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Abstract
Multi-modal sarcasm detection (MSD), which aims
to identify whether a given sample with multi-
modal information (i.e., text and image) is sarcas-
tic, has garnered widespread attention. Recent ap-
proaches focus on designing sophisticated architec-
tures or mechanisms to extract sarcastic cues from
entire or local image and text features. Neverthe-
less, a long-overlooked issue is that current MSD
task invariably suffers from unintended dataset bi-
ases, especially the statistical label bias and sar-
casmless word bias. Concretely, such harmful bi-
ases are confounders that may mislead existing
models to learn spurious correlations, significantly
limiting models’ performance. To tackle this issue,
this paper proposes a Training-Free Counterfactual
Debiasing framework TFCD, which first formu-
lates the causalities among variables in MSD via a
tailored causal graph. Then, TFCD extracts biases
from the conventionally-trained model by generat-
ing counterfactual utterances and contexts and mit-
igates them using element-wise subtraction. Exten-
sive experiments on two benchmarks demonstrate
the effectiveness of the proposed TFCD. Remark-
ably, TFCD requires neither data balancing nor
model modifications, and thus can be seamlessly
integrated into diverse state-of-the-art approaches
and achieve considerable improvement margins.

1 Introduction
Due to the rise of social media platforms such as X and
Facebook, multi-modal sarcasm detection (MSD) has gar-
nered substantial research interest in recent years. Formally,
MSD aims to recognize the sarcastic sentiment in multi-
modal social posts [Cai et al., 2019], which typically refer
to textual paragraphs accompanying images. Unlike the tra-
ditional sarcasm detection which primarily focuses on tex-
tual cues [Riloff et al., 2013; Poria et al., 2016; Zhang et
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Figure 1: The probability distribution of (a) different labels and (b)
sarcasmless words from one current MSD [Cai et al., 2019] training
dataset, confirms various biases in the MSD task.

al., 2016], the key objective of MSD is to effectively iden-
tify inter- and intra-modal inconsistencies in the expression
of sentiment within a coupled image text pair.

Towards this goal, a series of models have been proposed
for MSD. Therein, early approaches concentrated on lever-
aging entire image and text features for incongruity learn-
ing [Pan et al., 2020; Xu et al., 2020]. However, these meth-
ods neglected the fact that sarcastic information might be ex-
pressed in specific segments of the text and particular regions
of the image. Motivated by this, recent studies tried to employ
graph neural networks to explore the local semantic relation-
ships within textual and visual modalities [Liang et al., 2021;
Liang et al., 2022]. More recently, [Qin et al., 2023] em-
ployed the powerful pre-trained CLIP model [Radford et al.,
2021] to detect different sarcasm cues captured from multiple
perspectives, achieving state-of-the-art results.

Despite the significant advancements achieved by existing
MSD works, we argue that they remain susceptible to cap-
turing harmful dataset biases. These biases can mislead the
models, leading to inaccurate predictions. Based on our ob-
servations, we group these biases into two main types: (1)
Statistical label bias. As depicted in Figure 1(a), the MSD
training set is dominated by the sarcastic class, which com-
prises 56.4%, compared to 43.6% for the non-sarcastic class.
Numerous studies [Lin et al., 2022; Pan et al., 2023] have
demonstrated that models trained on such imbalanced data
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Debiasing strategies Data-manipulation-free Model-balancing-free
Data-level debiasing [Qian et al., 2020; Wang and Culotta, 2021; Jia et al., 2024] ✗ ✓

Model-level debiasing [Zhang et al., 2020; Sun et al., 2022; Chen et al., 2023] ✓ ✗

TFCD (Ours) ✓ ✓

Table 1: Method comparison.

tend to be biased towards predicting the majority class. (2)
Sarcasmless word bias, which refers to the strong associa-
tions that may develop between sarcasmless specific words
and the sarcastic class. As shown in Figure 1(b), the word
‘weather’ is highly likely to be correlated with the sarcas-
tic class. In this context, the conventionally-trained models
tend to unfairly categorize utterances containing these spe-
cific words, relying on biased statistical information rather
than intrinsic semantics [Zhu et al., 2022; Zhou et al., 2023].

To mitigate biases, various debiasing strategies have been
proposed, which can be mainly categorized into two types
(cf. Table 1): (1) Data-level debiasing strategies (e.g., re-
sampling [Qian et al., 2020] and generating counterfactual
samples [Wang and Culotta, 2021]), aim to balance the train-
ing set but are often limited by the additional data han-
dling [Zhang et al., 2020] and extra training time. (2) Model-
level debiasing ones (e.g., reweighting [Zhang et al., 2020]
and counterfactual reasoning [Sun et al., 2022; Chen et al.,
2023]), adjust category influence during training but require
careful strategy selection and retraining from scratch.

Unlike current debiasing works that rely on data balanc-
ing manipulations or modifying then retraining the model,
we propose a Training-Free Counterfactual Debiasing frame-
work termed TFCD for MSD. Concretely, we first formu-
late the procedure of the MSD task via a proposed causal
graph. Then, we employ a masking mechanism [Qian et al.,
2021] to generate counterfactual examples from the original
input data to identify detrimental biases in the trained mod-
els. In this case, the biases (including statistical label bias
and sarcasmless word bias) are essentially unintended con-
founders that mislead the models to learn the spurious cor-
relations, and need to be eliminated. We mitigate these two
extracted biases using conceptually simple yet empirically ro-
bust element-wise subtraction operations on prediction distri-
butions, without any retraining. We comprehensively evalu-
ate the effectiveness and superiority of the proposed TFCD
on two MSD benchmarks. Extensive experiments and analy-
ses demonstrate that TFCD can significantly and consistently
improve existing baselines, achieving a new state-of-the-art.

Overall, the main contribution of this paper is three-fold:

• To our best knowledge, this is the first work to investi-
gate debiasing in MSD. We identify that certain biases
(i.e., statistical labels bias and sarcasmless word bias)
act as confounders, misleading models to learn the spu-
rious correlations for prediction.

• TFCD, a training-free counterfactual debiasing frame-
work for MSD that mitigates statistical label bias and
sarcasmless word bias, to facilitate a fair contribution of
diverse samples and contexts to sarcasm detection.

• Extensive experiments verify that the proposed TFCD

can facilitate existing models to achieve unbiased pre-
dictions. More encouragingly, TFCD is model-agnostic
and can be seamlessly integrated into any existing MSD
approach to boost baseline performance.

2 Related Work
Multi-modal Sarcasm Detection. With the rapid popular-
ization of social media platforms, multi-modal sarcasm de-
tection (MSD) has garnered increasing research attention in
recent years [Zhu et al., 2024a]. [Schifanella et al., 2016]
first used both textual and visual information to tackle the
MSD task. [Cai et al., 2019] created an MSD benchmark
based on Twitter and proposed a hierarchical fusion model.
Thereafter, [Xu et al., 2020] and [Pan et al., 2020] captured
both intra-modality and inter-modality incongruities based on
global textual and visual features, respectively. [Liang et al.,
2022] and [Liang et al., 2021] utilized cross-modal graph-
based models [Zhu et al., 2024b] for drawing incongruous re-
lations across local multi-modal features. Most recently, [Qin
et al., 2023] leveraged the power of pre-trained CLIP [Rad-
ford et al., 2021] to perform MSD and achieved cutting-edge
results. Despite these advancements, unintended dataset bi-
ases have been neglected in previous MSD studies, which
limits the performance of MSD models.
Debiasing Strategy. To address dataset bias, several debi-
asing strategies are proposed to enhance the robustness and
reasoning ability of models [Xin et al., 2023], which can
be roughly divided into two groups: (1) Data-level debi-
asing strategies include data balancing, data resampling as
well as data augmentation [Qian et al., 2020; Wang and Cu-
lotta, 2021]. (2) Model-level debiasing strategies include us-
ing unbiased embeddings [Sun et al., 2022], adjusting thresh-
olds [Kang et al., 2019], and reweighting [Zhang et al., 2020]
techniques. However, the former results in additional man-
ual costs for data manipulations. On the other hand, the
latter necessitates a meticulous selection of balancing tech-
niques and retraining. Within the multi-modal research com-
munity, various debiasing efforts have emerged on differ-
ent tasks such as multi-modal fake news detection [Chen
et al., 2023], and multi-modal sentiment analysis [Sun et
al., 2022]. Unfortunately, their methods still necessitate re-
training. There is contemporaneous work [Jia et al., 2024;
Yang et al., 2024a; Yang et al., 2024b] that also proposed
debiasing methods for MSA and MSD. Besides, several
training-free methods have been proposed [Qian et al., 2021;
Tu et al., 2023] and only perform debiasing on textual-
modality data. In this work, we extend the existing training-
free debiasing scheme to multi-modal setting and make the
first attempt to achieve a training-free debiasing strategy for
MSD, which has superiority over complex retraining modules
employed in previous approaches.
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Figure 2: (a) Current MSD models follow the conventional procedure of biased training (§3.2). (b) The architecture of our proposed TFCD,
which contains biases extraction (§4.1) and debiased inference (§4.2) on the same trained models.

3 Preliminaries

3.1 Task Formulation

Given a sample xi from the training set, the objective of MSD
task is to determine whether the sample implies any sarcasm
by learning a model f(·) using the text Ti and corresponding
image vi. This conventional training procedure is represented
as ŷi = f(Ti, vi |Θ) ∈ {0, 1}, where ŷi = 1 indicates the
sample is sarcastic and vice versa; Θ represents the learnable
model parameters. For simplicity, we temporally omit the su-
perscript i that indexes the training samples in §3.2 and §4.1.

3.2 Biased Training

Let Ht and Hv denote the encoded representations of the tex-
tual modality (T ) and visual modality (V ), respectively. As
mentioned in §1, existing MSD models focus on designing
sophisticated architecture or mechanisms to extract sarcastic
cues from entire or local text and image features:

M = fm(T = Ht, V = Hv), (1)

where M denotes the fused multi-modal feature and fm(·)
denotes the fusion strategy that depends on a certain MSD
model. Then, we use feedforward propagation to predict ex-
amples and backward propagation to update the learnable pa-
rameters of the model in an end-to-end fashion as shown in
Figure 2(a). Following previous works, we employ the cross-
entropy loss to optimize the MSD task:

L(Θ) = y log(ŷ) + (1− y) log(1− ŷ). (2)

4 Training-Free Counterfactual Debiasing
This section elaborates on the details of our proposed TFCD
framework, whose architecture is shown in Figure 2(b).

4.1 Biases Extraction
During inference, the conventionally-trained models in §3.2
make predictions via the feedforward propagation to obtain
the probability distribution. However, the prediction is eas-
ily affected by unplanned confounders [Pearl and Mackenzie,
2018], which may produce statistical label bias and sarcasm-
less word bias. Aiming to obtain unbiased prediction, our
objective is to debias only during inference by blocking the
spread of biases from training. Towards this goal, we pro-
pose training-free counterfactual debiasing to extract the two
biases captured by the trained models and mitigate them.

In the following, we first formulate a tailored causal graph
for MSD. Then, we elaborate on how to extract the two biases
from the trained model based on the constructed graph.

MSD Causal Graph. The causal graph [Pearl et al., 2016]
is a probabilistic graphical model used to describe how vari-
ables interact with each other, expressed by a directed acyclic
graph G = {N , E} consisting of the sets of variables N and
the cause-and-effect correlations E between two nodes (vari-
ables). For instance, X→ Y indicates that X is the cause of
the effect Y, meaning that the value of Y is influenced by X.

As illustrated in Figure 3(a), there are four variables in-
volved in the MSD causal graph, which are textual feature
Ht, visual feature Hv , multi-modal feature M, and predic-
tions o. As such, we can obtain the factual casual graph for
§3.2. Note that our causal graph applies to a variety of MSD
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(a) (b)

Figure 3: (a) Causal graph for factual MSD. (b) Causal graph with
confounders Z for counterfactual MSD.

methods, since it is highly general, imposing no constraints
on the detailed implementations.

Statistical Label Bias. As illustrated in Figure 3(b), there
exist unplanned confounders Z, which is the cause of the
spurious correlations between the model input H{t,v} and
predictive logits o. Such confounders may occur due to
the unbalanced label distribution (i.e., ‘Sarcastic’ dom-
inates the training data over “Not Sarcastic”). There-
fore, the trained models tend to unfairly assign outputs to
‘Sarcastic’ category based on biased statistical informa-
tion, which is not unreliable for MSD. To decouple the spu-
rious correlation, we use the backdoor adjustments [Pearl et
al., 2016] with do-calculus operation to calculate the corre-
sponding intervention distribution:

P(o∗| do(M)) = P(o∗|M∗) = f(M∗),

M∗ = fm(T = H∗
t , V = H∗

v),
(3)

where M∗ can take any form as long as they are no longer
influenced by Z, effectively breaking the connection between
H{t,v} and o. To extract statistical label biases, in the causal
intervention operation, M∗ is intervened under no-treatment
condition where T and V have not been accessible. Note
that neural models cannot deal with no-treatment conditions
where the inputs are void. Therefore, we assume that the
model will randomly guess with equal probability (i.e., uni-
form distribution assumption) [Niu et al., 2021] to guarantee
a safe estimation. As MSD models cannot observe any words
and images after the intervention, the predictive logits o∗ only
reflect the adverse impact of statistical label bias.

Sarcasmless Word Bias. We further utilize a partially-
blindfolded counterfactual input where some words are
masked to distill the sarcasmless word bias from the trained
model. Specifically, our goal is to retain only sarcasm-
less words (e.g., the spurious ‘weather’-to-‘sarcastic’
mapping) in the utterance to measure their potentially neg-
ative influence. We first utilize pysentiment library1 to con-
struct a main-content words dictionaryDs. By masking main-
content words, we deliberately expose any spurious correla-
tions between sarcastic categories and sarcasmless words:

P(o†| do(M)) = P(o†|M†) = f(M†),

M† = fm(T = H†
t , V = H†

v).
(4)

Here, H†
t denotes counterfactual word embedding where

the main-content words are masked. To be specific, the mask

1https://pypi.python.org/pypi/pysentiment

MMSD/MMSD2.0 Train Validation Test
Sentences 19,816/19,816 2,410/2,410 2,409/2,409
Positive 8,642/9,572 959/1,042 959/1,037
Negative 11,174/10,240 1,451/1,368 1,450/1,372

Table 2: Statistics of two experimental datasets.

operation process can be formulated as follows:

H†
t = {ht,1, [mask], · · · ,ht,n}, ∀ht,j ← [mask] ∈ Ds,

(5)
where [mask] is used to hide a single token belonging to Ds

in the input sentence Ht. Meanwhile, H†
v should similarly

represent an unseen feature. In this work, we use all-zero
vectors to initialize it [Sun et al., 2022]. In this case, the
predictive logits o† reflect the pure influence of sarcasmless
words to the trained biased model.

4.2 Debiased Inference
After obtaining two biases, the final objective is to leverage
the direct effect from multi-modal representation Mi to pre-
dictive logits oi for each sample i to facilitate unbiased pre-
diction. This process can be formalized using the conceptu-
ally simple yet empirically robust element-wise subtraction:

ôi = oi − αo∗
i − βo†

i , (6)

where α and β are two hyper-parameters. Note that we as-
certain two adjustable scaling factors which are optimized to
the model’s performance on the validation set, since different
biases have diverse impacts on the final prediction.

5 Experiments
5.1 Experiment Setup
Datasets. We conduct experiments on two datasets:
MMSD [Cai et al., 2019] and MMSD2.0 [Qin et al., 2023].
MMSD is derived from English tweets. Thereinto, tweets
with some special hashtags are positive examples and those
without such hashtags are negative examples. MMSD2.0 is
upgraded from MMSD. The providers removed misleading
cues such as hashtags and emoji words, while it does not
address the inherent label bias and word bias present in the
dataset, which still influence the model’s learning process and
potentially lead to biased predictions. The statistics of these
two datasets are shown in Table 2.
Evaluation Metrics. Following previous works [Liu et al.,
2022; Qin et al., 2023], we adopt accuracy (Acc.), precision
(P), recall (R) and micro-average F1 score (F1) to evaluate
the model performance. Note that higher numerical values
signify better performance across all metrics.
Comparison Models. In our experiments, we choose seven
representative MSD models: D&R Net [Xu et al., 2020],
InCrossMGs [Liang et al., 2021], HFM [Cai et al., 2019],
Att-BERT [Pan et al., 2020], CMGCN [Liang et al., 2022],
HKE [Liu et al., 2022] and Multi-view CLIP [Qin et al.,
2023]. In detail, to demonstrate the effectiveness of the pro-
posed TFCD, we compare the performance of five repro-
ducible models with and without the TFCD framework.
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Model MMSD MMSD2.0
Acc. (%) P (%) R (%) F1 (%) Acc. (%) P (%) R (%) F1 (%)

D&R Net∗ [Xu et al., 2020] 84.02 77.97 83.42 80.60 – – – –
InCrossMGs∗ [Liang et al., 2021] 86.10 81.38 84.36 82.84 – – – –
HFM† [Cai et al., 2019] 83.58 76.79 84.03 80.35 71.04 64.92 69.63 67.01
HFM† + TFCD 84.63 (↑1.05) 77.95 (↑1.16) 85.08 (↑1.05) 81.48 (↑1.13) 72.01 (↑0.97) 65.83 (↑0.91) 70.44 (↑0.81) 67.86 (↑0.85)

Att-BERT† [Pan et al., 2020] 86.21 78.79 83.42 80.93 80.10 76.35 77.76 77.14
Att-BERT† + TFCD 87.48 (↑1.27) 79.83 (↑1.04) 84.83 (↑1.41) 82.22 (↑1.29) 80.98 (↑0.88) 77.28 (↑0.93) 78.86 (↑1.10) 78.20 (↑1.06)

CMGCN† [Liang et al., 2022] 86.63 82.14 83.95 83.49 79.92 75.84 78.10 76.86
CMGCN† + TFCD 87.85 (↑1.22) 83.24 (↑1.10) 85.29 (↑1.34) 84.75 (↑1.26) 80.86 (↑0.94) 76.87 (↑1.03) 79.06 (↑0.96) 77.87 (↑1.01)

HKE† [Liu et al., 2022] 87.34 82.36 86.53 84.38 76.47 73.51 71.62 72.40
HKE† + TFCD 88.67 (↑1.33) 83.43 (↑1.07) 87.78 (↑1.25) 85.52 (↑1.14) 77.51 (↑1.04) 74.38 (↑0.87) 72.54 (↑0.92) 73.28 (↑0.88)

Multi-view CLIP† [Qin et al., 2023] 88.29 83.51 88.32 86.84 85.35 81.37 87.05 83.28
Multi-view CLIP† + TFCD 89.57 (↑1.28) 84.83 (↑1.32) 89.43 (↑1.11) 88.13 (↑1.29) 86.54 (↑1.19) 82.46 (↑1.09) 87.95 (↑0.90) 84.31 (↑1.03)

Table 3: Main results. Results with ‘∗’ denote that the code is not released. Results with ‘†’ stand for the model we re-implemented.

Model MMSD MMSD2.0
Acc. (%) P (%) R (%) F1 (%) Acc. (%) P (%) R (%) F1 (%)

HFM† + TFCD 84.63 ( - ) 77.95 ( - ) 85.08 ( - ) 81.48 ( - ) 72.01 ( - ) 65.83 ( - ) 70.44 ( - ) 67.86 ( - )
w/o Label Debiasing 84.19 (↓0.44) 77.33 (↓0.62) 84.50 (↓0.58) 80.95 (↓0.53) 71.49 (↓0.52) 65.35 (↓0.48) 70.07 (↓0.37) 67.45 (↓0.41)
w/o Word Debiasing 83.96 (↓0.67) 77.24 (↓0.71) 84.48 (↓0.60) 80.91 (↓0.57) 71.48 (↓0.53) 65.32 (↓0.50) 70.03 (↓0.42) 67.38 (↓0.48)

HFM† 83.58 (↓1.05) 76.79 (↓1.16) 84.03 (↓1.05) 80.35 (↓1.13) 71.04 (↓0.97) 64.92 (↓0.91) 69.63 (↓0.81) 67.01 (↓0.85)

Multi-view CLIP† + TFCD 89.57 ( - ) 84.83 ( - ) 89.43 ( - ) 88.13 ( - ) 86.54 ( - ) 82.46 ( - ) 87.95 ( - ) 84.31 ( - )
w/o Label Debiasing 88.92 (↓0.65) 84.07 (↓0.76) 88.84 (↓0.59) 87.40 (↓0.73) 85.97 (↓0.57) 81.92 (↓0.54) 87.47 (↓0.48) 83.72 (↓0.59)
w/o Word Debiasing 88.91 (↓0.66) 83.99 (↓0.84) 88.80 (↓0.63) 87.36 (↓0.77) 85.91 (↓0.63) 81.88 (↓0.58) 87.47 (↓0.48) 83.70 (↓0.61)

Multi-view CLIP† 88.29 (↓1.28) 83.51 (↓1.32) 88.32 (↓1.11) 86.84 (↓1.29) 85.35 (↓1.19) 81.37 (↓1.09) 87.05 (↓0.90) 83.28 (↓1.03)

Table 4: Experiment results of ablation study across different datasets. ‘w/o’ is short for ‘without’.

Implementation Details. The proposed TFCD and five re-
producible models are implemented on PyTorch [Paszke et
al., 2017]. All experiments are conducted on Nvidia Tesla
V100 GPUs. We have utilized grid search to determine the
optimal values for the parameters α and β on the validation
set. The grid search is performed with a step size of 0.1 and
a range spanning from 0 to 1. For a fair comparison, the
training settings (e.g., loss function, batch size, learning rate
strategy, etc) of these models are consistent with the details
reported in their original papers. The results reported in our
experiments are the average scores from five random runs on
the test set. Please refer to the Appendix for more details.

5.2 Main Results
The main results of TFCD and baselines are shown in Ta-
ble 3, from which we have the following observations:

(1) The baselines with our TFCD significantly outperform
their original counterparts across all evaluation metrics on
both datasets. This validates the superior generalizability
ability of our framework over existing methods. On the other
hand, the better results show that these biases are ignored dur-
ing previous MSD studies, which further supports our claims
and motivation. (2) The improvements on MMSD are much
sharper than MMSD2.0. We hypothesize that this is due to
the specific characteristics between datasets: MMSD2.0, by
correcting erroneous labels in MMSD, has somewhat miti-
gated the issue of label imbalance. Nonetheless, our TFCD
consistently achieves gains, which illustrates the robustness
of our debiasing framework across varying datasets.

5.3 Ablation Study
We select two representative models, i.e., HFM and Multi-
view CLIP, to evaluate the contribution of each component in
the proposed TFCD framework. The ablation studies on both
datasets are reported in Table 4, where all the improvements
are statistically significant, as evidenced by the paired t-tests
with a p-value < 0.05. And we have the following takeaways:

(1) Removing any component results in a decrease across
all metrics on both datasets, which verifies the effectiveness
of the proposed label and word debiasing. This is because
label debiasing introduces a global offset, while word debias-
ing contributes to a local one to ‘move’ in the predicted space,
which renders the trained models ‘blind’ to potentially harm-
ful biases present in the observed data, allowing them to focus
solely on the core content of each sample for inference. (2)
The improvements in word debiasing are more pronounced.
This could be attributed to the fact that trained models typi-
cally utilize word-level information for inference, which may
inevitably utilize sarcasmless words that are potential biases.
Thanks to word debiasing, TFCD addresses spurious corre-
lations introduced by these words to some extent.
Effect of Label Debiasing. One of the core contributions
of our work is to achieve label debiasing, where the uniform
distribution assumption is introduced under the no-treatment
conditions to obtain the intervened outcomes. To verify its ef-
fectiveness, we substitute it with two candidate assumptions:
Random denotes M∗ is learned without any constraint and
Prior denotes that M∗ obeys the prior distribution of the
training set. As shown in Table 5, we find that both Random
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Model Metric Uniform Random Prior

HFM† + TFCD
Acc. (%) 84.63 83.47 83.81
F1 (%) 81.48 80.23 80.66

Mul-CLIP† + TFCD
Acc. (%) 89.57 88.25 88.62
F1 (%) 88.13 86.78 87.23

Table 5: Ablation study about label debiasing on MMSD. ‘Mul-
CLIP’ represents ‘Multi-view CLIP’ [Qin et al., 2023].

Model Metric Full w/o M w/ All M w/ Rand M

HFM† + TFCD
Acc. (%) 84.63 84.05 84.33 84.17
F1 (%) 81.48 80.88 81.14 80.95

Mul-CLIP† + TFCD
Acc. (%) 89.57 89.02 89.26 88.89
F1 (%) 88.13 87.53 87.85 87.41

Table 6: Ablation study about word debiasing on MMSD. ‘M’
means the mask operation in Eq. (5). ‘Rand’ is short for ‘Random’.

and Prior even perform worse than the baseline counter-
parts. We attribute this to the fact that the uniform distribution
assumption guarantees a safe estimation for the label biases.
Effect of Word Debiasing. To further investigate the effec-
tiveness of word debiasing, we devised three distinct variants:
word non-masking (w/o M), all masking (w/ All M), and
random masking (w/ Random M). From the results in Ta-
ble 6, the decreased performance confirms the effect of selec-
tively masking the main-content words. The proposed TFCD
enables the baseline to more effectively identify and eliminate
spurious correlations introduced by sarcasmless words, while
other masking strategies tend to intertwine with the statistical
shortcuts of main-content words to varying degrees.

5.4 Method Analysis
Applicability across Pre-trained Backbones. A natural
question that arises is whether our model is effective for di-
verse pre-trained backbones. To answer the question, we
conduct experiments with four variants of CMGCN with and
without our proposed TFCD by using different text and im-
age encoders. From the results in Table 7, we observe that
the gain from TFCD increases as more advanced pre-trained
backbone networks are used. This proves the performance of
TFCD doesn’t rely on a specially chosen backbone.
Sensitivity of Hyper-parameters. The hyper-parameters α
and β in Eq.(6) indicate the degree of subtraction of label-
debiased predictive logits o∗ and word-debiased predictive
logits o† from biased predictive logits o, respectively. Ac-
cording to §5.1, we evaluate the scale range setting α, β ∈
[0.0, 1.0] with a step size of 0.1 as shown in Figure 4. We
find that as the coefficient incrementally increases, there is a
corresponding increase in accuracy. Optimal performance for
each debiasing strategy is achieved at distinct points (0.6 and
0.4 for label and word debiasing in practice, respectively), be-
yond which a downward trend emerges. Furthermore, we find
that label debiasing exhibits relatively mild, whereas word
debiasing demonstrates heightened sensitivity to coefficient
changes, and requires more careful tuning.
Comparison with Other Debiasing Strategies. We also
conduct comparison experiments to verify the proposed de-
biasing framework against other debiasing strategies, and the

T V
MMSD MMSD2.0

w/o TFCD w/ TFCD w/o TFCD w/ TFCD
GloVe ResNet 85.46 86.69 78.78 79.73
GloVe ViT 85.65 86.86 79.04 80.07
BERT ResNet 86.31 87.53 79.59 80.48
BERT ViT 86.63 87.85 79.92 80.86

Table 7: Accuracy performance of using different pre-trained back-
bones for CMGCN [Liang et al., 2022] on two datasets. “T ” and
“V ” denote the textual and visual modality, respectively.

Figure 4: Accuracy performance of Multi-view CLIP [Qin et al.,
2023] with the two proposed debiasing strategies across different
debiasing coefficients on the MMSD2.0 validation set.

results are reported in Table 8. We can find that our frame-
work outperforms typical debiasing strategies, from data ma-
nipulation to model balancing. Note that these two debiasing
approaches require extra manual or training costs. Whereas,
the proposed framework works only in inference and can thus
be employed on the previously already trained models, which
can serve as a powerful, ‘data-manipulation-free’ and ‘model-
balancing-free’ weapon to enhance current MSD baselines.
Robustness under Low-resource Scenario. To further ex-
plore the effectiveness of TFCD under the low-resource sce-
nario [Chen et al., 2024b], we conduct experiments follow-
ing [Qin et al., 2023] to utilize various quantities of training
samples including 10%, 20% and 50%. From Figure 6, we
observe that Multi-view CLIP with our TFCD, consistently
surpasses its baseline counterpart under low-resource scenar-
ios. We attribute this to our proposed debiasing strategies (es-
pecially label debiasing), the model can remove spurious cor-
relations even with varying proportions of positive and neg-
ative training samples. This demonstrates the robustness of
our TFCD against inconsistent distributions of training and
test samples, which achieves considerable improvements.
Generalizability on Sentiment Analysis. To verify the
generalizability of our TFCD on other tasks, we conduct
preliminary experiments on multi-modal sentiment analysis,
where we select two representative models (i.e., MulT [Tsai
et al., 2019] and DMD [Li et al., 2023]). The results are
reported in Table 9. We find that models with TFCD con-
sistently boost performance by approximately 1% over their
vanilla counterparts, which demonstrates the generalizability
of our TFCD. We refer readers to Appendix for more details.
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Our Prediction 

what a beautiful eclipse!
louisiana when another 
state says that their 
weather is bipolar

(b) Case Study on MMSD2.0

(a) Testing Sample from MMSD

Label Distribution Word Distribution

Label: Not Sarcastic

Sarcastic Not Sarcastic

Baseline Prediction Our Prediction 

(b) Testing Sample from MMSD2.0

Label Distribution Word Distribution

Label: Sarcastic

SarcasticNot Sarcastic

Baseline Prediction

Figure 5: Case study on MMSD (a) and MMSD2.0 (b). “Label/word distribution” denote the distribution of label and sarcasmless word
(marked red within the sentence) coming from the training set, where the blue and yellow colors denote probabilities of the non-sarcastic and
sarcastic labels, respectively. The bars at the bottom demonstrate the prediction distribution of the best baseline Multi-view CLIP with and
without the proposed TFCDframework. Better view in color.

Model Metric Base w/ DM w/ MB w/ TFCD

HFM† Acc. (%) 83.58 83.95 84.20 84.63
F1 (%) 80.35 80.64 81.06 81.48

Mul-CLIP† Acc. (%) 88.29 88.72 89.04 89.57
F1 (%) 86.84 87.17 87.65 88.13

Table 8: Ablation study about debiasing strategies on MMSD. ‘DM’
and ‘MB’ denote typical data manipulation [Qian et al., 2020] and
model balancing [Zhang et al., 2020] method, respectively.

Model MOSEI MOSI
Acc-2 (%) Acc-7 (%) Acc-2 (%) Acc-7 (%)

MulT† 81.84 52.76 83.95 41.47
MulT† + TFCD 82.79 53.84 85.01 42.88
DMD† 86.31 54.35 85.92 45.87
DMD† + TFCD 87.70 55.63 86.87 46.94

Table 9: Performance on two multi-modal sentiment analysis
datasets. Results with ‘†’ stand for the model we implemented.

5.5 Case Study
In Figure 5, we select one representative example from each
dataset to show the performance of the model with and with-
out the TFCD. For instance, in Figure 5(a), the vanilla base-
line is misled to predict sarcastic because the MMSD is dom-
inated by the sarcastic class (label bias) and the ‘weather’
word within the sentence is mostly associated with the sar-
castic class (word bias). Applying counterfactual debiasing,
TFCD corrects the label and word biases in the model’s
prediction. In Figure 5(b), the vanilla baseline is misled to
predict not sarcastic due to the serious ‘beautiful’ word
distribution in not sarcastic class. Thanks to the proposed
TFCD, the model now results in the correct prediction.

6 Conclusion
This paper proposed a training-free debiasing strategy termed
TFCD to reduce the harmful bias of statistical label and sar-
casmless words for multi-modal sarcasm detection (MSD).

Figure 6: Low-resource performance of Multi-view CLIP [Qin et al.,
2023] (denoted as Mul-CLIP in the plot) on MMSD2.0. ‘△’ denotes
relative improvement achieved by TFCD upon the baseline.

Concretely, TFCD disentangled the causalities among vari-
ables via a tailored causal graph and presented a biases extrac-
tion module to extract the adverse effect caused by the two
biases. These biases were then mitigated by element-wise
subtraction to achieve debiased inference. Numerous experi-
ments proved that TFCD could consistently improve existing
baselines. The model-agnostic and training-free TFCD un-
doubtedly has superiority over complex retraining modules
employed in previous approaches.

Limitations and Future Work. Although our TFCD has
demonstrated promising outcomes, it can still benefit from
the following two aspects: (1) Further exploration of the debi-
asing technique on visual component [Chen et al., 2024a]. (2)
In scenarios involving samples with highly balanced classes,
the impact of label bias becomes negligible. Future work will
extend our framework under more challenging scenarios (e.g.,
out-of-distribution and long document) for MSD.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6693



References
[Cai et al., 2019] Yitao Cai, Huiyu Cai, and Xiaojun Wan.

Multi-modal sarcasm detection in Twitter with hierarchi-
cal fusion model. In ACL, 2019.

[Chen et al., 2023] Ziwei Chen, Linmei Hu, Weixin Li,
Yingxia Shao, and Liqiang Nie. Causal intervention and
counterfactual reasoning for multi-modal fake news detec-
tion. In ACL, 2023.

[Chen et al., 2024a] Zhaorun Chen, Zhuokai Zhao, Hongyin
Luo, Huaxiu Yao, Bo Li, and Jiawei Zhou. HALC: Object
hallucination reduction via adaptive focal-contrast decod-
ing. ICML, 2024.

[Chen et al., 2024b] Zhaorun Chen, Zhuokai Zhao, Zhihong
Zhu, Ruiqi Zhang, Xiang Li, Bhiksha Raj, and Huaxiu
Yao. AutoPRM: Automating procedural supervision for
multi-step reasoning via controllable question decomposi-
tion. NAACL, 2024.

[Jia et al., 2024] Mengzhao Jia, Can Xie, and Liqiang Jing.
Debiasing multimodal sarcasm detection with contrastive
learning. In AAAI, 2024.

[Kang et al., 2019] Bingyi Kang, Saining Xie, Marcus
Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and
Yannis Kalantidis. Decoupling representation and classi-
fier for long-tailed recognition. arXiv, 2019.

[Li et al., 2023] Yong Li, Yuanzhi Wang, and Zhen Cui. De-
coupled multimodal distilling for emotion recognition. In
CVPR, 2023.

[Liang et al., 2021] Bin Liang, Chenwei Lou, Xiang Li, Lin
Gui, Min Yang, and Ruifeng Xu. Multi-modal sarcasm de-
tection with interactive in-modal and cross-modal graphs.
In ACM MM, 2021.

[Liang et al., 2022] Bin Liang, Chenwei Lou, Xiang Li, Min
Yang, Lin Gui, Yulan He, Wenjie Pei, and Ruifeng Xu.
Multi-modal sarcasm detection via cross-modal graph
convolutional network. In ACL, 2022.

[Lin et al., 2022] Zhiyu Lin, Yifei Gao, and Jitao Sang. In-
vestigating and explaining the frequency bias in image
classification. In IJCAI, 2022.

[Liu et al., 2022] Hui Liu, Wenya Wang, and Haoliang Li.
Towards multi-modal sarcasm detection via hierarchical
congruity modeling with knowledge enhancement. In
EMNLP, 2022.

[Niu et al., 2021] Yulei Niu, Kaihua Tang, Hanwang Zhang,
Zhiwu Lu, Xian-Sheng Hua, and Ji-Rong Wen. Coun-
terfactual VQA: A cause-effect look at language bias. In
CVPR, 2021.

[Pan et al., 2020] Hongliang Pan, Zheng Lin, Peng Fu, Yatao
Qi, and Weiping Wang. Modeling intra and inter-modality
incongruity for multi-modal sarcasm detection. In EMNLP
Findings, 2020.

[Pan et al., 2023] Hang Pan, Jiawei Chen, Fuli Feng, Wen-
tao Shi, Junkang Wu, and Xiangnan He. Discriminative-
invariant representation learning for unbiased recommen-
dation. In IJCAI, 2023.

[Paszke et al., 2017] Adam Paszke, Sam Gross, Soumith
Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in PyTorch. In
NeurIPS, 2017.

[Pearl and Mackenzie, 2018] Judea Pearl and Dana Macken-
zie. The book of why: the new science of cause and effect.
Basic Books, 2018.

[Pearl et al., 2016] Judea Pearl, Madelyn Glymour, and
Nicholas P Jewell. Causal inference in statistics: A
primer. John Wiley & Sons, 2016.

[Poria et al., 2016] Soujanya Poria, Erik Cambria, Deva-
manyu Hazarika, and Prateek Vij. A deeper look into sar-
castic tweets using deep convolutional neural networks. In
COLING, 2016.

[Qian et al., 2020] Chen Qian, Fuli Feng, Lijie Wen, Li Lin,
and Tat-Seng Chua. Enhancing text classification via dis-
covering additional semantic clues from logograms. In SI-
GIR, 2020.

[Qian et al., 2021] Chen Qian, Fuli Feng, Lijie Wen, Chun-
ping Ma, and Pengjun Xie. Counterfactual inference for
text classification debiasing. In ACL, 2021.

[Qin et al., 2023] Libo Qin, Shijue Huang, Qiguang Chen,
Chenran Cai, Yudi Zhang, Bin Liang, Wanxiang Che, and
Ruifeng Xu. MMSD2.0: Towards a reliable multi-modal
sarcasm detection system. In ACL Findings, 2023.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervi-
sion. In ICML, 2021.

[Riloff et al., 2013] Ellen Riloff, Ashequl Qadir, Prafulla
Surve, Lalindra De Silva, Nathan Gilbert, and Ruihong
Huang. Sarcasm as contrast between a positive sentiment
and negative situation. In EMNLP, 2013.

[Schifanella et al., 2016] Rossano Schifanella, Paloma
de Juan, Joel R. Tetreault, and Liangliang Cao. Detecting
sarcasm in multimodal social platforms. In ACM MM,
2016.

[Sun et al., 2022] Teng Sun, Wenjie Wang, Liqiang Jing, Yi-
ran Cui, Xuemeng Song, and Liqiang Nie. Counterfac-
tual reasoning for out-of-distribution multimodal senti-
ment analysis. In ACM MM, 2022.

[Tsai et al., 2019] Yao-Hung Hubert Tsai, Shaojie Bai,
Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Multimodal Transformer for un-
aligned multimodal language sequences. In ACL, 2019.

[Tu et al., 2023] Geng Tu, Ran Jing, Bin Liang, Min Yang,
Kam-Fai Wong, and Ruifeng Xu. A training-free debias-
ing framework with counterfactual reasoning for conver-
sational emotion detection. In EMNLP, 2023.

[Wang and Culotta, 2021] Zhao Wang and Aron Culotta.
Robustness to spurious correlations in text classification

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6694



via automatically generated counterfactuals. In AAAI,
2021.

[Xin et al., 2023] Yifei Xin, Dongchao Yang, Fan Cui, Yujun
Wang, and Yuexian Zou. Improving weakly supervised
sound event detection with causal intervention. In ICASSP,
2023.

[Xu et al., 2020] Nan Xu, Zhixiong Zeng, and Wenji Mao.
Reasoning with multimodal sarcastic tweets via modeling
cross-modality contrast and semantic association. In ACL,
2020.

[Yang et al., 2024a] Dingkang Yang, Mingcheng Li,
Dongling Xiao, Yang Liu, Kun Yang, Zhaoyu Chen,
Yuzheng Wang, Peng Zhai, Ke Li, and Lihua Zhang.
Towards multimodal sentiment analysis debiasing via bias
purification. arXiv, 2024.

[Yang et al., 2024b] Dingkang Yang, Kun Yang, Mingcheng
Li, Shunli Wang, Shuaibing Wang, and Lihua Zhang. Ro-
bust emotion recognition in context debiasing. CVPR,
2024.

[Zhang et al., 2016] Meishan Zhang, Yue Zhang, and Guo-
hong Fu. Tweet sarcasm detection using deep neural net-
work. In COLING, 2016.

[Zhang et al., 2020] Guanhua Zhang, Bing Bai, Junqi
Zhang, Kun Bai, Conghui Zhu, and Tiejun Zhao. Demo-
graphics should not be the reason of toxicity: Mitigating
discrimination in text classifications with instance weight-
ing. In ACL, 2020.

[Zhou et al., 2023] Fan Zhou, Yuzhou Mao, Liu Yu, Yi Yang,
and Ting Zhong. Causal-Debias: Unifying debiasing in
pretrained language models and fine-tuning via causal in-
variant learning. In ACL, 2023.

[Zhu et al., 2022] Yongchun Zhu, Qiang Sheng, Juan Cao,
Shuokai Li, Danding Wang, and Fuzhen Zhuang. Gener-
alizing to the future: Mitigating entity bias in fake news
detection. In SIGIR, 2022.

[Zhu et al., 2024a] Zhihong Zhu, Xuxin Cheng, Guimin Hu,
Yaowei Li, Zhiqi Huang, and Yuexian Zou. Towards multi-
modal sarcasm detection via disentangled multi-grained
multi-modal distilling. In COLING, 2024.

[Zhu et al., 2024b] Zhihong Zhu, Xuxin Cheng, Hongxiang
Li, Yaowei Li, and Yuexian Zou. Dance with labels: Dual-
heterogeneous label graph interaction for multi-intent spo-
ken language understanding. In WSDM, 2024.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6695


	Introduction
	Related Work
	Preliminaries
	Task Formulation
	Biased Training

	Training-Free Counterfactual Debiasing
	Biases Extraction
	Debiased Inference

	Experiments
	Experiment Setup
	Main Results
	Ablation Study
	Method Analysis
	Case Study

	Conclusion

