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Abstract
Due to the potential leakage of sensitive infor-
mation in text, there is a societal call for feed-
ing privacy-preserving text to model training. Re-
cently, a lot of work showed that using synthetic
text with differential privacy, rather than private
text, can provide a strong privacy protection. How-
ever, achieving higher semantic similarity between
synthetic and private text has not been thoroughly
investigated. In this paper, we propose an approach
that combines the iteratively optimized mindset
from genetic algorithms to align the distribution
of synthetic text with that of private text. Further-
more, not only does the final synthetic text meet
the requirements of privacy protection, but also has
a high level of quality. Through comparisons with
various baselines on different datasets, we demon-
strate that our synthetic text can closely match the
utility of private text, while providing privacy pro-
tection standards robust enough to resist member-
ship inference attacks from malicious users.

1 Introduction
Natural language text can serve not only as training data
for natural language processing tasks, for example sentiment
analysis, but also as demonstrations in prompts for large lan-
guage models to enhance their predictive capabilities. How-
ever, text often contains sensitive information such as pass-
words and names, which can lead to potential privacy leak-
ages. To protect sensitive information, the simplest method
[Pilán et al., 2022] is to identify the sensitive information and
replace it with other words. However, attackers can still iden-
tify a user’s identity through statistical information in the text
[Narayanan and Shmatikov, 2008], such as catchphrase.

Considering the ability of providing personalized privacy
protection settings to balance the trade-off between privacy
and data utility, handling sensitive data with differential pri-
vacy (DP) has become a golden standard. Text sanitization
[Yue et al., 2021; Chen et al., 2023] replace all tokens in the
original text with a new token to achieve the privacy guaran-
tee. While differential privacy ensures that this method can
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resist attacks at the token level (e.g. mask token inference
attack), such token-level private mechanism is unable to pro-
vide effective privacy protection against a broader range of at-
tack methods. This is because text sanitization cannot change
the structure of the text and attackers often have a significant
chance of illegally obtaining private text information through
membership inference attacks (MIA) [Shokri et al., 2017;
Carlini et al., 2021].

Figure 1: Privacy attack on in-context demonstrations. Syn-
thetic text as demonstrations can prevent private text from be-
ing leaked to malicious users.

Recently, generating differentially private synthetic text for
downstream tasks is gradually becoming a common practice.
Figure. 1 illustrates that applying synthetic text as demon-
strations in prompt can effectively protect private datasets.
To obtain synthetic text, one approach involves training
large models using differential privacy [Abadi et al., 2016;
Anil et al., 2021; Yue et al., 2022]. These methods primar-
ily focus on adding calibrated noise to gradients or text rep-
resentations during the training phase to prevent the infer-
ence of sensitive user data from the trained language models.
However, this approach requires significant computational re-
sources during training, and when privacy protection param-
eters are modified, the model needs to be retrained. Another
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approach [Wu et al., 2023; Tang et al., 2023] involves using
the PATE framework [Papernot et al., 2016] to partition a pri-
vate text dataset into multiple disjoint subsets. Large language
models use text within different subsets as demonstration to
predict the probability of next token. Finally, noise is added
during the aggregation of prediction results, and argmax is se-
lected as the next token for synthetic text. However, the gen-
eration of synthetic text is token-by-token, and selecting each
token depends on the results of multi-request to the service of
large language model.

Due to the fact that that downstream tasks often have better
performance when the distributions of demonstrations closely
approximate those of private text datasets [Min et al., 2022],
we aim to find an efficient way to align the distribution of
synthetic text more closely with that of private text in con-
trast to existing methods. However, ensuring both similarity
to the private distribution and privacy protection for private
text information becomes the challenge that needs to address
in our work. Following the framework of genetic algorithms
[Sampson, 1976], we treat each synthetic text as an individ-
ual within the population. The core of our proposed method
is to iteratively utilize private text to vote for text in current
population with the most similar semantics, and texts with
higher votes is selected as parent samples to generate the next
generation. Our contributions are as follows:

(1) We propose an efficient method for generating DP syn-
thetic text, providing stronger privacy protection than token-
level methods.

(2) We iteratively optimize the distribution of synthetic
text, ultimately achieving a closer proximity to the distribu-
tion of private text.

(3) Extensive experiments demonstrate the effectiveness of
our method in terms of synthetic text quality (e.g. human-
readability), performance for in-context learning and re-
silience against membership inference attacks.

2 Related Works
2.1 Differential Privacy
The fundamental idea of Differential Privacy (DP) [Dwork et
al., 2006] is to design a randomized algorithm M : D −→ S.
For all neighboring datasets D,D′ (D and D′ only differ in a
single sample) and any set S:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ,

we say the mechansim M satisfies (ϵ, δ)-differential pri-
vacy. A significant property of differential privacy is its
resilience to post-processing. It ensures differential private
outputs to apply arbitrary, data-independent transformations
without compromising their privacy guarantees. In our work,
this property ensures that synthetic text will not incur addi-
tional privacy loss when used for downstream tasks.

2.2 Privacy-preserving Text Embeddings
Many text encoders [Devlin et al., 2018; Ni et al., 2021]
have the capability to represent a natural language sentence
in the form of a high-dimensional embedding. However, an
increasing amount of research demonstrates that embeddings

are likely to leak information about the original text [Song
and Raghunathan, 2020; Pan et al., 2020; Li et al., 2023].

In order to prevent untrusted servers from extracting sen-
sitive information from text, one approach [Du et al., 2023a;
Du et al., 2023b] is to sanitize text embeddings to ensure dif-
ferential privacy, and then send them to the server for fine-
tuning on downstream tasks. Specifically, [Du et al., 2023b]
propose DP-forward which directly perturbs embedding ma-
trices in the forward pass of text encoders. However, being
able to provide only embedded information will face limita-
tions in terms of applicability to downstream tasks. For ex-
ample, the input must be textual information for in-context
learning task.

Another approach [Meehan et al., 2022; Lin et al., 2023]
is to take the advantage of public data. [Meehan et al., 2022]
firstly sample a set of non-private text from public data. After
mapping both public texts and private texts through the same
text encoder, they select public embeddings that near to the
private embedding distribution center with exponential mech-
anism (EM) [McSherry and Talwar, 2007]. This approach es-
sentially involves selecting a portion from non-private public
data as privacy-preserving embeddings, and the performance
of downstream tasks largely depends on the distribution of
the public data.

2.3 Inversion from Embedding to Text
For a certain text encoder φ, we attempt to recover the orig-
inal text x based on its embedding e = φ(x). Because a text
encoder requires the embeddings of semantically similar texts
to ideally be similar, this provides us with insights into the
process of inverting embeddings into text. Specifically, the
training process of the text decoder in [Morris et al., 2023]
involves iteratively self-correcting [Welleck et al., 2022] the
recovered text, achieving a gradual convergence of the em-
beddings between the recovered text and the original text:

p(x(t+1)|e) =
∑
x(t)

p(x(t)|e)p(x(t+1)|e, x(t), φ(x(t))),

where x(t+1) represents the correction of x(t) and x0 is the
initial hypothesis generation. In our work, we need to train a
text decoder to invert from privacy-preserving embeddings to
synthetic text.

3 Method
We aim to generate synthetic text that satisfies the following
three requirements:
Requirement 1. The leakage of sensitive information from
synthetic text must be within a controllable range.
Requirement 2. Synthetic text should have high readability.
Requirement 3. The distribution of the synthetic text should
approximate the distribution of private text.

3.1 Synthetic Text Generation
Preparation: Train Text Decoder on Public Texts. To mea-
sure the difference between synthetic text distribution and pri-
vate text distribution, the embedding distance is a common
metric. Corresponding to the text encoder, we need to train
a decoder to restore the embeddings back to text. Following
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Figure 2: Overview of our method. We approximate the private text distribution by iteratively updating synthetic distribution.
Parent selection is the only step that involves access to private text. Synt represents the embedding distribution of the population
at iteration t.

previous work [Morris et al., 2023], we use non-private pub-
lic texts to train the Decoder while freezing all the pretrained
parameters of text encoder. It is important to note that, as all
training processes are conducted on public datasets, there is
no consumption of the privacy budget in this stage. Further-
more, the decoder in the preparation stage only needs to be
trained once and later can be reused to generate synthetic text
for different private datasets. Therefore, we consider the com-
putational resource cost to be acceptable.
Overview The most intuitive way to protect privacy is to add
noise to embeddings, but it leads to extremely poor text read-
ability after decoding. This is because text encoders typically
generate high-dimensional text embeddings to convey the
abundant semantic information in the text. Protecting high-
dimensional vectors requires huge noise, often causing the
noisy points to no longer reside in a space enable to success-
ful decoding. To address this issue, we propose a novel frame-
work (Figure. 2) for generating synthetic text, with iteratively
approaching the distribution of private text (meet Require-
ment 3.) within the successfully decoded space (meet Re-
quirement 2.). Simultaneously, during each iteration, we ap-
ply a LimitedDomain mechanism [Durfee and Rogers, 2019]
(meet Requirement 1.) to protect the privacy of the private
text. Next, we will discuss three important components in our
method and more details are presented in Algorithm. 1.

• initial population: Our initial population Epb is defined
as embeddings of public text, where public text can be
a set of texts related to private text datasets collected
from the internet. For example, if the private text is about
movie reviews, public data can be selected from publicly
available movie review sections online. Another simpler
way to obtain public data is to generate text with appro-
priate instructions using zero-shot prompting.

• private selection: The fitness score of an individual in the
population is determined by the cosine distance between
its embedding and the embeddings in private datasets.

The more private samples are similar to one synthetic
sample, the more likely that the synthetic sample is to be
selected as a parent for the next generation. Because of
the exposure to private data during the selection process,
we must add noise to ensure differential privacy.

• offspring generation: Similar to genetic algorithms, es-
timation of distribution algorithms (EDA) primarily em-
ploys probabilistic models and sampling in an implicit
form to generate new individuals. In our work, we uti-
lize the Gaussian distribution model to assess the prob-
ability distribution of the population [Wang et al., 2020;
Mitchell and Taylor, 1999]. Due to the randomness in
sampling the offspring, EDA preserves high diversity
and strong global search ability.

Private Selection. As the size of offspring population Ncld

increases, the higher chance of individuals in the next gener-
ation can be more similar to private texts. However, a large
size of offspring population can also flatten the neighbour
histogram. When we apply privacy protection mechanisms
(e.g., Gaussian mechanism) into the histogram, the noise of-
ten plays a crucial role during the selection of parent samples,
potentially significantly impacting the convergence speed of
the synthetic distribution. In our work, we apply the Limited-
Domain mechanism to narrow down the selection range from
Ncld to K, where these K samples are the ones with the high-
est vote count in the histogram without DP-noise. Then, we
select up to Npar samples from the histogram with DP-noise
as parent samples. It should be noted that the LimitedDomain
algorithm does not guarantee the output of exactly Npar in-
dices. When each individual has a roughly equal amount of
private text that is most similar to it, in order to preserve pri-
vacy, LimitedDomain mechanism may output the empty set.
In that case, we believe that our synthetic distribution is close
enough to the private distribution.

Due to the inherent randomness in generating the next gen-
eration, allowing undecodable samples to continue as parent
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samples is likely to result in the embedding space of the pop-
ulation increasingly diverging from the successful decoding
space as the iterations progress. Although it remains to see
whether low-perplexity texts are more effective in all cases
[Gonen et al., 2022; Shin et al., 2022], we further filter the se-
lected Npar embeddings with synthetic text perplexity check
operation to better demonstrate the utility of our method.
Specifically, after inverting embeddings back to text through
the pretrained Decoder in the preparation stage, we use the
perplexity of the text as a measure of text readability. If the
perplexity exceeds the predefined threshold H , we will re-
move the corresponding embedding from the parent set Esyn.

Algorithm 1: Synthetic Text Generation
Input:
1. private embeddings: Epr = {eipr}

Npr

i=1

2. public embeddings: Epb = {eipb}
Npb

i=1

3. size of parent set: Npar

4. size of offspring population: Ncld

5. number of iteration: T
6. size of limited domain: K
7. threshold for synthetic text readability: H
Output: synthetic text set: Ssyn

1 Epop ←− Epb

2 Esyn, Ssyn ←− {} , {}
3 for t←− 1 . . . T do
4 # find similar samples
5 histt ←− [0, ..., 0]

6 for eipr in Epr do
7 j = argminj≤len(Epop)dcos(e

i
pr, e

j
gen)

8 histt[j] = histt[j] + 1
9 end

10 # ensure differential privacy
11 rankdp ←− LimitedDomain(histt,K,Npar)
12 if len(rankdp) = 0 then
13 break
14 end
15 # filter low-readability text
16 for id in rankdp do
17 textsyn ←− Decoder(Epop[id])
18 if Perplexity(textsyn) < H then
19 Esyn ∪ Epop[id]
20 Ssyn ∪ textsyn
21 end
22 end
23 # generate next population with EDA
24 if len(Esyn) > 0 then
25 Epop = EDA(Esyn, rankdp, Ncld)
26 Esyn, Ssyn = {} , {}
27 else
28 break
29 end
30 end
31 return Ssyn

Offspring Generation with EDA. Firstly, we build a Gaus-
sian probability distribution model based on individuals in the
current population. In order to make the synthetic embedding

distribution more likely to get closer to the private embed-
ding distribution after one round of iteration, we employ a
smooth approach to update the synthetic distribution. Specif-
ically, given a smoothing parameter α, we move towards the
direction of the optimal individual and the suboptimal indi-
vidual, while simultaneously moving away from the worst in-
dividual (Line. 3 in Algorithm. 2). The variation of the new
distribution is determined collectively by the top-R individu-
als (Line. 4 in Algorithm. 2). Finally, individuals for the next
iterations are sampled based on the new distribution with a
mean value of µ̂ and a variance value of σ̂.

Algorithm 2: Estimate Distribution Algorithm
Input:
1. current population embeddings: E = {ei}Ni=1
2. fitness score rank (descending order): rank
3. next population size: Ncld

4. smooth parameter: α
5. the number of sample size: R
Output: next population embeddings: Ê = {êi}Ncld

i=1

1 µ, ē =
∑N−1

i=1 ei
N ,

∑R−1
i=1 ei
R

2 σ =

√∑N−1
i=1 (ei−µ)2

N

3 µ̂ = (1−α) ∗µ+α ∗ (erank[0]+ erank[1]− erank[−1])

4 σ̂ = (1− α) ∗ σ + α ∗
√

(
∑R−1

r=0 (erank[r]−ē))

R

5 Repeat Ncld times: êi ∼ N(µ̂, σ̂)

6 return Ê

3.2 Privacy Analysis
Theorem 1. Exponential Mechanism satisfies ϵ-DP.

In exponential mechanism, defining the scoring function
q(D, y) is crucial, where q(D, y) represents the evaluation of
y’s performance on dataset D. In our work, the scoring func-
tion can also be regarded as the concept of the fitness function
in genetic algorithms. Specifically, we define the score func-
tion by the number of most similar neighbors in the private
dataset D corresponding to a particular individual sample y
in the current population.
Theorem 2. Alg. 3 satisfies (ϵ′, δ + δ′)-DP where

ϵ′ = min


kϵ,

kϵ · ( e
ϵ−1

eϵ+1 ) + ϵ
√
2k ln 1/δ′,

kϵ2

2 + ϵ
√

1
2k ln 1/δ

′

 .

The proof is derived from [Durfee and Rogers, 2019],
where it essentially represents an exponential mechanism.
Applying Gumbel noise and simultaneously selecting the top-
k as parent samples is equivalent to applying the exponen-
tial mechanism to select the top-1 sample, followed by the
removal of that index and iterative processing. The privacy
cost associated with restricting the domain size is incorpo-
rated into the δ term.
Theorem 3. If we set the privacy parameter in LimitedDo-
main as ϵ0, δ0, the total privacy bound of our DP algorithm in
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Algorithm 3: LimitedDomain
Input:
1. neighbour histogram: hist
2. privacy parameter: ϵ, δ
3. size of limited domain: K
4. size of selected samples: k
Output: set of selected indices

1 sort hist in descending order that h1 ≥ h2 ≥ ...
2 h⊥ ← hK+1+1+2 ln(min{∆,K, len(h)−K}/δ)/ϵ
3 v⊥ ← h⊥ +Gumbel(2∆∞/ϵ)
4 for j ≤ K do
5 v(j) ← h(j) +Gumbel(2∆∞/ϵ)
6 end
7 Sort {v(j)} ∪ v⊥ and let vi(1) , . . . , vi(j) , v⊥ be the

sorted list up until v⊥
8 return {i(1), . . . , i(j),⊥} if j < k
9 otherwise {i(1), . . . , i(k)}

T iterations is (ϵ, T δ0 + δ′)-DP with δ′ > 0 and

ϵ = O(
√
T log(1/δ′)ϵ0)

It follows from the advanced composition theorem of dif-
ferential privacy [Dwork et al., 2010] that the number of it-
eration is constrained by the privacy budget. A more detailed
experimental result analysis in the discuss section will also
confirm this point.

4 Experiment
4.1 Datasets
We assume text from the following three datasets are consid-
ered as private text that needs to be protected:

• AGNews dataset [Zhang et al., 2015] consists of ap-
proximately 120,000 news articles categorized into
four classes: World, Sports, Business, and Sci-
ence/Technology.

• Disaster dataset [Bansal et al., 2019] originate from
news reports or Twitter, with 4342 samples describing
different disasters (e.g. fire, flood), while an additional
3271 samples could mention about any topic other than
disasters.

• Trec [Voorhees and Tice, 2000] dataset comprises ques-
tions from 6 different categories, such as numbers, loca-
tions, etc. The distribution of the 5500 questions in the
training set and the 500 questions in the test set is uneven
across these 6 question labels.

4.2 Experiment Setup
• In initial population step: we select 1000 public texts as

our initial population and GTR-base [Ni et al., 2021]
model to embed public texts and private texts.

• In private selection step: we follow the common practice
to set δ = 1/|D| where |D| is the size of private dataset.

The domain size of being able to become a parent sam-
ple is 300, and 30 samples are selected from them. GPT-
2 model [Brown et al., 2020] is used to obtain the per-
plexity and filter out texts with perplexity exceeding the
threshold of 50.

• In offspring generation step: a large smoothing param-
eter α will lead to a high degree of homogenization
among the final synthetic texts. Therefore, we set α as
0.1 and sample 3000 samples from the updated distribu-
tion for the next iteration.

4.3 Baselines
We compare the performance of our method with 3 baselines:
CusText [Chen et al., 2023]: for each token in private text,
assign a customized set of output tokens and replace the orig-
inal token with one of the corresponding output tokens based
on the EM mechanism.
DP-ICL [Tang et al., 2023]: predict the next token across dif-
ferent subsets of private text and add gaussian noise [Dwork
et al., 2006] during aggregation. Eventually, all predicted to-
kens are concatenated together to form a single synthetic text.
SentDP [Meehan et al., 2022]: the Tukey Depth [Tukey,
1975] relative to the private distribution of public texts is de-
signed as score function for EM mechanism, and the selected
public texts are used in downstream tasks directly.

4.4 Main Results
We use in-context learning task to investigate the perfor-
mance of synthetic text. We extracted 6 samples with evenly
distributed labels from the synthetic text set generated by
each method as demonstrations for the prompt. Because of
the varying abilities of large language models to extract use-
ful information from context, to demonstrate the applicability
of our synthetic text, we conducted experiments with three
models of different sizes: babbage (1.3B), curie (6.7B), and
davinci (175B).

From Table. 1, our synthetic text surpasses existing base-
lines in many cases. Compared to the DP-ICL method, each
individual in the population can be restored to a synthetic text.
However, in DP-ICL, we not only need multiple requests to
the large model interface but also the text generation pro-
cess is token-by-token, making the synthesis of one single
text sample time-consuming. Another observation is that the
variance of our results is much lower than SentDP. This is be-
cause SentDP, lacking an iterative process towards the private
distribution, heavily relies on whether the distance between
the initial public text and private text distributions is close
enough or not. To reduce the variance of SentDP, one feasible
approach is to increase the size of the public text set. How-
ever, this comes with additional data collection costs.

4.5 Ablation Study
Varying Privacy Budget. We present the 6-shot in-context
learning ability of synthetic texts under different privacy bud-
get conditions in Table. 2. Under all privacy budget settings,
the evaluation results on the test set, whether using synthetic
text or private text as demonstrations, outperform the zero-
shot scenario. Even when the privacy budget is relatively
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Dataset Method babbage curie davinci

Agnews

CusText 52.38(1.2) 57.1(0.7) 67.1(0.6)
DP-ICL 54.16(3.4) 55.4(3.0) 65.4(2.8)
SentDP 52.59(8.7) 58.1(7.3) 68.1(8.1)
Ours 53.77(4.2) 58.3(3.3) 68.9(3.3)

Disaster

CusText 65.46(3.2) 65.1(1.2) 75.1(1.2)
DP-ICL 65.66(4.7) 71.6(2.4) 76.8(1.5)
SentDP 65.71(9.1) 70.1(5.2) 76.9(6.0)
Ours 68.34(5.4) 70.8(2.3) 77.8(2.3)

Trec

CusText 46.03(4.4) 49.2(0.9) 51.2(2.3)
DP-ICL 49.2(3.4) 52.6(1.0) 55.6(1.0)
SentDP 50.4(7.5) 53.4(5.9) 54.9(5.9)
Ours 50.9(6.6) 53.8(3.3) 56.8(3.3)

Table 1: Performance comparison of the 6-shot ICL on the
test sets of different datasets with various baselines under
medium privacy protection (ϵ=5). We conduct the experiment
10 times with different selected synthetic texts and show the
average accuracy (on the left) and variance (on the right) of
these 10 experiments.

Dataset Method ε=0 ε=1 ε=3 ε=5 ε=10 ε=20 ε=∞

Agnews

CusText

53.7

55.2 60.3 67.1 69.7 70.4

72.2DP-ICL 61.3 63.2 65.4 65.3 66.1
SentDP 64.4 66.3 68.1 68 68.3
Ours 65.1 68.5 68.9 69.2 69.1

Disaster

CusText

69.2

73.3 74.6 75.1 78.6 79.2

78.9DP-ICL 72.4 75.9 76.8 77.1 77.3
SentDP 74.3 77.1 76.9 77.3 77.5
Ours 74.7 76.7 77.8 78.3 78.2

Trec

CusText

41.6

48.2 50.3 51.2 53.5 54.1

57.3DP-ICL 53.7 53.5 55.6 57.6 56.9
SentDP 53.8 54.3 54.9 55.2 55.3
Ours 53.2 55.4 56.8 56.2 56.5

Table 2: Comparison of average accuracy with baseline meth-
ods under different privacy budget conditions. When ϵ = 0, it
represents a zero-shot scenario, and when ϵ =∞, the demon-
strations are randomly sampled from the private text set.

abundant, synthetic text can achieve utility similar to that of
private text. Furthermore, we found that our method has a
greater advantage when the privacy budget is tight and a bal-
ance is achieved between privacy and utility when ϵ = 5.
On the contrary, when the privacy budget is sufficient, the
performance of the CusText method is very close to the re-
sult without privacy protection (ϵ =∞). However, even with
the same privacy budget, the privacy protection provided by
token-level method is strictly weaker than others.
Varying number of shots. Next, we investigated the in-
context learning ability with different numbers of shots.
As can be seen in Table. 3, the optimal number of shots
for achieving the best performance varies across different
datasets, primarily depending on the number of label cate-
gories in the dataset. For the binary-label Disaster dataset,
optimal performance is reached with 6-shot, while for the
6-label Trec dataset, it requires 9 shots to achieve optimal
performance. However, on the Trec dataset, regardless of the

Task Method shot=1 shot=3 shot=6 shot=9 shot=12

Agnews

CusText 53.6 64.9 67.1 67.4 67.5
DP-ICL 56.1 64.9 65.4 66.3 65.8
SentDP 57.9 63.8 68.1 67.4 67.5
Ours 55.6 66.1 68.9 68.3 68.7

Disaster

CusText 74.1 74.7 75.1 75.3 74
DP-ICL 74.8 76.3 76.8 76.5 75.5
SentDP 75.3 76.1 76.9 76.4 76.7
Ours 75.1 76.9 77.8 77.3 76.9

Trec

CusText 35.6 49.7 51.2 52.6 52.3
DP-ICL 41.9 51.2 55.6 58.2 57.7
SentDP 39.3 53.7 54.9 56.3 56.8
Ours 40.2 54.5 56.8 56.7 56.4

Table 3: Comparison of average accuracy in the condition of
ϵ = 5 under different number of demonstrations in prompt.

number of shots used, there is still a certain difference in the
performance between our method’s synthetic text and private
text. The main reason for this is the highly uneven label distri-
bution in the Trec dataset, with only 86 instances belonging
to one label category (Abbreviation), making it challenging
to estimate the exact distribution of the private text.
Synthetic Text Perplexity Check. In order to enhance the
overall readability of the synthetic texts, we also consider
whether the parent samples can be decoded successfully as
text (in the case they cannot be decoded as text, it might gen-
erate gibberish) during iterations. The synthetic text perplex-
ity check operation (Line. 18 in Algo. 1) ensures that the cur-
rent population’s distribution not only approaches the private
distribution but also distributes within the successful decod-
ing space. Figure. 4 displays final synthetic text under the
same settings except for whether the perplexity check oper-
ation is performed or not. The more coherent synthetic text
demonstrates the significance of this operation.

Table 4: Synthetic texts with perplexity check (left column)
and synthetic texts without perplexity check (right column).
A green background color represents synthetic texts as suc-
cessful decoding by human evaluation, while a red back-
ground color indicates texts with decoding failures.

4.6 Discussion
What is the degree of similarity between synthetic sam-
ples and private samples? To measure the distance between
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the synthetic distribution and the private distribution, we use
the Wasserstein distance [Santambrogio, 2015] between two
embedded distributions. As both the CusText method and the
DP-ICL method do not perform text-to-embedding mapping
operations, we need to use the same encoder as our approach
to obtain their embeddings beforehand. From Figure. 3, as the
iterations progress, the Wasserstein distance between the syn-
thetic distribution and the private distribution gradually de-
creases. When reaching the seventh iteration, the distribution
of synthetic text obtained by our method is closer to the pri-
vate distribution compared to the text distributions obtained
by all the comparative methods.

Figure 3: The distance between the synthetic distribution
and the private distribution at different iteration. As baseline
methods do not involve an iterative process, the distance be-
tween distributions is represented by a constant value.

What is the appropriate number of iterations? Although
the distance between our synthetic text distribution and the
private text distribution decreases as the iterations progress,
the maximum number of iterations is constrained by the pri-
vacy budget. If we set the number of iterations too high, the
limited domain method may output an empty set, preventing
the continuation of the iteration. We present the variance in-
formation of the voting counts obtained from the neighbor
histogram at different iteration in Figure. 4, along with the
size of the parent set. We can observe that as the variance
gradually decreases, the histogram tends to flatten, resulting
in fewer parent samples can be selected by the LimitedDo-
main method.
Can our synthetic text defend against Member Inference
Attack? We implement the Member Inference Attack (MIA)
from [Duan et al., 2023] on prompts. We study the AGNews
dataset and split it in two parts for member and non-member
texts. Then, we generate synthetic text sets that closely sim-
ilar to the private distribution of member text with our DP
algorithm. We conduct a 1-shot ICL with one member text or
synthetic text on the babbage model. Attacks on both member
and non-member texts are repeated 20 times and we represent
the probability outputs of correct target classes for member
and non-member texts in Figure. 5.

We can observe in Figure. 5 (a) that when member text
is used as a 1-shot demonstration, the predicted probability

Figure 4: The variance of the neighbor histogram and the size
of parent set (without synthetic perplexity check operation) at
different iteration.

Figure 5: The accuracy density of querying member text and
non-member text when using member text (a) and synthetic
text (b) as 1-shot demonstration.

for non-member text is significantly lower than that for mem-
ber text. This indicates that using member text in the prompt
is susceptible to malicious MIA. However, in Figure. 5 (b),
when we use synthetic text in the prompt, the predicted proba-
bilities for member and non-member text are relatively close.
This suggests that although the distribution of synthetic text
is close to that of private text, synthetic text does not leak
sensitive information from private text.

5 Conclusion and Future Work
In this work, we propose a novel approach to generate
high-readability synthetic text, ensuring differential privacy
while maintaining semantic similarity with text in the pri-
vate dataset. Experimental results demonstrate that using syn-
thetic text as demonstrations for in-context learning incurs
only marginal losses in predictive performance compared to
using private text. Besides, our synthetic text are also capa-
ble of resisting membership inference attacks from malicious
users. While it is convenient to invert from embeddings to
text, longer text often leads to a higher loss of information
within the embeddings, consequently decreasing the quality
of synthetic text. In future work, we will explore how to apply
our proposed framework to the situation of privacy protection
on long text.
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Gustavo Hernández Ábrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, et al. Large
dual encoders are generalizable retrievers. arXiv preprint
arXiv:2112.07899, 2021.

[Pan et al., 2020] Xudong Pan, Mi Zhang, Shouling Ji, and
Min Yang. Privacy risks of general-purpose language

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6658



models. In 2020 IEEE Symposium on Security and Pri-
vacy (SP), pages 1314–1331. IEEE, 2020.

[Papernot et al., 2016] Nicolas Papernot, Martı́n Abadi, Ul-
far Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from pri-
vate training data. arXiv preprint arXiv:1610.05755, 2016.
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