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Abstract

As an important task in sentiment analysis, joint
multimodal aspect sentiment analysis (JMASA)
has received increasing attention in recent years.
However, previous approaches either i) directly
fuse multimodal data without fully exploiting the
correlation between multimodal input data, or ii)
equally utilize the dependencies of words in the
text for sentiment analysis, ignoring the differ-
ences in the importance of different words. To ad-
dress these limitations, we propose a joint multi-
modal sentiment analysis method based on Aspect
Enhancement and Syntactic Adaptive Learning
(AESAL). Specifically, we construct an aspect en-
hancement pre-training task to enable the model to
fully learn the correlation of aspects between mul-
timodal input data. In order to capture the dif-
ferences in the importance of different words in
the text, we design a syntactic adaptive learning
mechanism. First, we construct different syntac-
tic dependency graphs based on the distance be-
tween words to learn global and local information
in the text. Second, we use a multi-channel adap-
tive graph convolutional network to maintain the
uniqueness of each modality while fusing the cor-
relations between different modalities. Experimen-
tal results on benchmark datasets show that our
method outperforms state-of-the-art methods.

1 Introduction
In the present context of information society, multimodal
data plays a pivotal role in understanding human sentiments
[Zhang et al., 2022a; Zhou et al., 2021; Yu et al., 2022].
Multimodal Aspect-Based Sentiment Analysis (MABSA), an
essential AI research area, combines text, image, audio, or
other modalities to accurately identify and interpret senti-
ments, transcending the limitations of single-modal anal-
ysis and offering a comprehensive reflection of complex
sentiment expressions [Xu et al., 2019; Zhu et al., 2023;
Das and Singh, 2023]. The proliferation of social media
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Figure 1: An example of image-text pair with its dependency graph
where aspects (highlighted in red) are connected with other words
based on their syntactic dependencies (different colored arrows).

and online education has broadened the prospects and sig-
nificance of multimodal aspect-based sentiment analysis re-
search and application [Yang et al., 2022][Wang et al., 2023].

Multimodal aspect sentiment analysis is usually divided
into three subtasks [Yang et al., 2023]: Multimodal As-
pect Term Extraction (MATE), Multimodal Aspect Senti-
ment Classification (MASC) and Joint Multimodal Aspect
Sentiment Analysis (JMASA). Earlier work on aspect-based
sentiment analysis [Ju et al., 2021][Ling et al., 2022] di-
rectly utilized multimodal information for sentiment analy-
sis, but did not adequately explore the complementary na-
ture of aspects in multimodal data. The current main idea of
Aspect-Based Sentiment Analysis (ABSA) is to use depen-
dencies between sentences for modeling [Zhang et al., 2022b;
Tian et al., 2021; Zhao et al., 2020; Wang et al., 2020].
Among them, [Zhang et al., 2022b] proposed a Syntactically
and Semantically Enhanced Graph Convolutional Network
(SSEGCN) for ABSA task. [Tian et al., 2021] explicitly uti-
lized the dependency type of ABSA to categorize sentiment.
These studies consider the correlation of neighboring nodes,
but ignore the problem that non-neighboring nodes have dif-
ferent correlations.

Through the examination of the aforementioned work, we
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have identified two main challenges in multimodal sentiment
analysis. 1) How to adequately consider aspect relevance
between multimodal input data? As shown in Fig. 1, the
aspect “Oklahoma City Thunder” in the text is consistent
with “region2” in the image, and “region3” in the image is
the celebratory gesture of “thump” in the text. This suggests
that the sentiment described in text can be reinforced or mod-
ified by the object in the image. By analyzing their intercon-
nections, the sentiment or characteristics of the aspect can be
captured and understood more accurately. 2) How to effec-
tively capture the syntactic structure and semantic asso-
ciation between different words in the text? The arrows
in Fig. 1 show the dependencies of different nodes. Captur-
ing semantic relationships between different nodes helps to
understand text semantics and perform sentiment analysis.

To address the above issues, we propose a joint multimodal
aspect sentiment analysis method based on aspect enhance-
ment and syntactic adaptive learning, which fully considers
the syntactic and semantic relationships between aspects and
different nodes. First, we utilize RoBERTa [Liu et al., 2019]
and ViT [Dosovitskiy et al., 2020] to encode text and image
respectively. And we propose an aspect enhancement pre-
training task to enable the model pay more attention to the
aspect in text and image. Secondly, in order to fully consider
the local and global information between nodes, we construct
the syntactic dependency graphs of first-order nodes, second-
order nodes and even global syntactic structure. In addition,
we design a multi-channel adaptive graph convolutional net-
work to mine the interaction features between different de-
pendency graphs and multimodalities. Finally, the detector
is used to predict the results of JMASA, MATE and MASC
tasks. Our main contributions are as follows:

• We propose an AESAL model that can fully consider
aspects and the syntactic associations between different
nodes for JMASA, MATE and MASC tasks.

• We introduce an aspect enhancement pre-training task
that constructs aspect-based positive and negative exam-
ples to enhance the sensitivity of the model to aspect
term in multimodal data.

• We design the syntactic adaptive learning mechanism,
which consists of syntactic dependency graph and multi-
channel adaptive graph convolutional network. The syn-
tactic dependency graphs based on different syntactic
distances are used to synthesize global and local associ-
ations. The multi-channel adaptive graph convolutional
network is used to enhance the node representation of
the dependency graph.

• Experimental results on two benchmark datasets show
that the AESAL model achieves the state of-the-art per-
formance.

2 Related Work
In the field of multimodal sentiment analysis, some of the
pre-training efforts to study specific tasks have achieved im-
pressive results. For example, [Liu et al., 2023a] intro-
duce a unified alignment pre-training framework into the
vanilla pretrain-finetune pipeline, that has both instance and

knowledge-level alignment. [Ling et al., 2022] propose
a task-specific Vision-Language Pre-training framework for
MABSA (VLP-MABSA), which is a unified multimodal
encoder-decoder architecture for all the pre-training and
downstream tasks. [Liu et al., 2023b] propose an entity-
related unsupervised pre-training with visual prompts for sen-
timent analysis. [Li et al., 2021b] adopt supervised con-
trastive pre-training on large-scale sentiment annotated cor-
pora retrieved from in-domain language resources. Unlike
the above work, we design aspect enhancement pre-training
task to improve the learning ability of the model for aspect
term.

Recently, various approaches have been proposed to model
the semantic relations between aspects and their contexts to
capture opinion expressions. [Zhang et al., 2022b] propose
SSEGCN, which can not only learn the aspect-related seman-
tic correlation, but also learn the global semantics of the sen-
tence. [Liang et al., 2022] give a graph convolutional network
construction scheme for graph based on dependency tree and
affective commonsense knowledge. [Tian et al., 2021] of-
fer a method for explicitly utilizing dependency types. [Li et
al., 2021a] provide a dual graph convolutional network (Du-
alGCN) model that considers the complementarity of syntax
structures and semantic correlations simultaneously. How-
ever, these approaches usually ignore the relationship be-
tween syntactic distance and syntactic semantics. To address
this issue, we construct syntactic distance-based syntactic de-
pendency graph to complement the semantic information of
sentences.

Based on this, several works have extended the GCN and
GAT models with syntactic dependency tree and developed
several excellent models based on multimodal sentiment anal-
ysis [Zhang et al., 2022b; Tian et al., 2021; Zhao et al., 2020;
Chen et al., 2020]. [Zhou et al., 2023] propose an Aspect-
oriented Method (AoM) which can detect aspect relevant
information from perspectives of both semantics and senti-
ment. [Yang et al., 2022] design a multitask learning archi-
tecture named Cross-Modal Multitask Transformer (CMMT)
for the End-to-End sentiment analysis. [Ju et al., 2021] raise
a multi-modal joint learning approach with auxiliary cross-
modal relation detection for multi-modal aspect-level senti-
ment analysis. [Ling et al., 2022] present a unified mul-
timodal encoder-decoder architecture for MABSA. Inspired
by the above work, we design multi-channel adaptive graph
convolutional network for multimodal sentiment analysis to
maintain the uniqueness of each modality while fusing the
correlations between different modalities.

In this paper, we propose a joint multimodal method to sen-
timent analysis based on aspect enhancement pre-training and
syntactic adaptive learning. It enables the model to fully con-
sider the aspect terms in the input, while effectively utilizing
the dependencies between syntaxes.

3 Methodology
The overview of AESAL is given in Fig. 2. In this section, we
describe the AESAL model, which consists of five main com-
ponents: feature extraction, aspect enhancement pre-training,
syntactic dependency graph, multi-channel adaptive graph
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Figure 2: The overview of our proposed model AESAL.

convolutional network and prediction. Next, the components
of AESAL are described separately in the remaining sections.

3.1 Feature Extractor

The multimodal data contains text sequence T =
{t1, t2, ..., tn} and image V . Our goal is to extract all aspect
terms A = {a1, a2, ..., am} with the corresponding sentiment
polarity S = {s1, s2, ..., sm}, where n represents the length
of text, m represents the number of aspects contained in the
text, ai represents the ith aspect term, and si represents the
sentiment polarity corresponding to the ith aspect term. In
addition, si ∈ {POS,NEU,NEG}, where POS, NEU
and NEG standing for the sentiment of positive, neutral and
negative, respectively.

We use RoBERTa [Yu and Jiang, 2019] as text en-
coder to extract the hidden context representation Ht =
{ht

1, h
t
2, ..., h

t
n}, and utilize ViT [Hu et al., 2019] as image

encoder to extract the hidden image representation Hv =
{hv

1, h
v
2, ..., h

v
n}. In addition, the image encoding needs to

realize the alignment with the text shape by MLP. Here, Ht

and Hv ∈ Rn×d, d represents the hidden state dimension.

3.2 Aspect Enhancement Pre-training

In order to enhance the sensitivity of the model to aspect
while extracting features, we designed the aspect enhance-
ment pre-training task, as Fig. 3. For any sample containing
(T, V,A, S) quaternion, we use the special symbol “[Mask]”
to replace the aspect A in the text sequence T to get the
aspect-free text sequence N , as shown in Equation (1). We
consider (T, V ) as positive samples and (N,V ) as negative
samples to construct a new dataset (S, V, L) to improve the
model learning aspect. Here, S ∈ {T,N}, S stands for texts,
V stands for images, L stands for positive and negative sam-
ple labels, and L = 1 means that the aspect terms in the image
match the text, otherwise 0.

N = T.Replace(A, [Mask]) (1)

In the pre-training period, we first use the feature extrac-
tion module to obtain text embedding and image embedding.
Then, the text embedding and image embedding are concate-
nated, and the probability distribution associated with the text
and image is output through the softmax layer. Finally, we
use cross-entropy loss to train our aspect enhancement pre-
training task.
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Figure 3: The framework of aspect enhancement pre-training.

3.3 Syntactic Dependency Graph
Traditional syntactic dependency graph are constructed ac-
cording to the connection relationship of each node in the
syntactic dependency tree, which focuses only on local re-
lationship and does not consider the deeper relationship of
syntax. In order to effectively utilize the global and local
dependencies between different nodes, we construct the de-
pendency graphs based on syntactic distance, which consider
both syntactic direct and indirect associations.

In this section, we use spacy1 to obtain syntactic depen-
dency tree, as shown in Fig. 4. A syntactic dependency tree
is considered as an undirected graph, where nodes represent
words and edges represent the existence of a direct relation-
ship between two words in the syntactic structure. First, we
define the distance between any two nodes i and j in the graph
as d(i, j). Assuming that there are a total of p paths between
nodes i and j, we use the Breadth First Search (BFS) algo-
rithm to find the shortest path dmin of nodes i and j, as in
Equation (2). Secondly, We believe that the relationship be-
tween two distant nodes is relatively weak and there is no
need for aggregation. Thus we filter the information with syn-
tactic distance greater than k, and keep the information with
syntactic distance less than or equal to k. Thus, we give more
weight to the edges between two nodes with closer distance
and get the dependency matrix Mk, as shown in Equation (3).

dmin (i, j) = min

(
p∑

x=1

dx (i, j)

)
(2)

Mk
i,j =

{
k

dmin(i,j)
, dmin(i, j) ≤ k

0, dmin(i, j) > k
(3)

Considering the different perceptual scopes at different
syntactic distances, we set different thresholds for multiple
(h) dependency matrices to focus on the global correlation
information of the sentence and different degrees of local cor-
relation information in Equation (4).

M =
{
M1,M2, . . . ,Mh

}
(4)

1https://spacy.io/
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Figure 4: The dependency tree of the example mentioned in the in-
troduction.

M1 captures first-order nodes dependencies, M2 captures
second-order nodes dependencies, and Mh captures global
nodes dependencies.

3.4 Multi-Channel Adaptive Graph Convolutional
Network

To preserve uniqueness and capture correlations across
modalities and syntactic distances, we design a multi-channel
adaptive graph convolutional network. It adaptively adjusts
the adjacency matrix based on syntactic dependency graphs
at different distances (Sec. 3.3), updating multimodal infor-
mation in parallel to focus more on aspects and viewpoints.

We use the multi-head cross-attention mechanism to con-
struct the text-to-text multi-head attention matrix P t2t, text-
to-image multi-head attention matrix P t2v , and image-to-text
multi-head attention matrix P v2t respectively, and obtain the
multi-channel attention matrix P = (P t2t, P t2v, P v2t). It
aims to capture the interrelationships that exist among text-
to-text, image-to-image, and image-to-text in a multidimen-
sional way.

First, we define the attention matrix function AF as shown
in Equation (5). We define the multi-head attention matrix
function MAF in Equation (6), and get the multi-channel
attention matrix P in Equation (7) to match the multi-head
dependency matrix M .

AF (Q,K) = Softmax

(
QWQ ×

(
KWK

)T
√
dk

)
(5)

MAF (Q,K) =
{
AF 1(Q,K), AF 2(Q,K), . . . , AF h(Q,K)

}
(6)

P =
{
MAF

(
Ht, Ht

)
,MAF

(
Ht, Hv

)
,MAF

(
Hv, Ht

)}
(7)

Here, Q and K represent query vector and value vector
respectively. WQ and WK are learnable parameters, dk rep-
resents the dimension of K.

Second, we use the multi-head dependency matrix M
to mask the multi-channel attention matrix P with differ-
ent syntactic distances to obtain the neighbor matrix A =
(At2t, At2v, Av2t) as shown in Equation (8). At this point,
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our adjacency matrix A contains syntactic dependencies at
different distances and contains learnable parameters. Thus,
we can both realize multi-level information aggregation from
local to whole at the syntactic level and adaptively adjust the
filtering of aspect-independent information.

A = M ⊙
{
P t2t, P t2v, P v2t

}
(8)

where ⊙ denotes element-wise multiplication.
Finally, we feed the text-hidden state Ht, image-hidden

state Hv with the adjacency matrix A into the graph convolu-
tional network to obtain features Hgt2t, Hgt2v and Hgv2t as
in Equation (9). And the convolutional features Hgt2t, Hgt2v ,
Hgv2t take the mean value as our multimodal fusion feature
Hfusion, as in Equation (10).

Hgt2t = ReLU
(
At2tHtW t2t

)
Hgt2v = ReLU

(
At2vHvW t2v

)
Hgv2t = ReLU

(
Av2tHtW v2t

) (9)

Hfusion = mean
(
Hgt2t +Hgt2v +Hgv2t

)
(10)

3.5 Prediction
We use a decoder consisting of a two-layer linear neural
network with an activation function for task prediction, and
a loss function using cross-entropy loss with the following
equation:

ŷ = Softmax
(
ReLU

(
HfusionW1 + b1

)
W2 + b2

)
(11)

L = −
m∑
i=1

yi log (ŷi) (12)

where W1,W2, b1, b2 are the learnable parameters, ŷ is the
subtask prediction result, y is the subtask true label, L is the
final loss.

4 Experiment
We compare our model with numerous methods on three
tasks, including JMASA, MATE and MASC.

4.1 Experimental Settings
Datasets. We conduct experiments on two public Twitter
datasets [Yu and Jiang, 2019] (i.e., Twitter-2015 and Twitter-
2017). As shown in Table 1, sentences with multiple aspects
make up a significant portion of both datasets. We use these
datasets for aspect enhancement pre-training and subsequent
experiments.
Implementation Details. We implement our method under
Linux system, CUDA version 10.2, Pytorch version 1.12.0,
Python version 3.9, and NVIDIA GeForce RTX 3090. In ad-
dition, we set the Learning rate to 2e-5, the dropout to 0.1,
hidden size to 768.
Evaluation Metrics. We evaluate the performance of our
model on JMASA task and MATE task by Micro-F1 score
(F1), Precision (P) and Recall (R), while on MASC task we
use Accuracy (Acc) and F1 following previous studies.

Twitter-2015 Twitter-2017

Train Dev Test Train Dev Test

Positive 928 303 317 1,508 515 493
Neutral 1,883 670 607 1,638 517 573
Negative 368 149 113 416 144 168

# one aspect 2,159(61.65%) 976(33.54%)
# mult. aspects 1,343(38.35%) 1,934(66.46%)
Total Aspects 3,502 2,910

Table 1: The basic statistics of two Twitter datasets. “# X” indicates
the number of X. “mult. aspects” stands for “multiple aspects”.

4.2 Baselines
We compare AESAL with four types of methods listed below.
Methods for textual ABSA. 1) SPAN [Hu et al., 2019] is a
span-based extraction-categorization framework that extracts
multiple opinions directly from sentences and then catego-
rizes them. 2) D-GCN [Chen et al., 2020] performs the task
following the sequence tagging paradigm and models the de-
pendencies between input words with an appropriate archi-
tecture. 3) BART [Yan et al., 2021] is a pre-trained model to
solve seven ABSA subtasks.
Methods for JMASA. 1) UMT-collapse [Yu et al., 2020],
OSCGA-collapse [Wu et al., 2020b] and RpBERT-collapse
[Sun et al., 2021] use the same visual feed to collapse the
markers. 2) UMT+TomBERT, OSCGA+TomBERT are
two pipeline methods. 3) JML [Ju et al., 2021] is a
multimodal joint approach to simultaneously handle the as-
pect terms extraction and sentiment classification. 4) VLP-
MABSA [Ling et al., 2022] is a unified multimodal encoder-
decoder architecture for all the pre-training and downstream
tasks. 5) CMMT [Yang et al., 2022] is a multi-task learn-
ing framework to extract aspect-sentiment pairs from a pair of
sentence and image. 6) AOM [Zhou et al., 2023] is an aspect-
oriented network to mitigate the visual and textual noises
from the complex image-text interaction.
Methods for MATE. 1) RAN [Wu et al., 2020a] is a novel
approach which uses object and text features as the input on
MATE task. 2) UMT [Yu et al., 2020] is a unified architec-
ture to alleviate the bias of the visual context in multimodal
named entity recognition. 3) OS-CGA [Yan et al., 2021] is
an object-aware neural model that combines visual and tex-
tual representations into entities predicting.
Methods for MASC. 1) ESAFN [Yu et al., 2019] is an
entity-sensitive attention and fusion network for MASC. 2)
TomBERT [Yu and Jiang, 2019] is a target-oriented mul-
timodal sentiment classification method. 3) CapTrBERT
[Khan and Fu, 2021] is a two-stream model that translates
images in input space.

4.3 Main Results
In this section, we show the excellent performance of our
method compared with SOTAs.
Performance on JMASA. The results of JMASA are shown
in Table 2. First, our model far outperforms all text-based
models, which means that utilizing multimodal information
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Methods
Twitter-2015 Twitter-2017

P R F1 P R F1

SPAN* 53.7 53.9 53.8 59.6 61.7 60.6
Text-based D-GCN* 58.3 58.8 59.4 64.2 64.1 64.1

BART* 62.9 65.0 63.9 65.2 65.6 65.4

UMT+TomBERT* 58.4 61.3 59.8 62.3 62.4 62.4
OSCGA+TomBERT* 61.7 63.4 62.5 63.4 64.0 63.7
OSCGA-collapse* 63.1 63.7 63.2 63.5 63.5 63.5
RpBERT-collapse* 49.3 46.9 48.0 57.0 55.4 56.2

Multimodal UMT-collapse* 61.0 60.4 61.6 60.8 60.0 61.7
JML 65.0 63.2 64.1 66.5 65.5 66.0
VLP-MABSA 65.1 68.3 66.6 66.9 69.2 68.0
CMMT 64.6 68.7 66.5 67.6 69.4 68.5
AoM 67.9 69.3 68.6 68.4 71.0 69.7
AESAL(ours) 68.7 70.4 69.5 69.4 74.8 72.0

Table 2: Results of different methods for JMASA on the two Twitter datasets. Our model AESAL achieves the current optimal results on
JMASA. * denotes the results from [Zhou et al., 2023]. The best results are bold-typed and the second best ones are underlined.

Methods
Twitter-2015 Twitter-2017

P R F1 P R F1

RAN* 80.5 81.5 81.0 90.7 90.7 90.0
UMT* 77.8 81.7 79.7 86.7 86.8 86.7
OSCGA* 81.7 82.1 81.9 90.2 90.7 90.4
JML 83.6 81.2 82.4 92.0 90.7 91.4
VLP-MABSA 83.6 87.9 85.7 90.8 92.6 91.7
CMMT 83.9 88.1 85.9 92.2 93.9 93.1
AoM 84.6 87.9 86.2 91.8 92.8 92.3
AESAL(ours) 90.2 90.6 90.4 93.1 96.4 94.7

Table 3: Results of different methods for MATE. Our model AESAL
achieves the current optimal results on MATE. * denotes the results
from [Zhou et al., 2023].

is beneficial for the JMASA task. Second, our model out-
performs other multimodal aspect sentiment analysis meth-
ods on every metric. In particular, compared to the subop-
timal model (AoM), the precision improves by 0.8%, recall
improves by 1.1%, and F1 score improves by 0.9% on the
Twitter-2015 dataset; on Twitter-2017, P, R, and F1 increased
by 1%, 3.8%, and 2.3%, respectively. This demonstrates the
effectiveness of our model on the JMASA task.
Performance on MATE. Table 3 shows the performance of
MATE. Our model still achieves optimal results. Specifically,
on the Twitter-2015 dataset, compared to the suboptimal re-
sult on AoM, P improves by 5.6%, R improves by 2.7%, and
F1 improves by 4.2%; on the Twitter-2017 dataset, compared
to the suboptimal result on CMMT, P improves by 0.9%, R
improves by 2.5%, and F1 improves by 1.6%. It proves that
AESAL is the most capable of detecting aspect term from

Methods
Twitter-2015 Twitter-2017

Acc F1 Acc F1

ESAFN* 73.4 67.4 67.8 64.2
TomBERT* 77.2 71.8 70.5 68.0
CapTrBERT* 78.0 73.2 72.3 70.2
JML 78.7 - 72.7 -
VLP-MABSA 78.6 73.8 73.8 71.8
CMMT 77.9 - 73.8 -
AoM 80.2 75.9 76.4 75.0
AESAL(ours) 80.1 75.2 78.8 75.9

Table 4: Results of different methods for MASC. Our model AESAL
achieves the current optimum of MASC on a slightly larger dataset.
* denotes the results from [Zhou et al., 2023].

image and text.
Performance on MASC. As shown in Table 4, AESAL per-
forms best on Twitter-2017, with 2.4% improvement in Acc
and 0.9% improvement in F1 compared to the second best
AoM. AoM performs slightly better than us on Twitter-2015,
outperforming us by 0.1% on Acc and 0.7% on F1. This
may be related to the number of aspect terms in the dataset.
There are fewer aspect terms in the Twitter-2015 data than
in Twitter-2017, so our aspect-enhanced pre-training may not
have been utilized to its maximum capacity.

4.4 Ablation Study
In this section, we compare the variants of the AESAL in
terms of the following five components to demonstrate the ef-
fectiveness of AESAL framework: Image (Img), Aspect En-
hancement Pre-training (AE), Indirect Relation Dependency
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JMASA MATE MASC

Methods Twitter-2015 Twitter-2017 Twitter-2015 Twitter-2017 Twitter-2015 Twitter-2017

P R F1 P R F1 P R F1 P R F1 Acc F1 Acc F1

Full 68.7 70.4 69.5 69.4 74.8 72.0 90.2 90.6 90.4 93.1 96.4 94.7 80.1 75.2 78.8 75.9
w/o Img 64.1 69.0 66.5 70.4 73.5 71.9 88.7 84.9 86.8 87.9 96.9 92.2 76.0 68.8 77.6 74.3
w/o AE 63.9 68.0 65.9 64.0 68.1 66.0 89.6 90.2 89.9 90.5 96.9 93.6 76.8 72.3 77.6 72.3
w/o IR 65.7 68.8 67.2 62.8 62.2 62.5 88.9 88.7 88.8 84.7 92.7 88.5 74.2 70.5 74.3 72.8
w/o SAL 65.8 69.2 67.5 69.6 69.8 69.7 87.4 84.6 86.0 91.6 96.2 93.8 76.3 70.1 74.5 72.2
w/o T2T 67.5 69.1 68.3 67.4 63.2 65.2 89.6 89.7 89.6 91.4 96.0 93.6 74.3 68.2 73.5 71.1

Table 5: The performance comparison of our full model and its ablated methods on JMASA, MATE and MASC. Data in italics indicate the
worst results.

Graph (IR), Syntactic Adaptive Learning (SAL), Text2Text
Convolution Channel (T2T).
W/o Img is a variant of AESAL that removes image informa-
tion from multimodal data and utilizes only text information.
W/o AE is a variant of AESAL without aspect enhancement
pre-training module.
W/o IR is a variant of AESAL without the syntactic depen-
dency graph of indirect relations, using only the syntactic de-
pendency graph of neighboring nodes.
W/o SAL is a variant of AESAL without syntactic adaptive
learning and utilizes only cross-attention to fuse multimodal
information for prediction.
W/o T2T is a variant of AESAL without the convolution
channel of Text2Text and considers only image-text, text-
image related channels.

The results of the ablation experiments for the JMASA,
MATE and MASC tasks are given in Table 5. Based on the
JMASA task, the variant without AE and the variant with-
out IR have the worst results. This shows the importance of
the aspect enhancement pre-training module and the syntac-
tic dependency graph of indirect relation in our model. Based
on the MATE task, the variant without SAL and the variant
without IR have the worst results. It thus illustrates the im-
portance of syntactic adaptive learning and indirect relations
between words for the MATE task, and they help the model
to better understand and learn syntactic dependencies. Based
on the MASC task, the variant without the convolution chan-
nel of Text2Text has the lowest results, reflecting the impor-
tance of textual information in the MASC task. Generally
speaking, textual information expresses sentiments more ac-
curately, while images only serve an auxiliary role.

4.5 Case Study
To further demonstrate the effectiveness of AESAL, we
present two test examples with predictions from different
methods. As shown in Fig. 5, for example (a), although
D-GCN can accurately detect two aspect terms of ground-
truth, it gives the wrong sentiment prediction of aspect term
“lionelmessi”. This may be due to the lack of syntactic adap-
tive learning mechanism that fail to adequately capture syn-
tactic and semantic information. However, OSCGA-collapse
and our AESAL methods correctly predict the aspects and

@ DeltaPowerEquip leading the 
parade at  @ ridgetown_dhs tractor 
day !

(DeltaPowerEquip, Pos) (√,√)
(ridgetown_dhs, Neu) (√,√)

(DeltaPowerEquip, Pos) (√,√)
(ridgetown_dhs tractor day, Neu) (×,√)

(DeltaPowerEquip, Pos) (√,√)
(ridgetown_dhs, Neu) (√,√)

# LionelMessi ' s bride # 
antonellaRoccuzzo ' first lady 
of football ' |

(LionelMessi, Neu) (√,×)
(antonellaRoccuzzo, Pos) (√,√)

(LionelMessi, Pos) (√,√)
(antonellaRoccuzzo, Pos) (√,√)

(LionelMessi, Pos) (√,√)
(antonellaRoccuzzo, Pos) (√,√)

Image

OSCGA 
-collapse

D-GCN

Text

AESAL

Figure 5: Two cases of the predictions by D-GCN, OSCGA-collapse
and our AESAL. Pos: Positive, Neu: Neutral, Neg: Negative.

its corresponding polarity. For example, in (b), OSCGA-
collapse incorrectly detects the aspect as “ridgetown dhs
tractor day”, but the correct aspect term is “ridgetown dhs”.
This is mainly because of the lack of aspect enhancement pre-
training task. In both cases, our AESAL model correctly ex-
tracts all aspects and categorizes sentiments, demonstrating
the excellence of AESAL on the MATE, MASC, and JMASA
tasks.

5 Conclusion
In this paper, we propose a joint multimodal aspect sentiment
analysis method based on aspect enhancement and syntactic
adaptive learning. First, we construct the aspect enhancement
pre-training task to enable the model adequately learn the as-
pect of the multimodal input data. Second, we design differ-
ent syntactic dependency graphs of first-order nodes, second-
orders nodes and even global nodes simultaneously, so that
the model captures the global and local information in the
text. After that, we enhance the node representation by utiliz-
ing the multi-channel adaptive graph convolutional network.
Finally, we execute the MATE, MASC, and JMASA tasks,
respectively. Experimental results on two widely available
datasets demonstrate the effectiveness of our method.
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