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Abstract
Large language models (LLMs) encounter chal-
lenges such as hallucination and factual errors in
knowledge-intensive tasks. One the one hand,
LLMs sometimes struggle to generate reliable an-
swers based on the black-box parametric knowl-
edge, due to the lack of responsible knowledge.
Moreover, fragmented knowledge facts extracted
by knowledge retrievers fail to provide explicit and
coherent reasoning paths for improving LLM rea-
soning. To address these challenges, we propose
KG-CoT, a novel knowledge-augmented paradigm
that leverages a small-scale step-by-step graph rea-
soning model to reason over knowledge graphs
(KGs) and utilizes a reasoning path generation
method to generate chains of knowledge with high
confidence for large-scale LLMs. Extensive exper-
iments demonstrate that our KG-CoT significantly
improves the performance of LLMs on knowledge-
intensive question answering tasks, such as multi-
hop, single-hop, and open-domain question an-
swering benchmarks, without fine-tuning LLMs.
Moreover, KG-CoT can reduce the number of API
calls and cost and can generalize to various LLMs
in a lightweight plug-and-play manner.

1 Introduction
Recently, large language models (LLMs) [OpenAI, 2023]
have achieved remarkable results in various downstream nat-
ural language understanding and generating tasks with elab-
orate natural language prompts [Wei et al., 2022]. Despite
their significant ability to generate fluent and coherent natu-
ral language responses, LLMs suffer from hallucination and
factual errors when performing knowledge-intensive tasks [Ji
et al., 2023]. The essential reason for these problems lies in
the black-box nature of parametric knowledge, which makes
it difficult to locate and update knowledge facts stored in the
parameters [Zhu et al., 2020; Cao et al., 2021]. This results
in two main challenges that hinder the adaptation of LLMs in
knowledge-intensive tasks.
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(a) Lack of Responsible Factual Knowledge

Q: Whence is the artist nominated for awards for “Live from Paris”? 
A: Let’s think step by step.  

LLM + CoT Prompt

As of my last knowledge update in January 2022, I don't have 
specific information about an artist nominated for awards …

(b) Cognition Gap with Knowledge Retrievers

Q: Whence is the artist nominated for awards for “Live from Paris”? 
K: (Sakira, music.artist.album, Live from Paris)

(Shakira, music.artist.album, Las de la Intuicion)
(Shakira, people.person.places_lived, Los Angeles) …

LLM + Knowledge Retriever

Los Angeles

(c) KG-CoT (Ours)

Q: Whence is the artist nominated for awards for “Live from Paris”? 
K: Path1: Live from Paris → music.artist.album_reversed→ Sakira
→ music.artist.origin→ Colombia …

LLM + Chain-of-Thought Prompting over Knowledge Graphs

Based on the reasoning paths, we can infer that Shakira, the artist 
behind the album “Live from Paris”, hails from Colombia.

Figure 1: (a) LLMs may struggle to provide responsible answer
based on the static parametric knowledge. (b) The high relevance
of fragmented knowledge facts doesn’t necessarily imply the useful-
ness for LLM reasoning. (c) Our proposed KG-CoT enables LLMs
to think with KGs for knowledge-aware reasoning.

Challenge 1: Lack of Responsible Factual Knowledge.
Since it is challenging to revise and expand the parametric
knowledge, LLMs are hard to access the most recent updates
in various domains [Wang et al., 2023d]. Therefore, when
encountering questions that require up-to-date or domain-
specific knowledge, LLMs may struggle to provide responsi-
ble answers based on the static parametric knowledge [Chen
et al., 2023]. Although elaborate prompts [Wei et al., 2022;
Yao et al., 2023] can be used to decompose complex ques-
tions into multiple steps to enhance the logical reasoning ca-
pability of LLMs, it is difficult to fully compensate for the
lack of explicit factual knowledge. As a result, the benefit
of elaborate prompting diminishes [Wang et al., 2023a] es-
pecially in tasks where accurate and deep understanding of
subject entity is crucial for generating correct response.
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Challenge 2: Cognition Gap with Knowledge Retrievers.
Augmenting LLMs with external knowledge graphs is a nat-
ural and promising solution for addressing the lack of knowl-
edge described above [Bollacker et al., 2007]. KGs are struc-
tured, explicit, and responsible, which can provide reliable
knowledge subgraphs to explicitly enhance the knowledge-
aware reasoning process of LLMs [Shi et al., 2021]. How-
ever, the cognition gap in understanding and reasoning be-
tween LLMs and knowledge retrievers significantly limits the
performance of LLM+KG paradigm. Knowledge retrievers
prioritize knowledge facts commonly based on representation
similarity [Li et al., 2023], but the relevance in this context
does not necessarily guarantee usefulness for specific reason-
ing tasks of LLMs [Sun et al., 2023]. This cognition gap re-
sults in LLMs being compelled to continuously evaluate the
usefulness of fragmented knowledge facts and recurrently in-
voke knowledge retrievers to provide adequate knowledge for
reasoning [Sun et al., 2023]. This leads to a significant in-
crease in the complexity and cost of the LLM+KG paradigm.

To address these challenges, we propose a Chain-of-
Thought prompting over Knowledge Graphs (KG-CoT), a
novel knowledge-augmented framework that utilizes a step-
by-step graph reasoning model to augment LLMs with re-
sponsible chains of knowledge in a plug-and-play manner. To
address the lack of responsible factual knowledge (Chal-
lenge 1), we propose a step-by-step graph reasoning model to
reason over KGs. Starting from the question entity, the step-
by-step graph reasoning model calculates scores for relations
in a KG and constructs the transition matrix for each reason-
ing step. By utilizing the transition matrix, the graph rea-
soning model can traverse various paths in the KG, hopping
among relations and exploring entities with high confidence
for problem solving. To address the cognition gap between
LLMs and knowledge retrievers (Challenge 2), we develop
a reasoning path generation method. Starting from the ques-
tion entity, it retraces the step-by-step reasoning process and
generates explicit reasoning paths along the transition matrix.
In this way, the graph reasoning model can plug into LLMs
and enable joint reasoning of LLMs over KGs.

Our main contributions are as follows:

• Large + Small: We propose a knowledge-augmentation
paradigm for LLMs that combines large-scale LLMs
with small-scale step-by-step graph reasoning models to
augment LLMs with KGs without fine-tuning LLMs.

• Responsibility: We propose using a graph reasoning
model over KGs as a enhancement of CoT prompting to
generate responsible chains of knowledge for improving
knowledge-aware reasoning capability of LLMs.

• Efficiency: Our proposed KG-CoT prompting signifi-
cantly improves the performance of LLMs on several
knowledge-intensive benchmarks without fine-tuning
LLMs, and outperforms prior retrieval-augmented and
knowledge base question answering baselines.

• Adaptability and Generality: Our proposed KG-CoT
can be generalized to various LLM backbones (e.g.,
closed-source or open-source LLMs) with reduced API
calls and costs in a lightweight plug-and-play manner.

2 Related Work
In this section, we introduce related LLM-based QA systems
from two categories based on their utilization of knowledge.

2.1 LLM + Parametric Knowledge
As the model scale increases, the emergent ability enables
LLMs to comprehend natural language instructions and acti-
vate the parametric knowledge [Petroni et al., 2019] stored in
their parameters for downstream NLP tasks.

Recently, Wei et al. first introduces the concept of chain-
of-thought prompting (CoT), in which a series of interme-
diate reasoning steps is generated to solve complex problems
through manually constructed prompts. Kojima et al. demon-
strates the ability of LLMs to generate CoT, even in zero-shot
scenarios. Consequently, Zhang et al., Shao et al., and Liang
et al. leverage manually constructed CoT examples to auto-
matically generate high-quality CoT demonstrations. Huang
et al. fine-tunes LLMs based on their self-generated CoT ex-
amples and demonstrates the self-improvement capability of
LLMs.

However, the difficulty of modifying and updating the
parametric knowledge leads to LLMs utilizing outdated or
incorrect implicit parametric knowledge for response genera-
tion, which strongly limits the validity and interpretability of
black-box LLMs. In this case, a natural and promising solu-
tion is to augment LLMs with external world knowledge.

2.2 LLM + External Knowledge
Retrieval-augmented generation (RAG) is a natural way to
augment LLMs with external knowledge [Lewis et al., 2020].
This approach aims to retrieve relevant knowledge from mas-
sive knowledge bases (KBs) and directly augment LLMs with
external world knowledge. Paranjape et al. enhances the
ability of knowledge retriever to increase the probability of
relevant passages being ranked among the top-10 most rel-
evant. In addition, Ma et al. retrieves knowledge triplets
over knowledge graphs (KGs) for question answering. Zhao
et al. converts KGs to text descriptions to augment LMs. KGs
are structured, explicit, and interpretable, since several paths
from the question entity to the answer entity can be identified.

However, recent works generally utilized representation-
based multi-model pre-training for augmenting LLMs with
KGs [Zhao et al., 2024; Ye et al., 2023]. In addition to lim-
iting the adaptability to closed-source LLMs, these methods
ignore the elaborate knowledge structure and explicit reason-
ing paths, which can serve as explicit clues for joint reason-
ing with LLMs. Although Wang et al. has demonstrated that
LLMs have preliminary graph reasoning abilities, the over-
reliance on LLMs results in limited adaptability when dealing
with large-scale KGs and complex multi-hop tasks.

To address these challenges, we propose the KG-CoT
prompting, which includes a lightweight joint reasoning
model to alleviate a portion of the reasoning burden of LLMs
and perform joint reasoning over KGs. The graph reasoning
model can generate explicit reasoning paths relevant to the
questions, enabling LLMs to “think with KGs” for answer
generation.
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(1) Step-by-Step Graph Reasoning Model

1-hop 
entity

2-hop 
entity

Path 1: Live from Paris → music.artist.album_reserved→ Sakira→ music.artist.origin
→ Colombia

Path 2: Live from Paris → music.artist.album_reserved→ Sakira→ people.person.
places_lived→ Barranquilla → location.location.containedby→ Colombia    …

Whence is the artist nominated for awards for “Live from Paris”? 
(3) Joint Reasoning

(2) Reasoning Path Generation Method

LLM Colombia

…

Figure 2: An overview of the KG-CoT. (1) We first propose a step-by-step graph reasoning model to reason over KGs and explore entities
with high confidence in problem solving. (2) We develop a reasoning path generation method to extract reasoning paths for LLMs. (3) We
concatenate the question context and reasoning paths, and utilize elaborate instructions to prompt LLMs for answer generation.

3 KG-CoT
KG-CoT augments LLMs with relevant knowledge by apply-
ing a small graph reasoning model to reason over KGs and
generate reasoning paths with high confidence in LLM rea-
soning. First, we propose a graph reasoning model to perform
step-by-step reasoning over the KGs and find candidate enti-
ties with high confidence. Then, we introduce the reasoning
path generation method to generate the reasoning paths based
on the step-by-step reasoning process. Finally, we leverage
the reasoning paths to prompt LLMs for answer generation.

3.1 Step-by-Step Graph Reasoning Model
Prior semantic parsing based models [Li and Ji, 2022] have
shown that the natural language question can be converted
into its logical form, which is called a query graph. These
findings suggest that complex questions can be decomposed
into multiple meta-questions over the KGs, which is similar
to chain-of-thought prompting [Wei et al., 2022]. Inspired by
this, we propose a graph reasoning model to imitate the ques-
tion decomposition and step-by-step reasoning over KGs.

Initialization. Let G denote the KG, n denote the number
of entities in the entity set, and m denote the number of re-
lation in the relation set. We first initialize an entity state
e0 ∈ [0, 1]n, which is a one-hot vector that indicates whether
the corresponding entity is mentioned in the context of ques-
tions. For example, if only the i th entity is mentioned in the
question, the e0i ∈ e0 is initialized to 1 and others are set to 0.
Moreover, we initialize a triplet matrix M ∈ [0, 1]n×n, which
is a one-hot matrix that indicates the relation index Mij = k
if it exists between the entity i < n and entity j < n.

Relation Score Calculation. Inspired by [Shi et al., 2021],
we separate the graph reasoning process into T steps. At
step t < T , we calculate scores for all relations in the KGs
Rt ∈ [0, 1]m. The score of each relation rti ∈ Rt indicates the
probability of a “hop” occurring for the current entity based
on this relation. The calculation of relation score Rt is calcu-
lated as follows:

Rt = Sigmoid(MLP(qt)), (1)

where qt is the question representation at step t. We con-
sider the question representation at different steps to focus on
different parts of the question context. In this way, we can im-
plicitly decompose the question and and force the graph rea-
soning model to focus on different relations at different steps.
At step t, the question representation qt can be formulated as
follows:

q, (h1, . . . , h|q|) = Encoder(q), (2)

Qt = f t(q), (3)

αt = Softmax(Qt[h1; . . . ;h|q|]
T ), (4)

qt =
|q|∑
i=1

αtihi, (5)

where q is the question embedding and (h1, . . . , h|q|) is a
sequence of hidden states associated with the question.f t is
used to project the question embedding q to the attention
query Qt at step t. We calculate the attention weights αt

and calculate the question representation at step t by taking
the weighted sum of the hidden states.
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Step-by-Step Reasoning. Based on the relation score Rt,
we first define a transition matrix Wt ∈ [0, 1]n×n, which is
used to describe the transitions from the current entity states
et−1 to the next entity states et. We leverage the triplet matrix
M and relation score Rt to construct the transition matrix Wt:

W t
ij =

{
Rtk k =Mij , R

t
k ∈ Rt,Mij ∈M,

0 Otherwise,
(6)

where k is the index of the relation between entities i and j,
and Rtk is the score of relation k. Finally, we can utilize the
transition matrix to perform step-by-step reasoning over the
KG. The step-by-step reasoning process can be formulated as
follows:

et = et−1Wt. (7)

The current entities et−1 “hop” along the relations within
their 1-hop neighborhood and transmit to the next entity states
et based on the relation score Rt.

After T steps reasoning, we utilize the question embedding
q to determine the weight distribution β for each step, and
calculate the final entity scores e by taking the weighted sum
of the entity scores at each step.

β = Softmax(MLP(q)), (8)

e =
T∑
t=1

βtet, (9)

Training. Given the one-hot vector a ∈ [0, 1]n of the
golden answer, which indicates whether the corresponding
entity is the answer entity. We use the L2 Euclidean distance
between e and a to optimize the step-by-step graph reasoning
model:

L = ‖e− a‖2. (10)

3.2 Reasoning Path Generation Method
During inference, once we obtain the top-k entities EK ⊆ E
through the graph reasoning model, we utilize the transition
matrices W1, W2 ... , WT to generate the reasoning paths.
Initialization. During the generation of reasoning paths,
we maintain two lists Lrp and Lmid, which are used to store
the candidate reasoning paths and the intermediate paths.
Extraction. Starting from the question entity Eq , we first
extract the corresponding row w1

i0, w
1
i1, . . . , w

1
i(n−1) ∈ W1,

w1
ij > 0, which indicates the relation score of transitioning

from the question entity at step t = 0 to the entities at step
t = 1. In this way, we can extract a set of 1-hop paths P1:

p1ij =< “Ei,Relij ,Ej”, [wtij ] >, (11)

where the “key” is the extracted path and the “value” is the
score of relation within it. Relij denotes the relation between
the entities i and j. For each path p1ij , we first append it to the
Lrp. If the object entity Ej is contained in the top-k answer
entities EK , we then append the extracted path to the Lrp.

Then, we start from the object entities Ej of the 1-hop
paths in the Lmid and use the W2 to extract 2-hop paths P2:

p2ik =< “Ei,Relij ,Ej ,Reljk,Ek”, [w1
ij , w

2
jk] >, (12)

Algorithm 1 Inference process of LLM + KG-CoT
Input: Input question q, retrieved knowledge subgraph G,
and a large language model LLM .
Initialize Entity score e0 ← extract question entity Eq from
G, triplet matrix M← extract triplets from G.
Output: Output answer y

1: for t = 1, ..., T do
2: Compute the question representation qt using (2)-(5).
3: Compute the relation score Rt using (1).
4: Compute transition matrix Wt using (6).
5: Entity score et ← step-by-step reasoning using (7).
6: end for
7: Compute final scores e using (8)-(9) and select top-k en-

tities EK
8: Initialize Lmid ← p0 = ¡“Eq”, [0]¿.
9: for t = 1, ..., T do

10: Extract t-hop paths Pt using Wt and paths in Lmid.
11: Update intermediate path list Lmid with Ptqj
12: if Object entity Ej ∈ EK then
13: Update reasoning path list Lrp with Ptqj .
14: end if
15: end for
16: Select N paths for each top-k entity EK from Lrp.
17: Serialize reasoning paths to textual sentence s
18: Output answer y = Call(LLM, q, s).
19: return Output answer y

and update the Lrp and Lmid.
By repeating the above algorithm for T steps, we can gen-

erate candidate reasoning paths from the question entities to
the top-k entities.

Ranking. Each answer entity may correspond to multiple
candidate paths in Lrp, and the number of hops for different
paths varies. Therefore, we take the average of the scores of
relations in each path as the final path score.

3.3 Joint Reasoning
For the top K candidate entity with highest confidence, we
extract the path with the highest path score for each can-
didate entity. Thus, for each question, we utilize the step-
by-step graph reasoning model (Section 3.1) and a reasoning
path generation method (Section 3.2) to generate K reasoning
paths with various numbers of hops and answer entities.

To maintain the chain structure, we utilize “arrows” to con-
nect the entities and relations to construct the KG-CoT. For
example, a 2-hop path p2ik:

p2
ik =< “Ei,Relij ,Ej ,Reljk,Ek” >, (13)

is serialized to a textual sentence, which is formulated as:

Text(p2ik) = Ei → Relij → Ej → Reljk → Ek. (14)

We serialize the K reasoning paths and concatenate them with
the question context as the final input sequence. We utilize
elaborate instructions to prompt LLMs to leverage these rea-
soning paths for answer generation.
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Model AccessKB Multi-hopQA Single-hop QA Open-domain QA
WebQSP CompWebQ SimpleQuestions WebQuestions

ChatGPT + IO prompts [Patel et al., 2023] × 63.3 37.6 20.0 48.7
ChatGPT + CoT prompts [Wei et al., 2022] × 62.2 38.8 20.3 48.5
ChatGPT + SC [Wang et al., 2023c] × 61.1 45.4 18.9 50.3

Previous RA SOTA X 65.0α 70.4β 85.8α 56.3γ

Previous KBQA SOTA X 76.6δ 52.2δ 71.1ε -
ChatGPT + ToG-R [Sun et al., 2023] X 75.8 58.9 45.4 53.2
GPT-4 + ToG-R [Sun et al., 2023] X 81.9 69.5 58.6 57.1

ChatGPT + KG-CoT (ours) X 82.1 51.6 77.8 66.5
GPT-4 + KG-CoT (ours) X 84.9 62.3 86.1 68.0

Table 1: Accuracy comparison with standard prompting baselines, state-of-the-art retrieval-augmented (RA) baselines (e.g., α: DiFaR2 [Baek
et al., 2023], β: CBR [Das et al., 2021], and γ: FiE [Kedia et al., 2022], knowledge base question answering (KBQA) baselines (e.g., δ:
UniKGQA [Jiang et al., 2023] and ε: RNG [Ye et al., 2022]) and recent LLM+KG baseline ToG-R [Sun et al., 2023].

4 Experiments
4.1 Datasets
We evaluate KG-CoT based on 4 challenging knowledge-
intensive question answering benchmarks that heavily rely on
knowledge-aware reasoning with external world knowledge.

WebQSP. WebQSP is a knowledge-intensive multi-hop
question answering benchmark. It contains 4,037 questions
that are all 1-hop or 2-hop questions based on the Freebase.
Based on previous works, we retrieve knowledge triplets
within 2-hop neighborhoods of the question entities and pro-
duce a knowledge subgraph with 1,886,684 entities, 1,144 re-
lations, and 5,780,246 knowledge triplets.

CompWebQ. CompWebQ is a multi-hop question answer-
ing benchmark. It contains 34,672 questions with many hops
and constraints, which makes it challenging for LLMs to pro-
cess. We utilize the retrieved knowledge subgraph of [Shi et
al., 2021] and utilize the original data splits for evaluation.

SimpleQuestions. SimpleQuestions is a single-hop ques-
tion answering benchmark. Questions are generated based
on information from Freebase, and ultimately, 108,442 ques-
tions that heavily rely on factual knowledge were generated in
this study. We randomly select 1,000 questions and retrieved
1-hop neighborhood of the question entity for evaluation.

WebQuestions. WebQuestions is a challenging open-
domain question answering benchmark. It contains 5,810
questions, with Freebase as the knowledge base. For each
question, we retrieve the 2-hop neighborhood of the question
entity and utilize the original data splits for evaluation.

4.2 Baselines
We compare with strong baselines, such as standard prompt-
ing baselines, state-of-the-art retrieval-augmented (RA) base-
lines and knowledge base question answering (KBQA) base-
lines, based on the above benchmark datasets.

Prompting Baselines. We compared with original IO
prompts (IO prompts), chain-of-thought prompts (CoT
prompts) and Self-Consistency (SC)

Retrieval-Augmented Baselines. We select previous
SOTA of each benchmark, including direct fact retrieval
DiFaR [Baek et al., 2023], case-based reasoning CBR [Das
et al., 2021], and fusion in encoder FiE [Kedia et al., 2022].

Knowledge Base Question Answering Baselines. We
compared with previous state-of-the-art knowledge base
question answering model on each benchmark, including
UniKGQA [Jiang et al., 2023] and RNG [Ye et al., 2022].

LLM+KG Baseline. We also compare with recent KG-
augmented baseline ToG [Das et al., 2021]. Different from
our motivation, it instructs LLM itself to perform retrieval,
pruning and answer prediction.

4.3 Implementation Setting
We train the step-by-step graph reasoning model with RAdam
optimizer at a learning rate of 1e-3 for 50 epochs. For the
LLM, we leverage the OpenAI API to call ChatGPT and
GPT-4 for evaluation. We select the “gpt-3.5-turbo” and “gpt-
4” as our LLM backbones and utilize the default setting of
the OpenAI API. For each question, we generate 1 KG-CoT
for each top-10 candidate entity (e.g., Hit@10 Path1) and es-
tablish instructions to prompt the LLMs to directly generate
answer entity for evaluation. Our code and data is available
at https://github.com/HUSTNLP-codes/KG-CoT.

4.4 Main Results
As shown in Table 1, our proposed KG-CoT achieved state-
of-the-art performance on 3 knowledge-intensive question
answering benchmarks, including WebQSP, SimpleQues-
tions, and WebQuestions. Moreover, KG-CoT significantly
enhances the performance of LLMs on CompWebQ, the chal-
lenging knowledge-intensive multi-hop question answering
benchmark, compared to LLM baselines relying on standard
CoT prompting.

On the WebQSP benchmark, our proposed KG-CoT out-
performs recent LLM+KG baseline ToG [Sun et al., 2023]
for both LLM settings. Moreover, KG-CoT with the
ChatGPT backbone even outperforms ToG with the GPT-4
backbone, demonstrating the effectiveness of our proposed
“Large+Small” paradigm for LLMs.
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Method KB WebQSP CWQ
Baselines

GFC [Xie et al., 2022] X 76.8 50.4
UniKGQA [Jiang et al., 2023] X 76.6 52.2
ChatGPT+ToG-R [Sun et al., 2023] X 75.8 58.9
GPT-4+ToG-R [Sun et al., 2023] X 81.9 69.5

Llama2-7B

CoT × 46.1 27.6
KG-CoT X 72.4 46.7
Gain (+26.3) (+19.1)

Llama2-13B

CoT × 47.2 29.9
KG-CoT X 74.6 50.0
Gain (+27.4) (+20.1)

ChatGPT

CoT × 62.2 38.8
KG-CoT X 82.1 51.6
Gain (+19.9) (+12.8)

GPT-4

CoT × 67.3 46.0
KG-CoT X 84.9 62.3
Gain (+17.6) (+16.3)

Table 2: Accuracy comparison on different LLM backbones. We
conduct experiments on open-sourced LLMs (e.g., Llama2-7B and
-13B) and closed-sourced LLMs (e.g., ChatGPT and GPT-4).

For the single-hop and open-domain question answer-
ing benchmarks, our proposed KG-CoT also achieves com-
petitive performances compared to previous state-of-the-art
baselines. Notably, for the simple yet knowledge-intensive
benchmark, LLMs that rely solely on the parametric knowl-
edge struggle to generate the correct answer even with CoT
prompting. On the one hand, the results demonstrate the ef-
fectiveness of our proposed KG-CoT in augmenting LLMs
with explicit reasoning paths. On the other hand, these results
align with previous findings of LLMs [Wang et al., 2023b],
indicating that the effectiveness of these standard prompting
methods (e.g., CoT and SC) diminishes for complex problems
that require extensive factual knowledge.

On the CompWebQ benchmark, our proposed KG-CoT
with ChatGPT yielded at 37.2% improvement over standard
prompting baselines. We observe that the performance trend
of KG-CoT varies compared to those of the other QA bench-
marks. This difference is attributed to our proposed graph
reasoning model performing less favorably for this challeng-
ing multi-hop question answering benchmark, consequently
resulting in moderate improvements on CompWebQ.

4.5 Comparison with Different LLM Backbones
To further investigate the generality of our proposed KG-
CoT, we evaluate KG-CoT on different LLM backbones, such
as open-source LLMs (e.g., Llama-7B and Llama-13B) and
closed-source LLMs (e.g., ChatGPT and GPT-4). As shown
in Table 2, our proposed KG-CoT yield significant improve-
ments across all the LLM backbones. With the increasing
intelligence of LLMs, the performance with KG-CoT consis-
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Figure 3: Performance comparison with other retriever. KG-CoT
excels in locating the answer entity within the top-ranked k entities.

Hit@K_Path1

Te
st

-A
cc

 (%
)

Hit@10_PathN

78.0

79.0

80.0

81.0

82.0

Te
st

-A
cc

 (%
)

K=5 K=10 K=15
78.0

79.0

80.0

81.0

82.0

N=1 N=5 N=10

83.0 83.0

Figure 4: Effects of the number of candidate entity (e.g.,
Hit@K) and the path number corresponding to each entity (e.g.,
Hit@KPathN) on the performance of LLMs.

tently improves. When Llama2-13B, ChatGPT, and GPT-4
are used as the backbones, LLM+KG-CoT outperforms the
existing state-of-the-art KGQA baselines.

4.6 Performance of Locating Answer Entity
To validate the effectiveness of the reasoning paths, we con-
ducted comparative experiments with other retrieval meth-
ods (e.g., BM25 and DPR) to evaluate whether the retrieved
top-ranked knowledge facts contain the golden answer en-
tity. As shown in Figure 3, the experimental results indicate
that our proposed KG-CoT achieves a significant high hit rate
(e.g., Hit@1) in locating reasoning paths to the answer entity.
Specifically, when considering the top-10 candidate entities
(e.g., K=10), KG-CoT yields a coverage rate of up to 91.4%
for the WebQSP benchmark, surpassing that of conventional
knowledge retrievers. Moreover, for the complex multi-hop
question answering benchmark CompWebQ, the hit rate for
answers reaches 72.5%, reflecting a substantial improvement
in LLM reasoning.

4.7 Hyper-parameter Sensitivity Analysis
In KG-CoT, two parameters that can influence the perfor-
mance of LLMs are the number of candidate answer entities
K and the number of paths extracted for each entity N.

As shown in the left part of Figure 4, we conduct exper-
iments on the WebQSP benchmark to investigate the influ-
ence of the candidate answer entity number K. We observed
that increasing the number of candidate answer entities from
the top-5 to the top-10 yields in a discernible improvement
in the performance of LLMs. This enhancement can be at-
tributed to an increased coverage of correct answer entities
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Question What is the source of the river which flows under the Dona Ana Bridge?
Reasoning Paths Path 1: Dona Ana Bridge → transportation.bridge.body of water spanned → Zambezi River → geogra-

phy.river.origin → Mwinilunga.
Path 2: Dona Ana Bridge → geography.body of water.bridges rev → Zambezi River → geography.river.origin →
Mwinilunga.

Outputs IO: Willow Creek.
CoT: The Dona Ana Bridge spans the Rio Grande, a significant river in the southwestern United States. The ultimate
source of the Rio Grande is in the San Juan Mountains of Colorado. More precisely, the river originates from the
snowmelt in the San Juan Mountains. The specific location where the Rio Grande begins is often cited as the Willow
Creek, which is in the San Juan Mountains of Colorado.
KG-CoT: Based on the reasoning paths, the Dona Ana Bridge spans a body of water, specifically the Zambezi River,
which originates in the geographical location of Mwinilunga.

Ground Truth Mwinilunga.

Table 3: Case study for KG-CoT. LLMs can accurate answer knowledge-intensive questions and provide knowledge-aware explanations.

Method KB #API Call Cost Per Call($) Total Cost($)
GPT-3.5-turbo

CoT × 2 0.0001 0.30
ToG X 11.2 ∼0.0007 ∼13
KG-CoT (Ours) X 1 0.0006 0.92

GPT-4

CoT × 2 0.003 9.25
ToG X 11.2 ∼0.025 ∼400
KG-CoT (Ours) X 1 0.020 30.82

Table 4: The number of API calls and cost of the OpenAI API for
WebQSP. We show the number of API call per question, as well as
the average cost per call and total cost for the WebQSP benchmark.

along the reasoning paths, consequently reducing misguid-
ance caused by the absence of correct reasoning paths. How-
ever, when extending the candidate answers from the top 10
to the top 15, we found minimal changes in the performance
of LLMs. One one hand, this lack of improvement is at-
tributed to the marginal increase in answer coverage. More-
over, the lower confidence associated with lower ranking rea-
soning paths contributes marginally to the reasoning process
of LLMs.

As shown in the right part of Figure 4, we investigate the
impact of the number of reasoning paths corresponding to
each candidate answer entity. We observed that increasing
the number of reasoning paths has minimal effect on LLM
reasoning. This is attributed to the fact that our proposed step-
by-step reasoning model already provides the reasoning path
with high confidence, which significantly contributes to the
LLM reasoning. The inclusion of low-confidence reasoning
paths leads to little improvement in LLMs.

4.8 Case Study
In Table 3, our further investigation reveals how KG-CoT en-
hances the reasoning capability of LLMs by providing accu-
rate factual knowledge and interpretable reasoning paths. For
the question: “What is the source of the river which flows
under the Dona Ana Bridge?”, original prompting methods
are influenced by hallucination problems, resulting in an er-
roneous answer “Willow Creek”. Instead, KG-CoT links the

question entity to the Freebase and leverages our proposed
step-by-step reasoning model to extract reasoning paths with
high confidence, enabling LLMs to utilize the responsible and
interpretable reasoning paths to generate the correct answer.

4.9 Adaptability
As shown in Table 4, we analyze the advantages of KG-CoT
in practical application from two perspectives.

Bandwidth Occupancy. Since we utilize the “Large +
Small” paradigm, we only need to extract reasoning paths
from the small-scale graph reasoning model and perform
joint reasoning with LLMs. This eliminates the necessity of
LLMs generating CoT prompts or acting as retrievers to fil-
ter triplets and determine the next-hop entity (i.e., ToG [Sun
et al., 2023]). On the one hand, KG-CoT reduces the num-
ber of API calls to 1 per question, achieving more efficient
knowledge enhancement. On the other hand, it diminishes
the bandwidth occupancy of LLMs, allowing them to allocate
more bandwidth to handle requests from other users.

Inference Cost. In contrast to previous LLM+KG baseline
ToG [Sun et al., 2023] which requires an average of 11.2 API
calls, KG-CoT can significantly reduce the cost of API calls.
Furthermore, our proposed graph reasoning model focuses
on “relations” within the KGs, eliminating the need for re-
training the model when countering emerging entities.

5 Conclusion
In this work, we propose a novel chain-of-thought prompt-
ing over knowledge graphs (KG-CoT), which utilizes a
lightweight step-by-step graph reasoning model to augment
LLMs with responsible factual knowledge and explicit rea-
soning paths in a plug-and-play manner. This “Large +
Small” paradigm alleviates the burden of LLM reasoning and
enables joint reasoning with external world knowledge. Ex-
tensive experiments on 4 knowledge-intensive question an-
swering benchmarks demonstrate the effectiveness of our
proposed KG-CoT and can provide explicit reasoning paths
for improving interpretability. We show that KG-CoT can uti-
lize less bandwidth and reduce inference costs to enhance the
capability of various LLMs for knowledge-aware reasoning.
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