam
and on the ground, climb up or down if there is a ladder, and
jump on the beam. When walking on the beam, the acrobat
may fall down. The acrobat may skip a segment by jumping
over it, but she may fall down and break her leg while doing
so. Once the leg is broken, she may no longer move.

The learned policy πacro uses three features: (1) the dis-
tance d ≡ dist(position,next-fwd , positionG) between the
current position and the goal position, (2) a Boolean feature
U ≡ |up| which is true if the agent is currently on the beam,
(3) a Boolean feature B ≡ |broken-leg | which is true if the
agent’s leg is broken. The learned policy πacro = πR,B con-
sists of the following rules R:4

r1 : {U, d > 0,¬B} 7→ {d↓}
r2 : {¬B,¬U} 7→ {U} | {d↑}

It has a single constraint B = {b1}:

b1 : {B,¬U}

If the acrobat is currently on the beam (U ), she is not at the
goal (d > 0), and the leg is not broken (¬B), then she should
decrease the distance to the goal. Otherwise, if she is not
on the beam (¬U ) and the leg is not broken (¬B), then she
should either climb up the ladder or move away from the goal
(and therefore closer to the ladder). For the first rule, she may
decide to jump to decrease the distance and thereby break her
leg. The state constraint forbids this by requiring that she may
not end up in a state where she has a broken leg and is not on
the beam.

Proposition 1. The general policy πacro = πR,B solves the
class Qacro of solvable FOND acrobatics problems.

Doors
The player needs to move through a sequence of n rooms,
which are connected by doors. Whenever the player goes to
the next room, the incoming and outgoing doors of the room
may open or close non-deterministically. There are separate
actions for moving to the next room depending on whether
the door is open or closed. For the last door, if the door is
closed, the player needs to use a key, which is located in the
first room. The player may not move back.

The learned policy πdoors uses four features: (1) a Boolean
feature G ≡ |player -at ⊓ final -loc|, which is true if
the player is at the final location, (2) a Boolean feature
S ≡ |¬∃door -in.player -at |, which is true if the player
is at the start location (which does not have any incom-
ing door), (3) a Boolean feature K ≡ |hold -key | which is
true if the player is holding the key, (4) a Boolean feature
F ≡ |open ⊓ (∃door -out .player -at) ⊓ ∃door -in.final -loc|,
which is true if the player is in the second-last room and the
door to the final room is open.

4The notation C 7→ E1 | E2 abbreviates the two rules C 7→ E1

and C 7→ E2 with the same condition C.

The policy πdoors = πR,B uses the following rules R:

r1 : {¬G,S,K,¬F} 7→ {¬S}
r2 : {¬G,S,K, F} 7→ {G,¬S,¬F}
r3 : {¬G,S,¬K} 7→ {K} | {G,¬S,¬F}
r4 : {¬G,¬S,K,¬F} 7→ {} | {F} | {G}
r5 : {¬G,¬S,¬K,F} 7→ {G,¬F}

It uses one constraint B = {b1}:

b1 : {¬G,¬F,¬S,¬K}

The need for feature F may not be immediately obvious,
as it is not necessary for a strong-cyclic policy starting in the
initial state. However, it is needed to distinguish dead from
alive states, as the state where the player is in the second-last
room without a key and the last door is open is also alive: the
player may just move through the open door without a key.
Similarly, if F is false and the player is not holding the key,
then the state is dead if the player is not at the start location.

We can show that this policy is a solution for Qdoors:

Proposition 2. The general policy πdoors = πR,B solves the
class Qdoors of solvable FOND doors problems.

Islands
In Islands, there are two islands connected by a bridge. The
person starts on one island while the goal is on the other is-
land. They may swim across but with the risk to drown, from
which they cannot recover. Alternatively, they may cross a
bridge, but only if there are no monkeys on the bridge. A
monkey can be moved to a drop location.

The learned policy πislands uses three features: (1) a
Boolean feature A ≡ |person-alive|; (2) a numerical fea-
ture ddrop ≡ dist(bridge-drop-location ⊓ bridge-road [0],
road , person-at), which is the distance to a location that is
both drop location and starting point of the bridge; (3) a
numerical feature dg , which is the distance to the goal:
dg ≡ dist(person-atG, road , person-at).

The policy πislands = πR,B consists of two rules R =
{r1, r2}:

r1 : {A, ddrop = 0, dg > 0} 7→ {} | {dg↓, ddrop↑}
r2 : {A, ddrop > 0, dg > 0} 7→ {ddrop↓} | {dg↓}

It uses a single constraint B = {b1}:

b1 : {¬A, ddrop > 0, dg > 0}

The agent first moves to the bridge (r2). After it has reached
the bridge, it directly crosses it if possible ({dg↓, ddrop↑}).
Otherwise, it selects an action that does not have any effect on
the features ({}). The only action that is compatible with {}
is moving a monkey. As this demonstrates, it is not necessary
to encode the monkeys in the policy explicitly. Finally, the
only constraint b1 requires that the person never dies.

Proposition 3. The general policy πislands = πR,B solves the
class Qislands of solvable FOND islands problems.
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Q |P | |S| |T | |O |T |O |P tsolve/s twall/s mem/MB |F| |Φ| |C| k∗ cΦ

acrobatics 18 18 3 3 9 <0.1 206 49 23 3 1 4 6
beam-walk 9 9 2 3 9 <0.1 16 40 22 2 0 4 5
blocks3ops 95 95 5 4 20 664 4475 77 722 235 3 0 5 11
blocks-clear 95 95 2 3 20 1 37 185 34 2 0 4 6
blocks-on 190 190 2 3 20 87 161 2021 704 3 0 6 11
doors 19 19 3 5 33 1 1230 1003 68 3 2 6 11
first-responders 99 15I 2 5 36 1354 7577 105 752 332 5 6 7 20
islands 300 300 4 32 83 1889 14 165 73 173 1182 4 4 7 13
miner 69 13I 2 9 184 2 468 172 130 980 131 741 1073 8 61 6 28
spiky-tireworld 170 17I 3 6 23 115 973 25 454 81 211 1284 7 36 7 29
tireworld 980 980 4 5 100 8112 21 571 72 160 1804 5 20 8 20
triangle-tireworld 10 10 2 15 231 3905 1489 107 053 264 4 5 7 1

Table 2: Evaluation results for policy learning with transition constraints, using the same notation as in Table 1.

7 Variation: Transition Constraints
The general FOND policies and learning schema presented
above is based on state constraints, which describe states that
must be avoided. Alternatively, we can also formulate gen-
eral policies based on transition constraints. Syntactically,
transition constraints are like policy rules and have the form
C 7→ E. However, they describe bad transitions and hence
the policy π defined by a set of rules and transition constraints
is such that for any P ∈ Q, a ∈ πP (s) if the transition
(s′, s) for some s′ ∈ F (a, s) satisfies a rule, and no state
s′′ ∈ F (a, s) satisfies a transition constraint. Formally:

Definition 4. The language for representing a general policy
with transition constraints over a class Q of FOND problems
is made up of a set R of rules C 7→ E like for general classi-
cal policies, and a set of transition constraints T of the same
form as rules.

Definition 5. A set of rules R and transition constraints T
define a transition-constrained general FOND policy π over
Q such that a ∈ πP (s), where πP is the concrete policy de-
termined by the general policy π in problem P in Q if

• there is a state s′ ∈ F (a, s) such that the transition
(s, s′) satisfies a rule C 7→ E in R, and

• there is no state s′ ∈ F (a, s) such that the transition
(s, s′) satisfies a transition constraint C 7→ E in T .

We call a transition (s, s′) in a problem P critical if s is
alive and s′ is a dead-end. Analogously to state constraints,
we say that a set of transition constraints T is sound relative
to a class of FOND problems Q, if every critical transition
(s, s′) in a problem P inQ satisfies a constraint in T , and that
a general policy π for a class of classical or FOND problems
Q is T-safe if for no instance P in Q, there is a π-trajectory
containing a critical transition.

Theorem 6. Let Q is a class of FOND problems, let QD

be its determinization, and let T be a sound set of transition
constraints relative toQ. Then if the rules R encode a general
classical policy that solves QD which is T -safe, the rules R
and constraints T define a general FOND policy πR,T that
solves Q.

The experimental results that follow from the use of tran-
sition constraints instead of state constraints for defining and
learning general FOND policies are shown in Table 2. We can
see that in contrast to the state-based variant, the transition-
based variant solves all instances of tireworld and triangle-
tireworld.

8 Conclusion

We have extended the formulation for learning general poli-
cies for classical planning domains to fully-observable non-
deterministic domains. The new formulation for expressing
and learning FOND policies exploits a correspondence be-
tween the general policies that solve a family Q of FOND
problems and the general safe policies that solve a familyQD

of classical problems PD obtained from the all-outcome re-
laxation (determinization) of the instances P in Q, where the
safe policies are those that avoid the dead-end states of P . A
representation of the collection of dead-end states is learned
along with the features and rules. The resulting safe poli-
cies for the family of classical problems PD do not just solve
the FOND problems in Q but potentially many other FOND
problems as well, like those that result from random pertur-
bations which do not create new dead states. This is because
the formulation pushes the uncertainty in the action outcomes
into uncertainty in the initial states that are all covered by the
general policy that solves QD. The experiments over exist-
ing FOND benchmarks show that the approach is sufficiently
practical, resulting in general FOND policies that can be un-
derstood and shown to be correct.
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Geffner. Learning general policies with policy gradient methods.
In KR, pages 647–657, 2023.

[Steinmetz and Hoffmann, 2017] Marcel Steinmetz and Jörg Hoff-
mann. State space search nogood learning: Online refinement
of critical-path dead-end detectors in planning. Artificial Intelli-
gence, 245:1–37, 2017.

[Sutton and Barto, 1998] Richard Sutton and Andrew Barto. Intro-
duction to Reinforcement Learning. MIT Press, 1998.

[Teichteil-Königsbuch et al., 2010] Florent Teichteil-Königsbuch,
Ugur Kuter, and Guillaume Infantes. Incremental plan aggre-
gation for generating policies in mdps. In AAMAS, pages 1231–
1238, 2010.

[Toyer et al., 2020] Sam Toyer, Sylvie Thiébaux, Felipe Trevizan,
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