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Abstract
Relation Extraction (RE) identifies relations be-
tween entities in text, typically relying on super-
vised models that demand abundant high-quality
data. Various approaches, including Data Augmen-
tation (DA), have been proposed as promising solu-
tions for addressing low-resource challenges in RE.
However, existing DA methods in RE often strug-
gle to ensure consistency and contextual diversity
in generated data due to the fine-grained nature of
RE. Inspired by the extensive generative capabil-
ities of large language models (LLMs), we intro-
duce a novel framework named ConsistRE, aim-
ing to maintain context consistency in RE. Con-
sistRE initiates by collecting a substantial corpus
from external resources and employing statistical
algorithms and semantics to identify keyword hints
closely related to relation instances. These key-
word hints are subsequently integrated as contex-
tual constraints in sentence generation, ensuring the
preservation of relation dependence and diversity
with LLMs. Additionally, we implement syntac-
tic dependency selection to enhance the syntactic
structure of the generated sentences. Experimental
results from the evaluation of SemEval, TACRED,
and TACREV datasets unequivocally demonstrate
that ConsistRE outperforms other baselines in F1
values by 1.76%, 3.92%, and 2.53%, respectively,
particularly when operating under low-resource ex-
perimental conditions.

1 Introduction
Relation Extraction (RE) is pivotal in Information Extraction
(IE), seeking to identify relations between entities within tex-
tual data. Its significance resonates in downstream applica-
tions like event extraction [Xiang and Wang, 2019], knowl-
edge graph [Luan et al., 2018], and intelligent question an-
swering [Sun et al., 2021]. Despite the commendable suc-
cess of current methodologies, which predominantly follow
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Forsberg,  die Oct. 19 in a Bronx hospital of the lung cancer, say
her sister, Celia Seupel.

He was 47 and was born in St. Petersburg, Oct. 19, Forsberg said.
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On February 11, the prolific inventor Thomas Edison bid farewell.

The prolific inventor, Thomas Edison, was born on February 11.

date of death

Figure 1: (a) Highlights the contextual variability in relation deter-
mination, emphasizing that an entity pair can manifest distinct rela-
tions within different context. (b) Compares mainstream DA meth-
ods in RE, revealing that the Editing Method preserves original rela-
tion dependencies at the expense of sentence diversity. At the same
time, the Generative Method excels in contextual richness but may
introduce deviations in dependencies of relation.

a supervised paradigm, a notable reliance exists on extensive
datasets with high-quality annotations. In practical scenar-
ios, the primary hurdles confronting RE revolve around low-
resource challenges. These include the relatively modest size
of available datasets, restricted application field scopes, and
the complexities associated with labeling special domains.

Numerous approaches have been proposed to address the
challenges mentioned above, including meta-learning [Hu et
al., 2021; Liu et al., 2022; Pouran Ben Veyseh et al., 2023],
transfer learning [Sarhan and Spruit, 2020; Gururaja et al.,
2023], data augmentation [Hu et al., 2023; Zhao et al., 2023;
Xu et al., 2023] and instruction prompting [Li et al., 2023].
Among these, Data Augmentation (DA) stands out as a plug-
and-play technology, offering direct applicability as a pre-
processing method for a broad spectrum of tasks. While DA
techniques have found success in tasks like Text Classifica-
tion (TC) [Hsu et al., 2021] and Named Entity Recognition
(NER) [Ke et al., 2023], their exploration in RE remains
somewhat limited. This disparity arises due to the inherent
fine-grained nature of RE compared to TC and NER. Model-
ing the intricate dependencies within RE proves challenging.
As illustrated in Figure 1(a), the presence of the same en-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6660



tity pair in a sentence may result in entirely different relation
types due to variations in context.

Dominant methods frame fine-grained DA into controlled
text generation paradigm [Ke et al., 2023; Hu et al., 2023].
Fine-grained DA is broadly categorized into two paradigms:
editing and generative methods. Editing methods involve
simple transform operations like random exchange, insertion,
and deletion. However, the imposition of rule restrictions
limits the diversity of samples, consequently diminishing the
generalization capacity of the RE models. For instance, as
illustrated in the first instance in Figure 1(b), merely sub-
stituting the said for say and adding the lung fails to intro-
duce substantial contextual diversity. Generative methods of-
fer the advantage of producing more fluid and diverse sam-
ples. However, current generative approaches exhibit two
notable shortcomings. Firstly, compared to the original sen-
tence, the generated counterpart may deviate semantically,
failing to preserve the relation dependency between the origi-
nal entity pairs. As exemplified in Figure 1(b), owing to vari-
ations in contextual semantics, the relation type between en-
tities Forsberg and Oct.19 transitions from date of death to
date of birth. Secondly, existing methods lack specific hard
constraints to ensure the inclusion of entity pairs during sen-
tence generation. This oversight may introduce new entity
pairs with unknown labels, leading to the generation of un-
controllable data. Consequently, when employing controlled
text generation for RE DA, it becomes imperative to address
the challenge of enhancing context diversity beyond entity
pairs while preserving relation dependencies.

We argue that the crux of RE DA lies in preserving rela-
tion dependencies between pairs of entities through semantic
consistency within the context. At the same time, to enhance
the generalization ability of RE models, it is also necessary
to ensure the diversity of contextual expressions during the
generation process. Compared with existing pre-trained lan-
guage models (PLMs) such as T5 [Raffel et al., 2020] and
BART [Lewis et al., 2020], large language models (LLMs)
such as GPT-3 [Brown et al., 2020], LLaMA [Touvron et al.,
2023] and GPT-4 [OpenAI, 2024] show strong potential in
generating diverse and contextually relevant texts, bringing
new possibilities to RE DA. This paper proposes ConsistRE,
an innovative RE DA method that maintains context consis-
tency in RE. This method adds context constraints of keyword
hints in the sentence synthesis process to ensure that the gen-
erated sentences maintain relation dependencies and seman-
tic consistency while increasing the diversity of synthesized
sentences with LLMs. Specifically, first, we apply statistical
algorithms and semantic similarity to find the keyword hints
most closely related to the relation instances based on a large
amount of textual data. Following this, triples and keyword
hints are included as controlled text as part of the prompt.
During the sentence generation process, we filtered similar
instances from both original and synthetic samples as demon-
strations to enhance the performance of the LLMs. Finally,
we select sentences that align more consistently with gram-
matical rules through syntactic dependency parsing to ensure
that the generated sentences are more grammatically sound.

We assess the performance of our RE DA method on
two RE models, ReDMP and SuRE, using three datasets:

SemEval, TACRED, and TCAREV. The experimental results
underscore the remarkable effectiveness of our approach
in enhancing the diversity of generated sentences while
preserving relation dependencies. When applied to ReDMP,
ConsistRE exhibits superior performance, achieving F1 val-
ues of 1.48%, 5.48%, and 3.16% higher than other optimal
methods on SemEval, TACRED, and TACREV, respectively.
Similarly, under SuRE, ConsistRE outperforms other meth-
ods, yielding F1 values higher by 2.03%, 2.35%, and 1.9%.
To sum up, the contributions of this paper are three-fold:

• We argue that the cornerstone of RE DA lies in main-
taining the relation dependency of synthetic sentences
through semantic consistency with context.

• We introduce ConsistRE, a framework that aims to si-
multaneously maintain the consistency of dependencies
and diversity of synthetic sentences with LLMs.

• We conduct extensive experiments on three public
datasets, demonstrating the importance of maintaining
relation dependencies through contextual constraints.

2 Methods
Assuming that a relation instance (s, h, r, t) is given from
the original annotated dataset X , where s, h, r, t represent the
source sentence, head entity, relation type, and tail entity, re-
spectively. ConsistRE aims to derive a substantially larger
augmented dataset Y that maintains high consistency with X .
For each instance (s̃, h, r, t) ∈ Y , s̃ is newly generated from
s, while maintaining the original (h, r, t) unchanged.

The workflow of ConsistRE is illustrated in Figure 2. In
the first stage, ConsistRE gathers a substantial amount of
sentences related to triplet (h, r, t) from the Internet and ac-
quires the keyword hints k most intricately associated with
(s, h, r, t) utilizing statistical algorithms and semantic simi-
larity. Moving on to the second stage, ConsistRE employs
langchain1 to select the most semantically similar instance
as demonstrations d from the constructed example selector.
Subsequently, d, (s, h, r, t), and k are integrated into a prompt
template to generate prompts, and an LLM is employed to
generate a set of sentence instances. Finally, in the third stage,
syntactic dependency parsing is employed to select instances
s̃ with superior syntax, forming the augmented dataset Y .

2.1 Keyword Hints Retrieval
The initial stage of our approach involves acquiring the most
pertinent keyword hints k. Here, k represents the context
most closely related to the relation instance (s, h, r, t) and
will later be used as a hard constraint during the sentence
generation, aiming to maintain the dependency consistency
of the relation in the generated sentences.

Related Sentences Retrieval
Given the intricate nature of RE that demands fine-grained
modeling, the identification of relations between specified en-
tities necessitates comprehensive and contextually rich sup-
port. Relying solely on contextual information derived from
the original sentence s might prove insufficient in capturing

1https://www.langchain.com/
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Stage 1: Keyword Hints Retrieval Stage 2: Sentence Generation Stage 3: Syntactic Selection
Raw Data

(Jane,  school_attends,  Yale)

InternetTriplet
Related 

Sentences

Scoring Keyword hints

Knowledge: [Black] [Trinity] [school_attends].
Objective:   Make sentences with[Black][Trinity] [English]. 
Output:       Black, ... in English from Trinity.
...... 
Knowledge: [Jane] [Yale] [school_attends].
Objective:   Make sentences with[Jane][Yale] [student]. 
Output:  

langchain
example
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1. Jane Bolin was one of the distinguished Yale Law
School students, showcasing her commitment to legal education.
2. The legacy of Jane Bolin as a student at Yale Law
School resonates through her groundbreaking achievements.
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Querry

Sen1: Jane Bolin was one of the distinguished Yale
Law School students, ...
Sen2: The legacy of Jane Bolin as a student at Yale
Law School resonates ...
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Figure 2: Overview of ConsistRE: 1) Applying statistical algorithms and semantic similarity to find keyword hints related to relation in-
stances in textual data; 2) Incorporating triplet and keyword hints in prompts and selecting similar instances as demonstrations; 3) Ensuring
grammatical correctness through syntactic dependency parsing.

the intricacies of the relations. Therefore, it becomes impera-
tive to seek additional sentences with more extensive content
to address this limitation. To mitigate this challenge, we aug-
ment our dataset by collecting substantial textual data from
the Internet. Specifically, we utilize the search interface pro-
vided by Google2 to gather a substantial set of sentences rel-
evant to the triplet (h, r, t). The acquired sentences undergo
preprocessing to extract pure text, forming the sentence set C
for subsequent utilization in obtaining k.

Keyword Hints Obtain
We formulate a relevance score to discern keyword hints k
that most effectively encapsulate entity relations within the
retrieved sentence set C. Specifically, the relevance score q
assigned to each occurring word w is defined as follows:

q = qpmi + qtf-idf + qsem (1)

qpmi = log

(
P (w, h, t)

P (w) · P (h) · P (t)

)
(2)

qtf-idf =

∑
c TF (w, c)× IDF (w, c, C)

|C|
(3)

qsem = cos (EMB (w),EMB (s)) (4)

qpmi represents the score computed by the Pointwise Mu-
tual Information (PMI) [Church and Hanks, 1989], which is
a widely used linguistic statistical method to gauge word cor-
relation. P (w), P (h), and P (t) respectively represent the
probability of the calculated word w, head entity h, and tail
entity t appearing in the sentences set C. P (w, h, t) represents
the probability of all three appearing simultaneously.

qtf-idf represents the score calculated by the TF-IDF. The
integration of TF-IDF aims to eliminate frequently occurring
but semantically insignificant words. TF (w, c) represents the
frequency of w in sentence c ∈ C, while IDF (w, c, C) repre-
sents the rarity of w in the sentence set C.
qsem represents the semantic similarity between s and w,

which is employed to ensure that the k aligns closely with the
semantics of the original sentence. EMB (s) and EMB (w)
are encoded by Sentence-BERT [Reimers and Gurevych,

2https://developers.google.com/custom-search

2019]. qpmi, qtf-idf and qsem are adjusted to range 0 to 1. By
computing the relevance score q for each word, we select the
w with the highest score as keyword hints k.

2.2 Sentence Generation
LLMs exhibit robust contextual learning capabilities and
can be significantly augmented through few-shot in-context
demonstrations. In the second stage, we aim to generate a set
of high-quality sentences ŝ. We break down prompt acqui-
sition into the following two steps: demonstration selection
and prompt formulation.

Demonstration Selection
To better stimulate and leverage the In-Context Learning
(ICL) capabilities of LLMs, choosing similar relation in-
stances from the example database to form the demonstra-
tion d in the few-shot prompt is essential. We employ the
example selector in langchain to execute these steps, utiliz-
ing Sentence-BERT as the encoding model and FAISS3 as
the embedding database. Example database is initialized with
original dataset X , and subsequent augmented data (s̃, h, r, t)
is added during the execution process. Iteratively increasing
the number of examples in the example database can expand
the optional range of demonstrations. We select three exam-
ples from the example database that are semantically closest
to (s, h, r, t) as demonstrations. The format of the demon-
stration is as follows:

Knowledge: The relation between [head entity] and [tail
entity] is [relation type]

Objective: Make sentences with given entities [head en-
tity], [tail entity] and keyword [keyword hint]

Output: [source sentence]
Deserving a special mention, [keyword hint] in the demon-

stration is extracted from the source sentence using Topi-
cRank [Bougouin et al., 2013].

Prompt Formulation
To enhance the context-learning accuracy of LLMs, we incor-
porate semi-formatted structural constraints into our prompt.

3https://github.com/facebookresearch/faiss
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Specifically, we input the relation instance (h, r, t) and key-
word hints k into the task-prompt p. We combine the demon-
stration d selected in the preceding step and p sequentially
in two steps to construct the prompt provided to the LLM to
obtain the desired sentences ŝ for each instance. ICL can be
conceptualized as LLMs implicitly conducting Bayesian in-
ference [Xie et al., 2022]:

p(ŝ) =

∫
d

p(ŝ|d, p)p(d|p)d(d) (5)

Given the prompt p and multiple demonstrations, LLMs learn
via marginalization by “selecting” the demonstration.

Additionally, we do not include the original sentence s in
the prompt to maintain the diversity of synthetic sentences.
Task-prompt p is defined as follows:

Knowledge: The relation between [h] and [t] is [r]
Objective: Make sentences with given entities [h], [t] and

keyword [k]
Output:

2.3 Syntactic Selection
For the sentence ŝ generated in the preceding stage, we posit
that when the syntactic structure of the generated sentence
closely aligns with the sentence s, the generated result is more
consistent with the original one. In pursuit of this, we intro-
duce a similarity calculation method based on syntactic de-
pendency structure to aid in selecting instances with superior
syntax for the final augmented sentences.

In particular, for the original sentence s and each sentence
ŝ within the corresponding candidate set, we utilize Stanford
Parse4 to conduct syntactic analysis, resulting in the genera-
tion of the respective syntactic dependency trees, denoted as
T1 and T2. The structure of syntactic dependency trees can
encapsulate the inter-word dependency relations and convey
syntactic structural information.

Following this, we employ the Tree Edit Distance (TDS) to
gauge the similarity between two syntactic dependency trees.
TDS is a method employed for measuring the similarity be-
tween two tree structures, quantifying the disparity between
one tree and another by calculating the minimum number of
edit operations necessary to transform one tree into the other.
These edit operations encompass inserting, deleting, and re-
placing nodes. The formula for calculating TDS can be ex-
pressed as follows:

d (T1, T2) = min{d
(
T1

′, T2
′)+ δ (sub, n1, n2) ,

d
(
T1

′, T2

)
+ δ (del, n1) , d

(
T1, T2

′)+ δ (ins, n2)} (6)

Among them, T1
′ and T2

′ represent the subtrees of T1 and
T2, respectively, after the removal of the root node. n1 and
n2 denote the root nodes of T1 and T2. In this case, the cost
function δ(·) for the three operations is uniformly defined as
1. The outlined issues can be efficiently addressed using dy-
namic programming [Zhang and Shasha, 1989]. Through the
computation of TDS, we choose several sentences with the
most favorable syntactic structure as the final augmented s̃,
ensuring that the generated sentences exhibit sound syntactic
structure and grammatical legitimacy.

4https://stanfordnlp.github.io/CoreNLP

3 Experiments
In this section, we describe the datasets used, outline the ex-
perimental settings, present the baselines, and provide the re-
sults of the experiments.

3.1 Datasets and Experimental Settings
We conduct our experiments on three public RE datasets:
SemEval 2010 Task 8 (SemEval) [Hendrickx et al., 2009],
the TAC Relation Extraction Dataset (TACRED) [Zhang et
al., 2017], and the revisited TAC Relation Extraction Dataset
(TACREV) [Alt et al., 2020]. The statistics of datasets are
presented in Table 1. SemEval is a traditional dataset widely
employed in RE. It undergoes manual precision labeling and
is devoid of noise. The SemEval dataset encompasses 19
relation types: Cause-Effect, Component-Whole, and oth-
ers. TACRED is a more extensive dataset designed for RE.
Its content primarily originates from news and online texts
within the TAC KBP newswire and web forum corpus. An-
notated through crowdsourcing, TACRED comprises 42 re-
lation types. TACREV is a dataset derived from the original
TACRED dataset. It addresses and rectifies some errors found
in the annotated data within TACRED.

Dataset #Rel #Train #Val #Test
Shot-5 Shot-10 Shot-20 Shot-50 Shot-100 All

SemEval 19 91 181 361 876 1570 6507 1439 2717
TACRED 42 210 412 822 1904 3426 68124 22631 15509
TACREV 42 210 418 828 2309 3956 68124 22631 15509

Table 1: Statistics of our experimental datasets. Shot-n means sam-
pling n instances from each relation type. For relation types with
fewer than n instances, we sample all available data. All refers to
the complete training dataset.

In our experimental setup, we sample 5, 10, 20, 50, and 100
instances for each relation type to simulate low-resource sce-
narios. Both ConsistRE and other baseline models augment
the sampled data 3x to ensure a fair experiment comparison.
The augmented data, along with the initial sampled data, is
then fed into the RE model for training. The remainder of the
data remains unseen by all DA methods and RE models. In
this study, Micro-F1 is chosen as a critical metric to assess
and compare all DA methods. We adopt gpt-3.5-turbo5 as the
backbone model of ConsistRE, and each result is averaged
over three runs for reporting.

3.2 Baselines
We choose the following two types of DA methods as base-
lines for comparison:

Editing methods: WordNet Synonym Substitution
(WSS) [Mueller and Thyagarajan, 2016] introduces lexical
variations by replacing selected tokens with synonyms from
WordNet [Fellbaum, 1998]. EDA [Wei and Zou, 2019] pro-
poses a set of token-level word operations. Word Embed-
ding Substitution (WES) [Jiao et al., 2020] enhances data
diversity by substituting tokens with contextual word embed-
dings from BERT [Devlin et al., 2019].

5https://openai.com/product
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Methods SemEval TACRED TACREV

5 10 20 50 100 Avg. 5 10 20 50 100 Avg. 5 10 20 50 100 Avg.

ReDMP

Base 20.60 30.46 50.32 79.17 83.29 52.78 12.92 28.21 53.01 72.00 75.04 48.24 10.01 20.14 57.28 70.73 75.54 46.74
WSS 25.07 36.13 61.92 78.14 83.19 56.89 16.84 47.76 62.42 71.35 71.83 54.04 18.14 46.49 67.48 70.03 72.84 50.00
EDA 22.92 32.30 62.16 82.31 84.77 55.95 19.02 43.81 63.71 61.40 69.11 51.41 21.12 50.90 62.15 71.54 74.54 56.05
WES 26.24 39.49 67.69 82.67 84.62 60.14 22.28 45.96 62.35 66.44 69.44 53.29 14.64 47.77 63.75 68.32 71.01 53.10

REMix 25.22 33.14 61.35 81.91 84.47 57.22 17.37 48.82 64.51 72.23 74.01 55.39 19.09 56.08 65.37 72.49 74.63 57.53
LAMBADA 24.99 31.11 43.93 64.23 71.85 47.22 26.28 48.96 55.81 61.94 60.01 50.60 16.60 51.95 58.92 63.34 64.89 51.14

GDA 24.91 40.41 66.10 74.31 80.91 57.33 11.12 24.82 39.95 62.49 70.43 41.76 25.70 48.35 60.57 68.36 74.79 55.55
ConsistRE 28.79 43.08 68.02 82.84 85.36 61.62 32.06 52.49 68.32 74.11 77.37 60.87 28.76 59.68 66.86 72.11 76.06 60.69

SuRE

Base 17.03 18.53 31.47 64.97 79.63 42.33 65.70 70.99 74.23 74.64 84.17 73.95 68.43 71.88 75.02 82.63 86.12 77.02
WSS 32.51 48.67 65.24 76.70 82.42 61.11 70.95 73.25 74.47 81.42 83.54 76.73 71.46 76.01 77.86 84.70 85.87 79.18
EDA 25.29 45.70 64.17 80.67 84.60 60.01 69.84 72.76 75.79 81.40 82.29 76.42 67.61 75.49 77.12 85.31 86.18 78.34
WES 30.99 49.16 60.73 77.43 83.88 60.44 69.40 71.52 75.17 78.17 82.38 75.33 70.00 74.62 76.87 81.28 83.94 77.34

REMix 24.88 43.70 58.59 81.77 83.79 58.55 66.84 70.98 74.25 77.00 83.17 74.45 70.55 75.42 78.42 83.56 86.84 78.96
LAMBADA 23.51 49.95 58.93 68.54 76.09 55.40 69.89 72.17 74.23 76.29 78.81 74.28 68.92 73.60 76.87 78.70 81.74 75.97

GDA 26.98 38.73 55.72 74.46 77.48 54.67 56.55 60.92 72.66 78.59 82.24 70.19 70.30 75.12 78.81 85.27 85.28 78.96
ConsistRE 35.99 51.84 66.93 77.42 83.51 63.14 74.60 75.05 77.77 83.06 84.90 79.08 72.95 77.47 80.27 86.56 88.16 81.08

Table 2: Performance (Micro-F1 %) of different methods under Shot-{5, 10, 20, 50, 100} settings. The best results are in bold while second-
best ones are underlined. Avg. denotes the average score.

Generative methods: REMix [Teru, 2023] applies lex-
ically constrained decoding to back-translation. LAM-
BADA [Anaby-Tavor et al., 2020] fine-tune GPT-2 and gen-
erate candidate examples. GDA [Hu et al., 2023] employs
two modules for model training: one ensures semantic coher-
ence through reordering, while the other maintains grammat-
ical structure with a unified pattern.

To ensure a fair comparison of each DA method’s perfor-
mance, we employ the following two RE models as evalua-
tion benchmarks: ReDMP [Tian et al., 2022] enhances per-
formance by incorporating syntactic information through a
syntax-induced encoder trained on auto-parsed data with de-
pendency masking. SuRE [Lu et al., 2022] transforms re-
lation extraction into a summarization task, improving pre-
cision and efficiency through indirect supervision, sentence
and relation conversion techniques, and constraint decoding
for robust inference.

3.3 Main Results
The experimental results on the three datasets are presented
in Table 2. Base uses only the sampled original data from the
training dataset without additional operations.

In general, most baselines outperform the non-
augmentation method (Base), highlighting the effectiveness
of DA methods. With fewer sampled data (Shot-5, 10, and
20), DA methods consistently exhibit more significant per-
formance improvements. However, under the experimental
settings of Shot-50 and 100, the performance improvement is
limited, and there is even a decline in performance.

Intuitively, generative methods are expected to outper-
form editing methods. However, in the context of our
experimental setup, generative methods (LAMBADA on
SemEval/TACREV, GDA on TACRED) exhibit noticeably
poorer performance, even falling below Base. This can be
attributed to generative methods needing to be adequately
trained when the sample size is minimal (<15% on SemEval
and <5% on TACRED/TACREV). In contrast, editing
methods, being more straightforward and not reliant on

extensive training data, achieve more promising results.
Across the three datasets and two evaluation models, our

method consistently outperforms all other baseline methods
on average without negative improvement in all sampling
settings. Specifically, when tested with ReDMP, ConsistRE
demonstrates F1 values that are 1.48%, 5.48%, and 3.16%
higher than those of other optimal methods on SemEval, TA-
CRED, and TACREV, respectively. Testing with ReDMP, F1
values of ConsistRE are higher by 2.03%, 2.35%, and 1.9%
in three datasets, respectively. These results unequivocally
showcase the superior adaptability of our method in generat-
ing a more significant number of new samples. This under-
scores the importance of emphasizing consistency and diver-
sity of expression in the context.

3.4 Ablation Study

Our approach aims to generate augmented samples with con-
sistent relation dependencies and diverse expressions by uti-
lizing keyword hints. To assess the effectiveness of the
components, we conduct ablation experiments on SemEval
focusing on three aspects. Table 3 presents the results,
where w/o keywords signifies that no keyword hints are added
as restricted context during the sentence generation, w/o
langchain refers to using a fixed example for demonstration,
and w/o syntactic indicates the absence of syntactic selection.

The results reveal the positive significance of all three
components for performance. Specifically, removing key-
word hints leads to a significant performance decline on both
ReDMP and SuRE, reaching 5.07% and 6.14%, respectively.
Similarly, the removal of langchain and syntactic selection
also caused a notable decline, with drops of 3.92% and 2.24%
on ReDMP and 4.53% and 3.99% on SuRE. Notably, key-
word hints have a pronounced impact on performance loss.
This is because, without keyword hints, LLMs are prone to
synthesizing sentences that deviate from semantics or fail to
convey relation dependencies explicitly.
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Methods SemEval

5 10 20 50 100 Avg. ↓%

ReDMP

ConsistRE 28.79 43.08 68.02 82.84 85.36 61.62 -
w/o keywords 26.52 38.19 59.71 77.94 80.39 56.55 5.07
w/o langchain 27.23 38.66 62.35 78.92 81.34 57.70 3.92
w/o syntactic 27.86 42.50 65.79 78.92 81.81 59.38 2.24

SuRE

ConsistRE 35.99 51.84 66.93 77.42 83.51 63.14 -
w/o keywords 29.89 40.35 57.86 76.32 80.56 57.00 6.14
w/o langchain 30.90 41.15 65.62 75.28 80.08 58.61 4.53
w/o syntactic 33.93 44.47 59.54 75.74 82.06 59.15 3.99

Table 3: Results of the main components ablation experiment, where
↓ represents the model’s performance decline. Results with the most
significant reduction are marked in bold.

3.5 Analysis Experiments
In this section, we perform experiments to assess the influ-
ence of keyword hints and the size of the generated data on
the performance. Additionally, we evaluate the diversity of
the generated samples.

Keyword Hints Selection Strategy
The ablation experiment effectively demonstrates the impact
of adding keyword hints closely related to the relation in-
stance during sentence generation. Separate experiments are
conducted on the SemEval dataset to assess the contributions
of three keyword hints selection strategies, with results pre-
sented in Table 4. Firstly, it can be observed that using each of
the three strategies individually yields better results than not
using keyword hints. When using PMI alone, there is a per-
formance decrease of 1.68% and 2.93%, respectively. This
is due to the introduction of partially semantically irrelevant
keyword hints leading to a deviation in relation dependen-
cies. Using TF-IDF and semantic similarity alone resulted
in performance drops of 4.33% and 4.27% on ReDMP and
3.25% and 4.08% on SuRE. This is because these two strate-
gies cannot identify the most representative keyword hints. In
comparison, PMI contributes the most to our method.

Methods SemEval

5 10 20 50 100 Avg. ↓%

ReDMP

ConsistRE 28.79 43.08 68.02 82.84 85.36 61.62 -
w/o keywords 26.52 38.19 59.71 77.94 80.39 56.55 5.07

PMI only 27.23 41.92 65.77 81.18 83.60 59.94 1.68
TF-IDF only 26.94 40.37 60.72 76.98 81.46 57.29 4.33
semantic only 27.46 41.72 64.20 77.69 80.80 58.37 3.25

SuRE

ConsistRE 35.99 51.84 66.93 77.42 83.51 63.14 -
w/o keywords 29.89 40.35 57.86 76.32 80.56 57.00 6.14

PMI only 33.43 45.12 65.47 75.88 81.17 60.21 2.93
TF-IDF only 32.53 46.25 62.97 72.49 80.14 58.87 4.27
semantic only 28.55 44.65 65.62 76.39 80.08 59.06 4.08

Table 4: Evaluating the influence of keyword hints selection strategy
via modifying the relevance score. Results with the most significant
reduction are marked in bold.

Number of Keyword Hints
In this experiment, we investigate how the quantity of key-
word hints influences on SemEval. The results, depicted in
Figure 3, reveal surprisingly consistent trends across all sam-
pling settings on both ReDMP and SuRE. Using only one

keyword hints suffices to achieve optimal results in all cases.
Increasing the number of keyword hints does not lead to per-
formance improvement; instead, there is a varying degree of
decline across all sampling settings, sometimes even lower
than when no keyword hints are used. This is because in
SemEval, short sentences are predominant, and an excessive
number of keyword hints as hard constraints can limit the di-
versity of expressions.
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Figure 3: Performance under different keyword hints number.

Generated Data Size
In this experiment, we report the performance of the RE
model by combining the sampled original sentences and gen-
erated sentences. How to determine the optimal expansion
ratio of generated sentences is of great significance in data
augmentation. Less generated sentences may not fulfill the
purpose of data augmentation, while too many sentences can
alter the distribution of the original sentences, resulting in
performance degradation. So we investigate the impact of
different sizes of generated data on model performance. We
conduct experiments on two RE models with expansion ratios
ranging from 1 to 6 under the Shot-20 sampling setting on the
SemEval dataset. The results are presented in Figure 4.
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Figure 4: Performance under different expansion ratio.

Most data augmentation methods exhibit considerable per-
formance improvements as the expansion ratio increases from
1 to 4. However, as the expansion ratio increases, the im-
provements gradually become smaller and level off. REMix
and GDA experienced significant performance drops, indicat-
ing that an excess of enhanced data changes data distribution.
Meanwhile, EDA shows more minor performance improve-
ments when increasing the expansion ratio in most cases, pos-
sibly due to poorer diversity in data generation. Additionally,
LAMBADA performs lower than Base on ReDMP, likely due
to insufficient training data. Our method consistently per-
forms best under all ratio settings, illustrating that our ap-
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proach can maintain the distribution of sampled original sen-
tences unchanged under keyword hints constraints while in-
creasing generated sentence diversity.

Diversity Evaluation
To assess the diversity of synthetic sentences, we introduce
the Distinct [Li et al., 2016], which quantifies the number of
distinct unigrams and bigrams divided by the total number of
generated words. The calculation formula is as follows:

Distinct (N) =
Unique N-grams
Total N-grams

× 100% (7)

We set N as 1 and 2, representing the proportion of unique
words and bigrams, respectively. The scores under all sam-
pling settings on the SemEval dataset are presented in Fig-
ure 5. Overall, generative methods (LAMBADA, GDA) ex-
hibit better diversity than editing methods (WSS, EDA). No-
tably, our method consistently outperforms others in diversity
across almost all settings, providing further evidence of the
effectiveness of our approach in enhancing the diversity of
synthetic sentences.
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Figure 5: Diversity evaluation using Distinct.

3.6 Case Study
To provide further insight, we illustrate a case in Table 5.
It can be observed that editing methods effectively maintain
semantic consistency between sentences and their originals.
However, simple replacement may struggle to enhance the
diversity of samples, posing challenges to the generalization
of RE models. Generative methods can synthesize sentences
with significant contextual differences from the original ones,
but they alter the distribution, leading to a biased dependency
toward relation types like org:member of. When the keyword
hints student is not used, the relation between Jane Bolin and
Yale Law School in the generated sentence is not explicitly
stated, potentially introducing semantic bias. Adding key-
word hints student to the prompt helps the LLM better focus
on the relation between the two entities, ensuring that the gen-
erated sentence maintains the dependency between them.

4 Related Work
4.1 Data Augmentation
(1) For editing methods, Mueller and Thyagarajan [2016]
generate additional training data by replacing selected
tokens with synonyms from WordNet. Wei and Zou [2019]
propose a set of token-level word operations for data aug-
mentation, encompassing synonym replacement, random
insertion, swap, and deletion. Jiao et al. [2020] utilize word

Original Sentence: Jane Bolin , who was the first black woman to
graduate from Yale Law School and became america ’s
first black female judge , has died at age 98 .
Relation: per:schools attended

Editing
Method

Jane Bolin, who was the first lightlessness woman to
graduate from elihu Yale Law School, and became amer-
ica’s first lightlessness female judge, has died at age 98.

Generative
Method

It came as a surprise to many Yale Law School staff mem-
bers when jane bolin took over the chair in June.

ConsistRE
w/o keyword

The legacy of Jane Bolin extends beyond her achieve-
ments at Yale Law School, as she left an indelible mark
on the legal profession, inspiring future generations.

ConsistRE Jane Bolin was one of the distinguished Yale Law School
students, showcasing her commitment to legal education.
(Keyword hint: student)

Table 5: Comparing the results of ConsistRE and other baselines,
entities in both the original and generated sentences are highlighted.

embeddings to obtain augmented data. (2) For generative
methods, Xie et al. [2020] and Fabbri et al. [2021] utilize
back-translation on each sentence. Lowell et al. [2021] adopt
a strategy of masking multiple words in a sentence and gen-
erating new sentences by filling these masks. Anaby-Tavor et
al. [2020] fine-tune GPT-2 and generate candidate examples
for each class. Hu et al. [2023] employ two complementary
modules to train a model, one maintaining semantics through
reordering and the other preserving grammatical structure
through a unified pattern. However, editing methods cannot
satisfy diversity, and generative methods cannot maintain
relation consistency. Our method applies semantically con-
sistent contextual constraints and leverages LLMs to generate
sentences simultaneously satisfying relation dependency
consistency and diversity.

4.2 LLMs for Low-resource RE
The rise of LLMs demonstrates the advance in low-resource
RE. Li et al. [2023] propose the summarize-and-ask prompt-
ing, exploring the possibilities of LLMs in zero-shot RE.
Wan et al. [2023] add task-aware representation to demonstra-
tion retrieval and enrich the demonstrations with gold label-
induced reasoning logic. Wang et al. [2023] unify model-
ing of various IE tasks based on instruction tuning tasks and
capturing inter-task dependencies. However, the efficiency of
mapping inputs and labels with demonstrations needs to be
improved to thoroughly express complex RE tasks [Deng et
al., 2023]; computing resources will also limit prompt-tuning
LLMs. Therefore, it is more practical to use LLMs for data
generation and then transfer it to the RE model.

5 Conclusion
This paper posits that the primary challenge in low-resource
RE DA is ensuring the semantic consistency and contextual
diversity of generated sentences. To address this, we pro-
pose a novel method named ConsistRE. ConsistRE incorpo-
rates keyword hints closely related to the relation instances as
contextual constraints in sentence generation with LLMs and
complements it with syntactic dependency selection. Experi-
ments conducted on three public datasets under low-resource
settings substantiate the effectiveness of our approach.
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