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Abstract
We consider the problem of computing high-quality
Euclidean shortest paths amidst obstacles on a
large scale. By transferring and adapting speed-
up techniques from the road network setting, we
are able to compute source target paths for prob-
lem instances with several million obstacle vertices
within few milliseconds after moderate preprocess-
ing. We show experimentally that for small in-
stances where optimal solutions are easily available
on average our computed paths are less than 0.3%
longer than the optimum. For large instances a new
lower-bounding technique shows that on average
our computed paths are less than 2% longer than the
optimum paths. We compare our approach with the
current state-of-the-art on problem instances de-
rived from the OpenStreetMap project.

1 Introduction
The Euclidean shortest path problem (ESPP) asks for the
computation of a shortest path in the Euclidean plane avoid-
ing a set of polygonal obstacles, see Figure 1. Here, three
paths from s to t are depicted with the dashed/blue one shorter
than the red/dotted one and the green one. Algorithms for
this problem are usually analyzed and evaluated with respect
to the complexity of the problem instance, which is charac-
terized by the number n of obstacle vertices (in this example
n = 26). The importance of the problem is quite evident; for
example, when computing optimal walking paths in a pedes-
trian zone with many open space areas, we are not restricted
to an underlying network of walkable paths but can essen-
tially roam freely in the Euclidean plane, of course avoid-
ing obstacles like buildings. In highly automated plants, we
might allow mobile robots to move not only on predefined tra-
jectories but cross a factory hall on a beeline path, see [Mac et
al., 2016] for a survey of approaches for the robotics domain.
Lastly, ignoring the effects of wind and currents, routing ships
on the planet’s oceans could be viewed as an instance of ESPP
on the sphere.

In this paper we focus on the offline variant of ESPP, i.e.,
we are allowed to aggregate auxiliary information about the
problem instance, such that subsequent queries between ver-
tices can be answered as fast as possible. We put special em-

s

t

Figure 1: Instance of ESPP. Three obstacle avoiding s-t-paths.

phasis on a scalable solution which can deal with massive
problem instances with several million obstacle vertices.

1.1 Related Work
The efficient planning of routes in road networks has enjoyed
tremendous attention in the research community over the last
few decades. As a result, techniques have been developed
that can compute provably optimal routes within microsec-
onds even on continent-sized networks with hundreds of mil-
lions of vertices, for which a good implementation of Dijk-
stra’s algorithm [Dijkstra, 1959] takes seconds. See [Bast et
al., 2016] for a survey. The continuous variant of the problem
– ESPP – has enjoyed far less attention.

A natural way to solve ESPP is via the construction of a
visibility graph, which can be computed in O(n log n + K)
time where K denotes the number of edges of the result-
ing visibility graph, see [Ghosh and Mount, 1991]. Unfortu-
nately, K even in practice often gets very large (in the worst
case K ∈ Θ(n2), so visibility-graph-based solutions tend not
to scale on instances with millions of obstacle vertices. An-
other group of algorithms based on the idea of a continuous
Dijkstra is able to beat the inherent Ω(n2) lower bound of
visibility-graph-based approaches. [Mitchell, 1996] achieved
a running time of O(n3/2+δ), for any δ > 0, which later
was improved to an optimal O(n log n) in [Hershberger and
Suri, 1999]. Unfortunately, these algorithms are extremely
complex and we do not know of any robust implementation
of them. A conceptually simple fully polynomial time ap-
proximation scheme (FPTAS) which guarantees a result of
cost at most (1 + O(ϵ)) times the optimum in running time
O(nϵ log

1
ϵ (

1√
ϵ
+ log n)) was presented in [Aleksandrov et

al., 2000]. It essentially computes a very fine discretization
to meet the quality guarantee and then runs Dijkstra on that
discretization. More on the practical side, Polyanya [Cui et
al., 2017] carefully instantiates A* on a navigation mesh and
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hence does not require any precomputation (apart from an un-
derlying navigation mesh). It computes the optimal shortest
path and has been shown to outperform other state-of-the-
art algorithms. [Shen et al., 2022] combines Polyanya with
so-called compressed path databases (CPD) [Strasser et al.,
2014] to obtain even faster (and still optimal) queries. Their
approach requires the precomputation and storage of all-
pairs-information for ’interesting’ (convex) vertices, though,
so this approach is not applicable for instances with millions
of nodes. For dynamic settings, where even the precompu-
tation of a navigation mesh is not feasible, [Hechenberger et
al., 2020] allows for efficient queries, though considerably
slower than e.g. [Cui et al., 2017].

1.2 Our Contribution
In this paper we show how to adapt speed-up techniques for
route planning from the network-constrained domain to the
Euclidean plane. Based on a (refined) constrained Delau-
nay triangulation as a navigation mesh, the use of Contrac-
tion Hierarchies with local path optimization strategies allows
computing paths which are less than 2% longer than the op-
timum within a few milliseconds even on problem instances
with millions of obstacle vertices. We draw upon the Open-
StreetMap project to be able to generate problem instances of
almost arbitrary size and develop a lower bounding technique
for very large problem instances for which optimal solutions
cannot be easily computed.

2 Preliminaries
2.1 Visibility-Graph-based Solution
It is quite easy to realize that an optimal path in an ESPP in-
stance consists of consecutive straight line segments and only
changes direction at convex obstacle vertices, e.g., the green
path in Figure 1 cannot be optimal. This simple observation
immediately leads to an optimal (in terms of output quality)
algorithm for ESPP if source and target are obstacle vertices
(the case which we focus on): in a preprocessing phase we
construct a so-called visibility graph which contains as ver-
tices all obstacle vertices. For each pair v, w of mutually
visible obstacle vertices, there is an edge {v, w} in the vis-
ibility graph of weight |vw|. A query between vertices s and
t can then be answered by running Dijkstra’s algorithm on
the visibility graph. While this yields optimal paths, the main
problem with this approach is its space consumption. The vis-
ibility graph can easily have Θ(n2) edges which makes this
approach impractical for non-miniscule problem instances.

2.2 Contraction Hierarchies (CH)
Contraction Hierarchies (CH) [Geisberger et al., 2012] are
a technique to accelerate shortest path planning in road net-
works. In a preprocessing phase, the nodes of the weighted
input graph G(V,E, c) are contracted one after another. The
contraction process for node v consists of removing v and all
of its incident edges from G and inserting so-called shortcut
edges between former neighbors u and w of v in case the
only shortest path from u to w was uvw. We then call v the
skip node of edge uw and the shortcut receives the weight
c(uw) = c(uv) + c(vw). This ensures that at any stage of

Figure 2: Constrained Triangulation of a set of (blue) polygons.

the preprocessing, the shortest path costs between all so far
uncontracted nodes are still the same as in the original graph.

After all nodes are contracted, a new graph G′(V,E ∪
E+, c) is constructed which consists of the original graph
plus all shortcut edges E+ that were created during the con-
tractions. Furthermore, the order in which the nodes were
contracted is stored by assigning each node v its rank r(v)
in that order. To answer shortest s-t path queries, a bi-
directional Dijkstra run is conducted in the CH-graph G′,
where in the forward run from s only upward edges are con-
sidered, that is edges ab with r(a) < r(b), and in the back-
ward run only downwards edges with r(a) > r(b). It is easy
to see that this Dijkstra run settles the node with highest rank
on the shortest s-t-path in both the forward and the backward
run with the correct shortest path cost. If not only the shortest
distance is of interest, one can store with each shortcut its two
skipped edges during preprocessing and ’unfold’ the shortest
path after the bidirectional Dijkstra.

CH works correctly with any contraction order of the
nodes. However, the speed-up over Dijkstra depends on the
contraction order. There are very fast ordering heuristics
which achieve excellent results in practice, we use the so-
called edge difference from [Geisberger et al., 2012] which
reduces query times by four orders of magnitude compared
to plain Dijkstra on continent-sized road networks after a few
minutes of preprocessing.

There are other speed-up techniques for road networks, yet
CH is still one of the most popular ones in practice due to its
simplicity. Several other (even faster) speed-up schemes use
CH as their basis. See [Bast et al., 2016] for a survey. Note
that CH does not work equally well for all graph instances,
already more complex edge costs decrease the efficiency of
CH by at least one order of magnitude in practice, e.g., see
[Funke et al., 2017].

2.3 Planar Subdivisions/Navigation Mesh
Having algorithms operate directly on a set of polygons in the
plane seems somewhat challenging, as the set as such pro-
vides very little structure in terms of combinatorial proxim-
ity structure (e.g., determining nearby other polygon is non-
trivial). Hence most approaches like [Aleksandrov et al.,
2000; Cui et al., 2017] for solving the ESPP operate on a
planar subdivision of the free space ’between’ the obstacle
polygons, sometimes also called navigation mesh. An exam-
ple for such a planar subdivision/navigation map is shown in
Figure 2 where a constrained triangulation of the blue poly-
gons is depicted. A constrained triangulation is a triangula-
tion of the polygon vertices where all polygon edges are also
part of the triangulation.
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Figure 3: Constrained Delaunay Triangulation (left), after Delaunay refinement (right). Obstacle edges are red.

3 Discretization and Acceleration
The overall idea of our approach is to first compute a ’good’
navigation mesh, such that computing shortest paths on that
yields reasonably short paths. As shortest path computation
on the mesh (simply treating the mesh as a graph with ver-
tices and edges) resembles the network-constrained scenario,
speed-up techniques like CH might be applicable.

3.1 CDT-based Discretization
A natural choice for a navigation mesh is the Constrained
Delaunay Triangulation (CDT) [Chew, 1989] which is a tri-
angulation of the vertex set preserving the obstacle edges, see
Figure 3, left. While a CDT tries to avoid triangles with very
small angles, this often cannot be avoided due to the con-
straining edges, which in turn leads to very thin triangles as
can be seen in Figure 3, left. As we want to use the triangu-
lation graph as a basis for our path computation, this would
lead to paths which are rather different from the actual short-
est path which we are aiming for. One way to ameliorate
this problem is to allow the insertion of additional points into
the triangulation to obtain ’well-shaped’, non-skinny trian-
gles. We employ Ruppert’s algorithm [Ruppert, 1995] to ob-
tain such a triangulation. It repeatedly inserts the circumcen-
ters of skinny triangles as Steiner points until all triangles are
well-shaped, see Figure 3, right. Due to the good-natured
shape of the triangles, it seems intuitive that an optimal path
can be transformed into a path in this triangulation with only
slightly higher cost. The well-shaped triangles also facilitate
the search for the shortest path between points that are not
obstacle vertices (not the focus of this work).

3.2 CH Precomputation
We first consider the shortest path problem on the triangula-
tion only, that is, we associate with every triangulation edge
which is not in the interior of an obstacle its Euclidean dis-
tance. We then compute shortest paths between vertices us-
ing, for example, Dijkstra’s algorithm. To speed-up such

shortest path calculations we employ Contraction Hierar-
chies, see Section 2.2. It is not clear a priori, though, how
well CH work for these instances, since there is not a natu-
ral hierarchy as in road networks (interstates vs. motorways
vs. small highways etc.). Yet, our experiments will show
that a considerable speedup of orders of magnitude compared
to plain Dijkstra’s algorithm can be achieved, though smaller
than in the road network scenario.

So in a preprocessing step we perform the CH precomputa-
tion on the refined CDT of our problem instance. This allows
us to answer subsequent queries on the triangulation graph
quickly and exactly. It remains to investigate how well the re-
sulting paths compare to the actual Euclidean shortest paths
and how they could potentially be improved.

4 Path Optimization
The paths computed by the CH are quite certainly not opti-
mal due to the loss in precision by the discretization, so in a
postprocessing step we try to improve the paths computed on
the navigation mesh.

The basis of these postprocessing strategies is a routine to
decide whether two vertices are mutually visible. For exam-
ple, in Figure 4, when trying to decide whether P1 and P2 are
mutually visible, one starts traversing the triangulation along
the segment P1P2, in the example visiting triangles t1, t4,
and t5 before being blocked by an obstacle. P1 and P3 are
seen to be mutually visible by traversal of triangles t2 and t3.
The cost of such a check is essentially linear in the number of
traversed triangles. We also use this routine to compute the
visibility graph (which provides us with the ground truth of
shortest path distances).

Given a path P1P2 . . . Pk which is optimal in the dis-
cretization, we aim at decreasing its length.

4.1 Full-Optimization
This improvement strategy computes the visibility graph re-
stricted to the node set {P1, . . . Pk} with the visibility edges
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Figure 4: Visibility in a triangulated domain with obstacles (blue).

Figure 5: The path P1P2P3P4 from the discretization would be
shortened by Greedy-Opt to P1P3P4 whereas Full-Opt yields the
better solution P1P2P4

bearing their Euclidean distances. In this graph we run Dijk-
stra’s algorithm. This clearly yields the shortest path con-
necting P1 to Pk amongst all paths that can only turn at
{P1, . . . Pk}. Unfortunately, this does not come for free:
Θ(k2) visibility checks have to be performed (at query time)
which might be too costly, in particular for large k.

4.2 Greedy-Optimization
The greedy strategy tries to avoid excessive calls to the vis-
ibility check at the cost of a worse solution quality. Starting
with P1 we determine the minimum j1 > 1 such that P1 and
Pj1 are not mutually visible; clearly j1 > 2. After that we
repeat on the path Pj1−1 . . .Pk etc. This clearly requires only
O(k) visibility checks, each of which could still be quite ex-
pensive, though. In the experiments we see that the loss in
quality is not that bad, though. For an example of the greedy
algorithm exhibiting worse quality than full optimization, see
Figure 5.

4.3 Funnel
In [Lee and Preparata, 1984] the authors developed an algo-
rithm (later called funnel algorithm) to compute the shortest
path between two points within a given simple n-vertex poly-
gon in time O(n log n), which later was adapted to compute
the shortest path of a given homotopy type in a polygonal do-
main with obstacles. In our case we can simply interpret the
union of non-obstacle triangles touched by the edges of our
path as the polygon and use their algorithm to compute the
optimum path from P1 to Pk in time O(k log k). Note that
in contrast to the previous two strategies, the resulting path
might turn at vertices other than vertices of the path itself (in
that sense, it is more flexible). On the other hand, the fun-
nel algorithm can only return a path of the same homotopy
type as the original path, which is not a restriction for the

two visibility-based approaches. So funnel does not domi-
nate the others, yet, the funnel algorithm has the advantage
of a guaranteed running time of O(k log k) when improving
a path consisting of k segments.

5 Shortcut-Optimized-CH (SO-CH) and
Lower Bounds

While path optimization is quite effective in terms of qual-
ity of the solution, in particular its Full-Opt variant is quite
expensive to perform at query execution, where it then dom-
inates the overall query time as the CH-supported query is
typically very fast. Hence it is natural to investigate whether
the path optimization could (at least partly) be performed as
a preprocessing step.

Furthermore, while we will be able to compare to the actual
optimum path for smaller problem instances via the visibility-
graph-based baseline, this is becomes difficult as soon as the
problem instances get larger. Yet, for those instances we
would also like to have at least a provable upper bound on
the deviation from the optimum.

5.1 Shortcut-Optimized CH (SO-CH)
In the course of the CH construction shortcuts are created
which represent shortest paths in our CDT. If we are willing
to invest some more preprocessing time, we can tune the con-
structed CH further as follows: Consider a shortcut (u,w).
If u and w are mutually visible, we simply update the cost
of the shortcut (u,w) to its Euclidean distance. To make full
use of the updated distances, though, we also better update
shortcuts which do not have mutually visible endpoints but
contain as subpath an updated shortcut. This can be achieved
by considering all shortcuts ordered increasingly according
to smaller level of their vertices. When processing shortcut
(u,w) we first check for mutual visibility; if so, set its cost
accordingly. Otherwise set the cost of (u,w) to the sum of
the costs of of (u, v) and (v, w), where (u, v) and (v, w) are
the edges bridged by shortcut (u,w).

While this scheme – which we call SO-CH – increases
preprocessing times, our experimental results show that the
resulting path quality (even without any optimization during
query execution) improves considerably.

5.2 Lower Bound Computation
In order to lower bound the length of shortest paths between
two obstacle vertices, we compute the shortest path between
them in a heavily simplified problem instance, as seen in Fig-
ure 6. Simplification is achieved separately for each obsta-
cle polygon by repeatedly removing polygon vertices (and
replacing the two incident edges with only one edge) until
some specified removal threshold is met: 99.5% of vertices
for polygons with more than 2000 vertices, 95% otherwise.

We only cut off convex corners to guarantee that any path
which doesn’t intersect obstacles in the original instance also
does not intersect obstacles in the simplified instance. Candi-
date corners to be cut off are maintained in a priority queue
ordered according to the area which would be removed when
cutting off the respective vertex. To cut off corners in a bal-
anced way we add the priority with which a corner was re-
moved to its neighboring two corners. Note that in order for
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Figure 6: Simplified polygons (yellow) around the Mediterranean
sea vs. full polygons (red).

a corner v to be considered convex it must not only exhibit
an interior angle of at most π, but the interior of the triangle
defined by the vertex and its two neighboring vertices u and
w must not be intersected by any of the remaining polygon
edges. The latter condition is verified by traversing a con-
strained triangulation of the polygon from u to w and check-
ing for intersected constraint edges.

Finally we discard all polygons with less than 4 remaining
vertices and we compute a visibility graph for the simplified
instance which has reasonable space consumption due to the
much lower vertex count. Now a simple Dijkstra query on the
visibility graph provides lower bounds.

6 Experiments
We implemented all algorithms in C++ and evaluated them on
a Ryzen 9 5900x 12-core CPU/128GB RAM running Ubuntu
Linux 22.04. We use the CGAL library [The CGAL Project,
2023], in particular its geometry kernel, the exact geometric
predicates, as well as the constrained Delaunay triangulation
code. Unless stated otherwise, averages and maxima were
calculated over 1000 trials. Source code and data sets are
available on a companion page [Funke, 2024].

To be able to evaluate our algorithms on instances of (al-
most) arbitrary size, we use a Mercator projection of the
coastline polygons of the OpenStreetMap project [The Open-
StreetMap Project, 2024]. The complete Planet data set
contains 645,628 obstacle polygons (corresponding to con-
tinents and islands) with around 15M vertices in total. For
this large graph, computing the visibility graph is infeasi-
ble, so we extracted three smaller problem instances Aegaeis,
Medi(terranean), and Pata(gonia). See Table 1 for their char-
acteristics including the visibility graph sizes (and its parallel
construction time). The visibility graph for the Pata instance
is relatively small due to the high density of obstacles/islands
(also see Figure 7). Quite obviously it is infeasible to com-
pute the visibility graph for the Planet instance even with con-
siderably more powerful hardware than what was available.

6.1 Discretization
The first step of our approach is the construction of a naviga-
tion mesh. We evaluated two strategies: an ’ordinary’ CDT
as well as a variant with additional Delaunay refinement as
described in Section 3.1. Construction of the CDT for the

Aegaeis Medi Pata Planet
# vertices 207k 316k 1.0M 15.4M
# edges VisGraph 310M 721M 315M -
time VisGraph 159s 466s 240s -
# CDT triangles 217k 329k 1.1M 16.4M
# refined triangles 864k 826k 3.5M 58.3M

Table 1: Test instances: number of vertices, size of respective vis-
ibility graph, construction time of visibility graph (if applicable).
Number of triangles in CDT and refined CDT.

Avg. Max. with Greedy

Aegaeis Unrefined 107.7% 122.2% 101.7%
Refined 104.8% 111.5% 100.4%

Medi Unrefined 107.8% 129.2% 101.4%
Refined 104.8% 109.5% 100.4%

Pata Unrefined 104.0% 113.9% 101.0%
Refined 104.1% 108.4% 100.4%

Table 2: Relative path lengths on refined and unrefined triangula-
tion, average and maximum, average after improvement. 100% cor-
responds to the length of the optimal path.

Planet data set took 178s, its refinement 409s (based on the
CGAL code for constructing CDT in the plane). In Table 1
we also state the number of triangles before and after refine-
ment. For example in the Pata instance, the number of tri-
angles increased from 1.1 million to around 3.5 million after
refinement.

It remains to see whether refinement – and hence increased
graph size – is actually worth the effort. To analyze the ef-
fect of refinement we compared shortest paths of 1000 ran-
dom source target pairs with the ground truth visibility graph,
see Table 2. The maximum deviation from the optimum is
considerably worse for the unrefined graph. On average, the
refined graph fares considerably better for Aegaeis and Medi
and slightly worse on Pata. In anticipation of the results for
improvement steps (Section 6.4), choosing the refined graph
is even more worthwhile. Here the refined version fares con-
sistently better. Hence from now on, all our experiments will
only use the refined triangulation.

6.2 CH Acceleration
To accelerate queries on the navigation mesh we precompute
a CH on the triangulation graph (refined). Table 3 shows that
the number of shortcuts created is about the same as the num-
ber of original edges in the graph. This is very similar to
CH constructions on road networks, the preprocessing time
is considerably higher, though; for the planet graph it takes
more than 30 minutes (multithreaded); on a road network of
comparable size, it would take around 5 minutes. The speed-
up compared to Dijkstra on the largest graph is about 3 orders
of magnitude (almost 2 seconds vs 0.89 milliseconds), which
is about one order of magnitude less than typically experi-
enced in the road network context. Overall we were quite
pleased with the achievable speedup, even though there is no
obvious hierarchy in our setting. Yet, some vertices probably
appear in quite a lot of shortest paths, e.g., the Cape of Good
Hope or the Strait of Gibraltar; this might suffice to make CH
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Aegaeis Medi Pata Planet
#Orig.Edges 2.8M 4.2M 11.6M 185.8M
#Shortcuts 2.6M 3.9M 11.9M 195.4M
Time 16s 25s 96s 1,914s
Dijkstra 37.7ms 66.6ms 96.3ms 3,406.8ms
CH Query 0.13ms 0.15ms 0.28ms 0.89ms

Table 3: Contraction Hierarchy: Number of created shortcuts, con-
struction time, query time vs. Dijkstra query time.

Aegaeis Medi Pata Planet
construction 3.1s 5.1s 20.5s 80.2s
CH-query 0.13ms 0.15ms 0.28ms 0.89ms
SO-CH-query 0.11ms 0.13ms 0.23ms 0.68ms
CH-query 104.8% 104.8% 104.1% -
SO-CH-query 101.2% 101.1% 100.8% -

Table 4: SO-CH construction time, query time and path lengths
compared to optimal path.

acceleration effective.

6.3 Shortcut Optimized CH (SO-CH)
Let us now evaluate the shortcut improvement scheme. Table
4 shows construction time, query time and improvement over
the standard CH. First, we can see that the construction (for a
given CH) is very fast when compared to the rest of the pre-
processing, namely building the CH. In terms of query times,
SO-CH even improves upon standard CH queries. This might
be due to the fact that fewer edges have to be relaxed. Most
importantly, SO-CH results in significantly shorter paths. In
all cases path lengths are reduced by at least 3% on average
(no ground truth for the Planet data set).

6.4 Path Optimization
A key ingredient of our technique is the improvement of the
path obtained from the triangulation graph. Three schemes
were presented in Section 4: Full, Greedy, and Funnel.

The quality of the results is shown in Table 5. We compare
the length of the resulting (improved SO-CH) paths to the
paths returned by a standard CH as well as by SO-CH, both
without improvements. For example, on the Pata data set, the
standard CH returned a path about 4.1% longer than the opti-
mum on average. SO-CH without improvement lowered that
already to less than 1%, Full, Greedy and Funnel reduced that

Aegaeis Medi Pata
standard-CH Avg 104.8% 104.8% 104.1%
SO-CH Avg 101.2% 101.1% 100.8%
Full Avg 100.2% 100.2% 100.3%
Full Max 102.3% 102.2% 102.1%
Greedy Avg 100.3% 100.3% 100.3%
Greedy Max 103.8% 102.7% 102.1%
Funnel Avg 100.1% 100.1% 100.2%
Funnel Max 102.2% 101.7% 100.9%

Table 5: Relative path lengths after improvement. 100% corre-
sponds to ground truth.

Aegaeis Medi Pata
Avg Max Avg Max Avg Max

Full 0.6 2.8 1.3 11.1 8.2 79.0
Greedy 0.1 0.4 0.1 0.7 0.5 3.1
Funnel 0.1 0.2 0.1 0.4 0.3 1.5

Table 6: Improvement times in milliseconds

Figure 7: Example for bad lower bound: Original obstacles (red),
shrunken/pruned obstacles (yellow), actual optimal path (white), op-
timal path in shrunken instance (blue).

even further to 0.3%, 0.3% and 0.2% respectively. Overall, in
terms of average and maximum error, Funnel seems to fare
best with Full getting really close. There are big differences
with respect to the running times, though, as can be seen in
Table 6. Even on average, Full is considerably worse than the
other two approaches. This comes as no surprise as there are
potentially Θ(k2) visibility checks required, each of which
might take quite long itself. In contrast to that, Funnel guar-
antees a near-linear running time below 2 milliseconds even
in the maximum. So overall, the Funnel improvement fares
clearly best amongst the improvement strategies.

6.5 Lower Bounds
As described in Section 5.2 we construct a ’shrunken’ version
of our problem instance to obtain lower bounds; this takes 19
seconds for the whole planet data set, which reduced the num-
ber of vertices to around 188k – a size amenable for the con-
struction of the visibility graph which could be done in 9 sec-
onds (fully using 12 CPU cores). In Table 7 we see that the re-
sulting visibility graph has around 173 million edges. The re-
spective smaller subgraphs have accordingly fewer nodes and
edges. To assess the quality of the resulting lower bounds,
we sampled 1000 source-target queries and compared their
lengths in the shrunken and the original visibility graph (only
possible for the smaller subgraphs). While on average the
lower bound is more than 90% the length of the actual short-
est path, for some queries the lower bound is as bad as only
30.7% of the actual length; this mostly stems from short range
queries where the relative difference becomes large as soon
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Aegaeis Medi Pata Planet
# nodes 2,760 4,078 14,176 188,269
# edges 506k 829k 1.8M 173M
Average 96.7% 96.7% 92.0% -
Min 30.7% 48.1% 38.4% -
Max 100.0% 100.0% 100.0% -

Table 7: Characteristics of visibility graphs of shrunken instances.
Quality of the respective lower bounds.

Aegaeis Medi Pata Planet
Quality (GT) 100.1% 100.1% 100.2% –
Quality (LB) 104.5% 103.9% 109.5% 101.6%
SO-CH Query 0.11ms 0.13ms 0.23ms 0.68ms
Improvement 0.06ms 0.08ms 0.27ms 0.69ms
Total Query 0.17ms 0.21ms 0.50ms 1.37ms

Table 8: Quality of computed paths (vs ground truth and vs lower
bound), SO-CH-query time, improvement time, total query time.

as one of the involved obstacle polygons is shrunken or even
dropped. For queries inside a deeply nested area like Patag-
onia, our lower bounding technique also reaches its limits
as can be seen in Figure 7. Here, in the shrunken instance,
paths get considerably shorter due to shrunken or even pruned
(due to small size) obstacle polygons. We want to emphasize
that the shrunken planet data set was used to obtain lower
bounds also for the small data sets, even though higher qual-
ity lower bounds could easily be achieved with still very mod-
erate memory consumption by shrinking less.

6.6 Putting It All Together and Comparison With
Existing Approaches

In Table 8 we summarize the performance of our approach
(using SO-CH and the Funnel improvement) for all our data
sets. Except for the largest planet data set where the con-
struction of the visibility graph is infeasible, we compare to
the actual optimum path length. For the smaller data sets the
average deviation from the optimum is around 0.1% only.
CH query and improvement times are together below one
millisecond. For the large planet data set, we compare to
the lower bound computed via the visibility graph of the
shrunken polygons. Here we have an average deviation of
1.6% from the lower bound but conjecture that in reality we
are much closer to the optimum. Note that when compar-
ing to the lower bound only, the planet queries appear better
than the ones on the smaller data sets. This is due to ran-
dom queries typically being long range with large parts of the
(near) optimal path traversing open space which can be easily
be optimized by our improvement step. Even on this largest
data set, a query can be answered in less than 2ms.

We ran Polyanya, a state-of-the-art solver for solving ESPP
exactly, on our data sets. While running the experiments
on the smaller data sets was quite hassle-free, on the largest
Planet data set, we ran out of memory for many of the queries,
which is why for this Planet data set, the running times were
taken over only 100 queries that could be completed. For
comparison: the maximum memory allocation for all steps

Aegaeis Medi Pata Planet
Average 20.5ms 70.3ms 1.1s 56.6s
Max 722.5ms 1.84s 4.7s 449.5s

Table 9: Polyanya query times.

avg. max edges avg. max
time time quality quality

Aegaeis 56.3s 57.5s 1.3 · 1012 100.7% 108.0%
Medi 69.5s 70.5s 1.2 · 1015 101.0% 107.1%

Table 10: The FPTAS approach with ϵ = 0.5 on the same data sets.

(precomputation and query) of our pipeline is less than 64GB
of RAM. In any case, running times of Polyanya were or-
ders of magnitude slower than our approach, which is not sur-
prising, though, as no precomputated information (apart from
the navigation mesh) can be used during the query answering
phase.

In Table 10 we examined the FPTAS [Aleksandrov et al.,
2000] approach on our data sets. As to be expected, the FP-
TAS graph gets extremely large, even for a moderate choice
of ϵ = 0.5. There is a very bad dependence on small angles
in the navigation mesh; they lead to a very fast increase of
vertices and edges in the discretization. Depending on the
instance, such small angles are unavoidable in spite of tech-
niques like Delaunay refinement. Even for Aegaeis, the FP-
TAS graph contains an extremely large number of edges. The
query times in Table 10 could only be achieved via an im-
plicit representation of the graph (and applying further prun-
ing techniques as described in [Aleksandrov et al., 2000]).
Clearly, this approach is not suitable for larger graphs even
though the quality of the resulting paths is reasonably good.

7 Conclusions
We presented a preprocessing scheme that allows for the ul-
trafast answering of approximate Euclidean shortest paths
queries even for large problem instances. Our approach com-
bines Delaunay mesh refinement with speed-up techniques
from the network-constrained domain, local improvement
techniques as well as a lower bounding technique, which al-
lows us to give instance-based quality guarantees even when
the optimum solution is not easily computed. Compared to
state-of-the-art algorithms that can compute the optimum so-
lution for such problem sizes, we reduce the query times
from minutes to milliseconds with moderate preprocessing
effort. Experiments show that our results are less than 2%
above the optimum solution. For smaller problem instances
we can even measure a deviation of roughly 0.1% from the
optimum on average. We conjecture this to hold true for the
larger problem instances as well, for which we have only a
lower bound to the optimum solution. We want to note that
computing Euclidean shortest paths amidst obstacles in R3 is
NP-hard [Canny and Reif, 1987]. So approaches like ours
which provide (provably good) approximations might be the
preferred solution strategy compared to exact solutions in di-
mensions higher than 2.
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