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Abstract

Large language models (LLMs) have excelled
across domains, also delivering notable perfor-
mance on the medical evaluation benchmarks, such
as MedQA. However, there still exists a signif-
icant gap between the reported performance and
the practical effectiveness in real-world medical
scenarios. In this paper, we aim to explore the
causes of this gap by employing a multifaceted
examination schema to systematically probe the
actual mastery of medical knowledge by current
LLMs. Specifically, we develop a novel evalua-
tion framework MultifacetEval to examine the de-
gree and coverage of LLMs in encoding and mas-
tering medical knowledge at multiple facets (com-
parison, rectification, discrimination, and verifica-
tion) concurrently. Based on the MultifacetEval
framework, we construct two multifaceted evalu-
ation datasets: MultiDiseK (by producing ques-
tions from a clinical disease knowledge base) and
MultiMedQA (by rephrasing each question from
a medical benchmark MedQA into multifaceted
questions). The experimental results on these mul-
tifaceted datasets demonstrate that the extent of
current LLMs in mastering medical knowledge is
far below their performance on existing medical
benchmarks, suggesting that they lack depth, pre-
cision, and comprehensiveness in mastering med-
ical knowledge. Consequently, current LLMs are
not yet ready for application in real-world medi-
cal tasks. The codes and datasets are available at
https://github.com/THUMLP/MultifacetEval.

1 Introduction
The rapid advancement of large language model (LLM)
technology has achieved great success in various domains
[Romera-Paredes et al., 2023; Madani et al., 2023; Boiko
et al., 2023]. Current LLMs encode extensive knowledge
through pretraining on massive unlabeled data. Some are fur-
ther finetuned on supervised datasets to be adapted to specific
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Figure 1: GPT-3.5-turbo responding to medical exam problems as-
sessing the same knowledge point but in different formats.

downstream tasks. Recently, famous general LLMs like GPT-
4 [OpenAI, 2023] and Gemini-pro [Team et al., 2023], as well
as medical-domain-specific LLMs such as Med-PaLM [Sing-
hal et al., 2023a], are reported to have encoded vast medi-
cal knowledge and achieved significant performance on sev-
eral medical benchmarks, surpassing previous state-of-the-art
models by a considerable margin [Kung et al., 2023; Nori et
al., 2023a; Nori et al., 2023b]. Nevertheless, despite their im-
pressive performance on existing benchmarks, these LLMs
still face challenges in addressing real-world medical prob-
lems [Thirunavukarasu et al., 2023; Clusmann et al., 2023;
Wornow et al., 2023]. This leads to a significant gap between
evaluation results and practical performance in the medical
domain. Therefore, in this paper, we aim to study the under-
lying causes of this gap by systematically investigating the
depth of medical knowledge mastery in current LLMs.

Several medical benchmarks have been proposed to mea-
sure LLMs’ capacities in the medical domain. Most cur-
rent medical benchmarks assess LLMs by medical question-
answering tasks [Jin et al., 2021; Pal et al., 2022; Hendrycks
et al., 2020; Jin et al., 2019; Ben Abacha et al., 2017;
Ben Abacha et al., 2019; Singhal et al., 2023a]. Other bench-
marks also evaluate LLMs in the forms of medical dialogue
[Zeng et al., 2020] or other traditional NLP tasks (e.g., rela-
tion extraction, NER) based on medical corpora [Zhang et al.,
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Figure 2: Principle of the proposed multifaceted evaluation.

2022]. Nevertheless, most existing medical benchmarks rely
on a specific question type (e.g., multiple-choice questions)
to evaluate LLMs. Therefore, they may overestimate the per-
formance of current LLMs, as certain LLMs may have been
finetuned for specific question types. Consequently, their per-
formance on specific question types would significantly sur-
pass those on other questions. Even if some benchmarks eval-
uate LLMs’ medical capabilities from various facets, each
facet is evaluated based on distinct sets of knowledge points.
Therefore, the outcomes of these benchmarks still cannot re-
flect LLMs’ mastery on the same knowledge points across
diverse facets. Meanwhile, we found it necessary to con-
duct multifaceted evaluation on the same knowledge point.
Figure 1 illustrates GPT-3.5-turbo’s response to two medi-
cal exam problems assessing the same knowledge point but
in different question types. The multiple-choice question
is extracted from the United States Medical Licensing Ex-
amination (USMLE). In contrast, the true-false question is
adapted from the original question by substituting the phrase
“Which of the following” with the correct option, evaluat-
ing LLMs’ ability to verify statements based on correspond-
ing medical knowledge. Although GPT-3.5-turbo success-
fully chooses the symptom of the patient’s disease, it judges
the statement that is consistent with MCQ’s answer as false,
conflicting with its previous prediction. This highlights the
importance of conducting multifaceted evaluations on identi-
cal medical knowledge points for a systematically analysis of
LLMs’ knowledge mastery.

In contrast to existing evaluation benchmarks, current ed-
ucation systems generally utilize various assessment meth-
ods, including assignments, quizzes, projects, and exams, to
evaluate students’ comprehensive mastery of the same knowl-
edge point from multiple facets. Inspired by this, we pro-
pose a novel multifaceted evaluation approach MultifacetE-
val to evaluate the actual medical knowledge mastery of cur-
rent LLMs from multiple facets. Figure 2 illustrates the prin-
ciple of this approach. Specifically, we generate a series
of questions for each knowledge point of interest with var-
ious question types. These questions emphasize evaluating
this knowledge point from different facets, including com-
parison, discrimination, verification, and rectification capa-
bilities. Therefore, the proposed approach would provide a
more comprehensive evaluation of LLMs’ medical knowl-
edge mastery compared with conventional medical bench-
marks that rely on a single evaluation facet. The proposed

approach also possesses strong versatility, as it can gener-
ate multifaceted questions by directly crafting them based on
knowledge points in medical knowledge bases or rephrasing
questions on existing medical evaluation benchmarks.

To validate the effectiveness of the proposed multifaceted
evaluation method, we apply the proposed method to con-
struct two new evaluation datasets based on a medical knowl-
edge database and a medical benchmark MedQA [Jin et al.,
2021], respectively. A total of 13 well-known general and
medical LLMs are evaluated on these datasets. The exper-
imental results indicate that current LLMs lack a compre-
hensive, precise, and in-depth mastery of medical knowledge
despite their considerable performance on existing medical
benchmarks. Moreover, the results demonstrate that current
LLMs possess excellent comparison capability, while they
have not well mastered other capabilities such as discrimi-
nation, verification, and rectification in the medical domain.
Our contributions can be summarized as follows:

• We propose a novel multifaceted evaluation schema
(MultifacetEval) to evaluate LLMs’ medical knowledge
mastery on the same knowledge point from various
facets instead of a single facet in existing benchmarks.
The proposed method can more accurately evaluate the
LLMs’ mastery of medical knowledge.

• Based on the proposed method, we generate two novel
multifaceted datasets, MultiDiseK and MultiMedQA,
based on a medical knowledge base and a well-known
medical benchmark MedQA, respectively. The perfor-
mance of these two datasets can more comprehensively
reflect LLMs’ mastery of medical knowledge.

• The experimental results reveal that the genuine extent
of medical knowledge mastery in current LLMs is sig-
nificantly lower than that evaluated by existing medical
benchmarks. Additionally, we observe substantial vari-
ations in LLMs’ performance across different facets.

2 Related Work
Large Language Models on Medical Tasks Recently,
some famous LLMs are reported to encode medical knowl-
edge and achieve considerable performance on existing med-
ical benchmarks. General LLMs such as Flan-PaLM and
GPT-4 are reported to achieve state-of-the-art performance on
multiple datasets [Singhal et al., 2023a; Nori et al., 2023b].
For example, they achieve accuracies of 67.6 and 90.2 on a
medical exam benchmark MedQA [Jin et al., 2021], largely
surpassing the prior SOTA models. Several LLMs specially
pretrained or finetuned on the medical corpora, such as Med-
PaLM, Med-PaLM2 [Singhal et al., 2023b], ClinicalCamel
[Toma et al., 2023], and Med42 [Christophe et al., 2023], are
also proposed to address problems in the medical domain and
achieve high performance on various medical benchmarks.
However, these models cannot tackle problems in real medi-
cal scenarios. Our study aims to investigate the gap between
the high evaluation performance and the limited practical ef-
fectiveness of existing LLMs in the medical domain.
Medical Evaluation Benchmarks Current medical evalu-
ation benchmarks can be classified into three classes: (1)
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Figure 3: Framework of the proposed multifaceted evaluation approach that evaluates LLMs’ medical knowledge mastery from various facets.

Question-answering datasets with problems collected from
different sources, including medical exams [Jin et al., 2021;
Pal et al., 2022; Hendrycks et al., 2020], scientific litera-
ture [Jin et al., 2019], and consumer health questions [Ben
Abacha et al., 2017; Ben Abacha et al., 2019; Singhal et
al., 2023a]; (2) medical dialogue datasets [Zeng et al., 2020;
Yang et al., 2020]; (3) datasets [Peng et al., 2019; Zhang et
al., 2022] involving conventional NLP tasks (NER, relation
extraction, NLI) on medical corpora. Some of these datasets
assess LLMs from a single facet. Others evaluate LLMs with
multiple tasks, while the tasks are constructed on different
groups of knowledge points. In this paper, we design a new
evaluation method to evaluate LLMs’ mastery of the same
knowledge point from multiple facets.

3 Knowledge-Centric Multifaceted
Evaluation

3.1 Multifaceted Evaluation Schema
The proposed multifaceted evaluation approach is motivated
by the current education systems, where various assess-
ment methods, including assignments, projects, and exams,
are employed to comprehensively evaluate whether students
have truly mastered a particular knowledge point. Given
a knowledge point k and a series of N evaluation facets
f = [f1, f2, · · · , fN ]T, the performance of an LLM (M)
evaluated through the proposed multifaceted evaluation is:

fk(M) = [f1
k (M), f2

k (M), · · · , fN
k (M)]T (1)

Where f i
k denotes the specific questions designed to em-

phasize the evaluation of the ith facet related to the knowl-
edge point k, and f i

k(M) ∈ {0, 1} is the evaluation out-
come: f i

k(M) = 1 if all questions in f i
k are answered cor-

rectly, and 0 otherwise. Compared with single-faceted eval-
uation, the proposed multifaceted evaluation method conveys
more comprehensive information about the mastery of a spe-
cific knowledge point. The proposed multifaceted evalua-
tion schema demonstrates strong transferability: it can be
applied in other domains by adjusting evaluation facets and
question generation strategies.

3.2 Facets of Medical Knowledge Mastery
We employ the proposed evaluation schema to systemati-
cally probe current LLMs in mastering medical knowledge.
Considering the characteristics of medical scenarios, we set
N = 4 and design a total of four evaluation facets of capabil-
ities that are essential for solving real medical problems:
Comparison (f1): The ability to compare different medical
entities/events and choose the most suitable one that meets
some criteria. It is crucial for medical applications such as
diagnosis and drug recommendation.
Rectification (f2): The capability to identify errors in the
medical process (treatment, diagnosis) and offer correspond-
ing corrections. Rectification plays an important role in med-
ical scenarios such as computer aided diagnosis.
Discrimination (f3): The capacity to recognize and differen-
tiate between medical concepts accurately. Discrimination of
medical concepts is the bedrock of medical applications such
as clinical decision support and personalized medicine.
Verification (f4): The ability to determine the veracity of a
statement based on the acquired knowledge. Such capabil-
ity is highly demanded in the quality assessment of electronic
health records and laboratory results.

3.3 Multifaceted Medical Evaluation Framework
Built on the facets discussed above, we design a multifaceted
medical evaluation framework to comprehensively evaluate
mastery of medical knowledge by LLMs from these evalua-
tion facets. Figure 3 illustrates an overview of the proposed
multifaceted evaluation framework. Given a set of medical
knowledge points K, the framework evaluates LLMs’ mas-
tery of medical knowledge through two steps:
Multifaceted Question Generation In the first step, we
generate multiple questions from diverse evaluation facets
for each knowledge point in the set: k → {f i

k|1 ≤ i ≤
N}, where k ∈ K. Specifically, we design four question
types, including multiple-choice questions, revision ques-
tions, multiple-answer questions, and true-false questions,
to emphasize the evaluation of the comparison, rectification,
discrimination, and verification facets, respectively:
(1) Multiple-Choice Questions: We maintain the multiple-
choice questions (MCQ) applied in existing benchmarks
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Figure 4: Example of the proposed revision question.

to emphasize the evaluation of the comparison facet. A
multiple-choice question comprises a question and multiple
options (typically 4). To answer multiple-choice questions
accurately, participants must compare the given options and
select the most suitable choice that fits the question.

(2) Revision Questions: We design a new question type
named “revision” question (RQ) to focus on evaluating the
rectification capabilities of LLMs. Figure 4 illustrates an ex-
ample of this question type. A revision question comprises
a multiple-choice question and a provided option (not nec-
essarily correct) to this question. Participants are asked to
recheck the correctness of the given option based on the ques-
tion, and revise the answer appropriately if needed.
(3) Multiple-Answer Questions: We consider leveraging
multiple-answer questions (MAQ) to highlight the evalua-
tion of the discrimination capability. In contrast to MCQs,
a multiple-answer question consists of several options, with
one or more aligning with the given question. Effectively an-
swering MAQs requires a comprehensive and precise mastery
of discriminative knowledge for all options, as MAQ answers
cannot be determined through option-wise comparison.
(4)True-false Questions: We utilize true-false questions
(TFQ) to emphasize the assessment of the verification facet.
A true-false question generally presents a statement that can
be verified based on the corresponding medical knowledge
and information provided in the statement. True-false ques-
tions do not include options that may provide clues, requiring
ones to mastery medical knowledge accurately.
Multifaceted LLM Evaluation In the next step, we evalu-
ate the LLM M with the generated multifaceted questions to
obtain comprehensive evaluation results on each knowledge
points: f i

k → f i
k(M) where k ∈ K and 1 ≤ i ≤ N . Finally,

the proposed evaluation framework produces comprehensive
evaluation outcomes for M across all the knowledge points:
{fk(M)|k ∈ K}. To reflect the LLM’s comprehensive mas-
tery of individual knowledge points, we define a knowledge
point k is mastered by M under facets {f1, f2..., fN}, if the
function

rk(M) =
N∏
i=1

f i
k(M) (2)

equals 1. Here, rk(M) = 1 only when f i
k(M) = 1 holds

for 1 ≤ i ≤ N , indicating accurate answers to all questions
from these facets. The overall performance can therefore be
represented as the proportion of mastered knowledge points:

p(M) =
1

|K|
∑
k∈K

rk(M) (3)

Figure 5: Aspects of disease-related knowledge in DiseK.

4 Experiments
4.1 Experiment Setup
MultiDiseK Dataset Generation Medical knowledge
bases explicitly contain knowledge points that can be directly
utilized in the proposed method. In this paper, we introduce a
disease-centric knowledge base (DiseK) and construct a mul-
tifaceted evaluation dataset (MultiDiseK) from it. DiseK is
annotated by 20 medical experts for about 3 months. It con-
sists of 1,000 common diseases, accompanied by 4 funda-
mental aspects of medical knowledge (illustrated in Figure 5).
These aspects are closely associated to the clinical decision-
making process, involving diagnosis and treatment. There-
fore, LLMs must acquire these aspects of medical knowledge
to be applicable in clinical decision support systems (CDSS)
[Wu et al., 2018; Liang et al., 2019].

The MultiDiseK dataset is constructed based on medical
knowledge points in DiseK by using carefully crafted ques-
tion templates. For the comparison facet, an MCQ (4-option)
is generated for each aspect of disease knowledge, where op-
tions are formed by selecting attributes that either belong or
do not belong to the specified disease. Revision questions
are generated by rephrasing each MCQ into two questions,
providing either the correct choice or a randomly selected in-
correct choice. Multiple-answer questions are generated sim-
ilarly to MCQs, but with selecting 1-3 attributes as correct
options. For true-false questions, we randomly choose an at-
tribute with 50% probability associated with the disease and
50% not associated. Participants are then asked to determine
whether the given attribute is associated with the disease. For
all questions crafted above, we also generate a correspond-
ing negated version by incorporating negation words into the
question and modifying the answers correspondingly. This
is done to further assess the depth of knowledge mastery by
LLMs. Finally, the constructed dataset encompasses a total of
3,167 disease-related knowledge points (some diseases may
not have corresponding medications or surgeries), including
6,334 MCQs, 12,668 RQs, 6,334 MAQs, and 6,334 TFQs.
More details of this dataset (e.g., question templates, dataset
statistics) are presented in Appendix A and B.

MultiMedQA Dataset Generation To make our proposed
multifaceted evaluation approach comparable with existing
benchmarks, we further construct another dataset Multi-
MedQA based on a medical benchmark MedQA [Jin et al.,
2021], since several LLMs have achieved notable perfor-
mance on this benchmark. MedQA is a medical exam dataset
that contains 5-option multiple-choice questions from the
professional medical board exams of different sources. The
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Figure 6: Proportion of mastered knowledge points (p(M)) evaluated by single-faceted and multi-faceted methods on two datasets. Dash
dotted lines refer to LLMs with sizes under 70B, while solid lines denote LLMs larger than 70B. Evaluated facets are added following the
sequence: comparison, verification, rectification, and discrimination.

question in MedQA typically consists of a patient’s medical
consultation record followed by a question related to the pa-
tient’s situation (e.g., diagnosis, the next step in management,
findings of diagnostic tests). Employing the multifaceted
evaluation schema, we rephrase each MedQA question into
various types, conducting a multifaceted evaluation of the
medical knowledge points embedded in MedQA. To do so,
we first selected 800 questions suitable for the multifaceted
adaptation from the US exam part (1,273 questions) by reg-
ular expressions. After that, we rephrase them into multi-
faceted questions with heuristic rules. For revision-type ques-
tions, we generate them using a method similar to that applied
in MultiDiseK construction. For multiple-answer questions,
given the challenge of explicitly identifying the knowledge
points in the original question, we adopt a solution by retriev-
ing synonyms for the correct option and randomly replacing
0-3 incorrect options with these synonyms to generate a new
question. Each question is further paired with a negated ver-
sion by introducing a negation word in the question. True-
false questions were generated by substituting the interroga-
tive word/phrase (e.g., “which of the following”) with either
the correct or incorrect option selected from the remaining
four options, and negated versions were also created using the
same method. The resulting MultiMedQA dataset includes
800 MCQs, 1,600 RQs, 1,600 MAQs, and 3,200 TFQs. More
details of MultiMedQA are provided in Appendix C.

Evaluation Setting We evaluate LLMs by five-shot learn-
ing on the proposed datasets. We report the performance
of LLMs under two settings: (1) answer-only [Brown et al.,
2020]: prompting LLMs with only question-answer pairs; (2)
Chain-of-Thought with Self-consistency (CoT+SC) [Wang et
al., 2022]: prompting LLMs multiple times with question-
answer pairs and the chain-of-thoughts, aggregating the re-
sults by majority vote to obtain the final answer. For the latter
setting, we generate CoTs following the method proposed in
[Nori et al., 2023b] and ask LLMs each question 5 times in

our implementation. We only apply the answer-only setting
for experiments in MultiDiseK since questions in MultiDiseK
do not require sophisticated reasoning in medical cases. We
use carefully designed regular expressions to extract answers
and observe that they can retrieve answers successfully in
most cases. More details are provided in Appendix D.

Metrics We employ proportion of mastered knowledge
points (p(M) in Sec.3.3) to measure the overall performance.
For each facet, we employ accuracy ( #correctly answered questions

#all of the questions )
as the fine-grained metric. For MAQs, correct predictions
require an exact match with the ground truth answers. Re-
garding RQs, correctness is determined when both the verac-
ity of the chosen option and the original question’s answer
are accurately predicted. We observe that some LLMs “for-
tunately” achieve high accuracies on RQs by always staying
consistent with the provided option since half of the RQs pro-
vide the correct options. Therefore, we revise the calcula-
tion of revision questions’ performance to reduce this bias:
acc = 1

No
accT +No−1

No
accF , where No is the number of op-

tions, accT and accF are the accuracies of RQs that provide
correct and incorrect options, respectively. The accuracy cal-
culated above is proven to reduce the impact of this bias, and
we provide the corresponding proof in Appendix E.

Baseline Models We evaluate a total of 13 LLMs with
varying sizes in this paper: (1) general LLMs: ChatGLM
(6B) [Du et al., 2022], Llama2 (7B,70B) [Touvron et al.,
2023], Vicuna (7B,13B) [Zheng et al., 2023], Bloomz-mt
(7.1B) [Muennighoff et al., 2023], GPT-3.5-turbo [Ouyang
et al., 2022] and Gemini-pro [Team et al., 2023]; (2) med-
ical LLMs: Pulse (7B) [Xiaofan Zhang, 2023], Meditron
(7B,70B) [Chen et al., 2023], ClinicalCamel (70B) [Toma et
al., 2023], and Med42 (70B) [Christophe et al., 2023]. We
have not evaluated GPT-4 [OpenAI, 2023] and MedPaLM
[Singhal et al., 2023a], since GPT-4 is too expensive and
MedPaLM is not publicly available yet.
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Model Comp. Rect. Disc. Veri. Average
Random 20.0 20.0 3.2 50.0 23.3
ChatGLM-6B 27.7 20.3 5.7 50.6 26.1
Vicuna-7B 21.0 17.7 2.1 49.4 22.6
Llama2-7B 20.8 23.0 0.1 49.6 23.4
Bloomz-7.1B-mt 25.4 11.9 5.5 50.1 23.2
Meditron-7B 20.6 18.8 0.0 48.9 22.1
Pulse-7B 19.9 14.9 0.7 49.2 21.2
Vicuna-13B 20.1 17.4 0.6 51.7 22.4
Llama2-70B 41.8 30.7 10.8 54.7 34.5
Meditron-70B 47.2 28.3 5.1 50.8 32.8
ClinicalCamel-70B 23.9 24.9 6.4 50.8 26.5
Med42-70B 59.0 44.8 26.2 57.5 46.9
Gemini-pro 41.0 37.2 12.5 59.2 37.5
GPT-3.5-turbo 45.5 48.6 12.5 58.1 41.2

(a) Results in the setting of Answer-only.

Model Comp. Rect. Disc. Veri. Average
Random 20.0 20.0 3.2 50.0 23.3
ChatGLM-6B 26.0 17.2 6.8 49.1 24.8
Vicuna-7B 36.7 10.8 6.2 53.0 26.7
Llama2-7B 35.1 18.1 5.6 51.2 27.5
Bloomz-7.1B-mt 21.8 12.5 5.5 50.9 22.7
Meditron-7B 29.1 13.3 4.8 50.2 24.3
Pulse-7B 28.9 19.6 5.3 50.5 26.1
Vicuna-13B 29.7 15.8 5.7 52.1 25.8
Llama2-70B 50.6 35.4 10.1 58.1 38.5
Meditron-70B 53.1 33.9 10.8 56.4 38.5
ClinicalCamel-70B 58.2 37.5 12.0 61.3 42.2
Med42-70B 56.9 34.3 22.6 59.1 43.2
Gemini-pro 59.4 40.2 34.5 64.2 49.6
GPT-3.5-turbo 60.4 50.1 22.4 62.2 48.8

(b) Results in the setting of Chain-of-Thought Self Consistency.

Table 1: Five-shot accuracies on the MultiMedQA dataset across comparison (Comp.), rectification (Rect.), discrimination (Disc.), and
verification (Veri.) capabilities. “Average” column denotes the macro average of accuracies across all facets.

Model Comp. Rect. Disc. Veri. Average
Random 25.0 25.0 6.7 50.0 26.7
ChatGLM-6B 35.2 27.7 18.5 52.8 33.5
Vicuna-7B 29.5 24.9 14.0 55.1 30.9
Llama2-7B 27.8 25.5 15.7 55.2 31.0
Bloomz-7.1B-mt 34.0 21.0 17.6 53.3 31.5
Meditron-7B 27.4 25.2 12.5 50.1 28.8
Pulse-7B 26.1 22.2 2.8 52.9 26.0
Vicuna-13B 25.6 25.6 9.2 52.5 28.2
Llama2-70B 65.6 47.5 33.7 58.1 51.2
Meditron-70B 66.3 50.3 38.7 63.1 54.6
ClinicalCamel-70B 66.8 63.1 37.0 68.8 58.9
Med42-70B 72.5 57.3 37.1 64.4 57.8
Gemini-pro 81.7 72.6 55.0 77.0 71.6
GPT-3.5-turbo 74.1 59.1 44.8 63.7 60.4

Table 2: Five-shot accuracies on the MultiDiseK dataset.

4.2 Results
Single-faceted vs. Multi-faceted We first compare the pro-
posed multifaceted evaluation with the conventional single-
faceted evaluation. Figure 6 illustrates the proportion of mas-
tered knowledge points (p(M)) by LLMs on the proposed
MultiMedQA and MultiDiseK datasets, evaluated using both
single-faceted (comparison-type) and multifaceted methods1.
These LLMs are reported to achieve high performance on ex-
isting medical benchmarks, including MedQA. We report the
performance on the MultiMedQA achieved by the CoT+SC
setting since these LLMs generally achieve higher perfor-
mance in this setting. The experimental results indicate that
all LLMs above 70B have effectively mastered a consider-
able number of knowledge points when evaluated solely from
the comparison facet (i.e., the original MedQA questions),
consistent with their reported performance on existing bench-

1Since current LLMs struggle to correctly answer both an affir-
mative question and its negation simultaneously, we remove negated
questions in this analysis to ensure the visibility.

marks. However, we observe a sharp decline in the propor-
tion of mastered knowledge points across various LLMs as
the number of evaluated facets increases. For example, GPT-
3.5-turbo’s performance evaluated by 4 facets is around 50%
lower on MultiMedQA and 40% lower on MultiDiseK com-
pared with the single-faceted results. Moreover, we observe
that though several smaller LLMs (dash dotted lines) also
perform notably under single-faceted evaluation, their perfor-
mance nearly approaches zero when evaluated by ≥ 3 facets.
In contrast, larger LLMs master more knowledge under mul-
tifaceted evaluation. We also study different sequences of
adding evaluation facets in Appendix F and observe that the
conclusions remain consistent. The results imply that current
LLMs lack a comprehensive mastery of medical knowledge.

Comparison Across LLMs Table 1 and 2 compare LLMs
performance across various datasets and settings. LLMs
generally perform better on the MultiDiseK dataset since
the questions do not involve analysis of specific medical
cases. Gemini-pro achieves the highest performance on both
datasets with 49.6 and 71.6 in average accuracy, respectively.
GPT-3.5-turbo performs similarly to Gemini-pro on Multi-
MedQA (48.8) but significantly lags behind Gemini-pro on
MultiDiseK (60.4). The discrepancy may be attributed to
the broader coverage of disease knowledge by Gemini-pro
compared with GPT-3.5-turbo, while its ability to apply med-
ical knowledge in specific medical cases is similar to GPT-
3.5-turbo. For open-source LLMs in 70B size, we find that
several medical LLMs (Med42, ClinicalCamel) significantly
surpass their base model LLama2-70B and achieve compara-
ble performance compared to GPT-3.5-turbo on both datasets
(46.9 for Med42 on MultiMedQA and 58.9 for ClinicalCamel
on MultiDiseK). LLMs that are not larger than 13B perform
only slightly better than random guessing. However, they
achieve significantly higher performance in the comparison
facet and perform similarly or even worse than random guess-
ing on facets such as verification and rectification. One possi-
ble explanation is that these two facets represent higher-level
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(a) Results on the MultiMedQA dataset. (b) Results on the MultiDiseK dataset.

Figure 7: Multifaceted performance of LLMs across the evaluated facets on MultiMedQA and MultiDiseK. Hatched bars: random guessing
performance. Solid bars above the hatched part: LLMs gain over random guessing. Meditron, ClinicalCamel, and Med42 are all 70B versions.

capabilities that can manifest only in LLMs with larger sizes.
Notably, the comparison-type questions in MultiMedQA are
directly sourced from the MedQA dataset. In our study,
the performance of GPT-3.5-turbo on this facet (60.4) aligns
closely with the reported performance in [Nori et al., 2023b]
(60.2), which could indicate the reliability of our findings.
Comparing the Answer-only setting with the CoT+SC set-
ting, we find that larger models significantly benefit more
from CoT+SC (except Med42). The effect of CoT+SC varies
across facets: for Gemini-pro, CoT+SC largely improves its
performance in the comparison (+18.4) and discrimination
(+22.0) facets, while it has a limited effect on verification
(+5.0) and rectification facets (+3.0).

Comparison Across Multiple Facets We further compare
the top-5 LLMs’ performance across different capabilities
facets in Figure 7. The performance on the MultiMedQA is
reported under the CoT+SC setting as well. Note that the
hatched bars represent the random guessing performance of
the corresponding question type. The experimental results
demonstrate that the evaluated LLMs typically exhibit the
most significant improvement over random guessing in the
comparison facet, followed by the rectification and discrim-
ination facets, and lastly, the verification facet. The high per-
formance on the comparison facet may be caused by the fact
that current LLMs have seen more comparison-type ques-
tions (MCQs) in their training data to perform well on exist-
ing benchmarks. Rectification-type questions are more chal-
lenging than comparison-type questions because they require
LLMs to determine the correctness of the provided answer
and to revise it accurately. Discrimination-type questions also
perform worse than comparison-type questions, probably be-
cause of their demand for LLMs to discern nuances between
concepts instead of merely selecting the most suitable choice.
Verification-type questions exhibit the lowest gain, likely due
to the need for direct verification based on medical knowl-
edge without additional information from options.

5 Conclusion and Discussion
In this paper, we propose a multifaceted evaluation approach,
MultifacetEval, designed to probe the actual mastery of med-
ical knowledge by current LLMs. Following this methodol-
ogy, we construct two multifaceted evaluation datasets, Mul-
tiDiseK and MultiMedQA. The experimental results demon-
strate that current LLMs’ medical knowledge mastery is sig-
nificantly lower than their performance on medical bench-
marks suggests, indicating that the proposed MultifacetE-
val framework offers a more comprehensive assessment of
LLMs’ medical knowledge mastery. Furthermore, LLMs
demonstrate significant variations in performance across dif-
ferent evaluation facets. These results suggest that Current
LLMs generally lack a deep, precise, and comprehensive
mastery of medical knowledge, which is the probable cause
of the disparity between high performance on medical bench-
marks and insufficient performance on real medical scenar-
ios. Moreover, although some smaller LLMs are reported
to achieve performance comparable to larger LLMs on sev-
eral benchmarks, they achieve much lower performance on
multifaceted datasets, indicating that their mastery of medical
knowledge is not as comprehensive as that of larger LLMs.

The above conclusion also provides insights into the de-
velopment of medical foundation models: (1) Medical foun-
dation models need to be sufficiently large to master medical
knowledge comprehensively, deeply, and precisely; (2) Their
training should cover a diverse range of medical tasks rather
than being restricted to specific ones, making them truly ap-
plicable in real-world scenarios.

Finally, it is worth noting that our study is only a first
step in exploring the actual mastery of medical knowledge by
LLMs. In the future, we plan to evaluate LLMs across addi-
tional facets relevant to real medical applications and expand
the scale of knowledge points for evaluation, continuously
enhancing the comprehensiveness, professionalism, and ro-
bustness of the proposed method.
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