
InstructEdit: Instruction-Based Knowledge Editing for Large Language Models

Ningyu Zhang1, Bozhong Tian1, Siyuan Cheng2, Xiaozhuan Liang2,
Yi Hu2, Kouying Xue2, Yanjie Gou2, Xi Chen2, Huajun Chen1,

1 Zhejiang University
2 Tencent

{zhangningyu, tbozhong}@zju.edu.cn

Abstract
Knowledge editing for large language models can
offer an efficient solution to alter a model’s behav-
ior without negatively impacting the overall perfor-
mance. However, the current approaches encounter
issues with limited generalizability across tasks,
necessitating one distinct editor for each task, sig-
nificantly hindering the broader applications. To
address this, we take the first step to analyze the
multi-task generalization issue in knowledge editing.
Specifically, we develop an instruction-based editing
technique, termed InstructEdit, which facilitates
the editor’s adaptation to various task performances
simultaneously using simple instructions. With only
one unified editor for each LLM, we empirically
demonstrate that InstructEdit can improve the edi-
tor’s control, leading to an average 14.86% increase
in Reliability in multi-task editing setting. Further-
more, experiments involving holdout unseen task
illustrate that InstructEdit consistently surpass pre-
vious strong baselines. To further investigate the
underlying mechanisms of instruction-based knowl-
edge editing, we analyze the principal components
of the editing gradient directions, which unveils that
instructions can help control optimization direction
with stronger OOD generalization.

1 Introduction
Knowledge editing [Sinitsin et al., 2020; Yao et al., 2023;
Wang et al., 2023c; Mazzia et al., 2023; Zhang et al., 2023a;
Zhang et al., 2024]1 aims to enable efficient and targeted
post-hoc modifications in the parametric knowledge within
Large Language Models (LLMs) [Mitchell et al., 2022a; Dai
et al., 2022; Hartvigsen et al., 2023; Cheng et al., 2023;
Tan et al., 2024]. For example, as shown in Figure 1, when
prompting with “How can I turn screws?”, knowledge editing
techniques can focus on specific areas in LLMs for adjustment,
changing the answer from “Use a hammer” to “Use a wrench”
without compromising the overall performance. Recently,
numerous works on knowledge editing for LLMs have been

1The project homepage is at https://zjunlp.github.io/project/
InstructEdit

Figure 1: Top: The Single-Task Editor excels in specific tasks (e.g.,
turning screws) but fails in others (e.g., driving nails). Bottom: The
vanilla Multi-Task Editor (all data mixed together) still struggles to
choose the right tool for varied tasks without aid. Thus, we propose
InstructEdit, enabling the Multi-Task Editor to respond aptly (such
as using a hammer for nails) with instructional guidance.

proposed, which can be divided into two main paradigms [Yao
et al., 2023]: 1) Preserve Models’ Parameters by utilizing
additional parameters or memory [Mitchell et al., 2022b]; 2)
Modify Models’ Parameters to alter the weights responsible
for the undesirable output [Meng et al., 2022a].

However, previous knowledge editing approaches mainly
focus on single-task settings, which means they may fail to
achieve multi-task generalization capabilities and demon-
strate inefficiency in editing when confronted with Out-of-
Distribution (OOD) data. For example, as shown in Fig-
ure 1 and Table 1, the knowledge editing approach can
simply change the behavior when prompting with “How
can I turn screws”, but fail to generalize to different task
when prompting with “How can I drive nails”. Fundamen-
tally, for the Preserve Models’ Parameters paradigm, Ad-
ditional Parameters methods [Dong et al., 2022; Huang
et al., 2023] fit updated data with few extra parameters,
while Memory-based approaches [Mitchell et al., 2022b;
Hartvigsen et al., 2023], storing only current batch knowledge,
can hardly generalize to OOD data. For the Modify Models’

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6633

https://zjunlp.github.io/project/InstructEdit
https://zjunlp.github.io/project/InstructEdit

Unseen Seen Reliability Generalization Portability

CounterFact
CounterFact 84.62 46.01 42.46

Recent -25.50 -21.34 -7.33
ZsRE -25.26 -18.36 -4.79

ZsRE
ZsRE 96.62 94.60 48.85
Recent -86.40 -91.33 -0.60

CounterFact -56.31 -64.90 -1.35

Table 1: Motivating knowledge editing results in multi-task gener-
alization. Directly transferring to the unseen task (CounterFact and
ZsRE) can result in a significant performance decay.

Parameters paradigm, Locate-Then-Edit [Meng et al., 2022a;
Meng et al., 2022b] target and directly update specific parame-
ters, but their updates are confined to provided data, limiting
the model’s generalization to other domains. Meta-learning
editing approaches [Cao et al., 2021; Mitchell et al., 2022a;
Cheng et al., 2024] represent a branch in the realm of the
Modify Models’ Parameters paradigm, which utilizes a hy-
pernet to predict specific weight updates for each data point,
thereby facilitating the editing of LLMs [Radford et al., 2019;
Touvron et al., 2023]. Yet traditional meta-learning edit-
ing methods typically focus on training a hypernet, which
in essence functions as the Editor, specialized for a partic-
ular domain. Consequently, knowledge editing for a new
task demands re-training the Editor, resulting in significant
computational costs.

Intuitively, devising a strategy to enable the knowledge edit-
ing methods to effectively generalize across tasks is beneficial.
Reflecting on prior research, to enhance the model’s general-
ization capabilities, researchers have introduced instruction
tuning [Wei et al., 2022]. Instruction tuning can enhance the
LLMs’ comprehension skills by providing clearer commands
or instructions, enabling the model to understand better and
execute accurate responses. Previous studies [Wei et al., 2022;
Zhang et al., 2023b] observe that models refined through
instruction tuning not only excel in performance on in-
distribution datasets but also effectively generalize to previ-
ously unseen instruction data. Inspired by this, we propose the
Instruction-based Editing method, dubbed as InstructEdit,
which learns a well-formed Editor by designing the correspond-
ing instructions for training on different tasks2 , as shown in
Figure 1. Specifically, we utilize meta-learning editing meth-
ods to train the editor across various meticulously curated
instructions. We conduct experiments on four datasets and
observe that InstructEdit can equip the Editor with the capa-
bility for multi-tasking editing, thereby conserving substantial
human and computational resources. Our experiments re-
veal that InstructEdit can enhance the reliability by 14.86%
(compared with MEND) on average when editing GPT2-XL.
Furthermore, it can yield improvement by 42.04% on OOD
dataset unseen during training.

2The instructions text in this paper are limited to task descriptions
rather than natural language instructions, which is a limitation we
leave for future work.

2 Related Work
2.1 Knowledge Editing
Recently, knowledge editing [Sinitsin et al., 2020; Zhang et al.,
2024] has emerged, aiming for efficient and accurate updates
of knowledge in LLMs, to address the issues of outdated
knowledge due to their training cut-off, factual fallacy, and
potential generation of unsafe content. This technique is
applied in various domains [Xu et al., 2022; Mao et al., 2023;
Hase et al., 2023; Wang et al., 2023a; Li et al., 2023b; Cheng
et al., 2023; Zhong et al., 2023; Akyürek et al., 2023], with
an increasing number of researches investigating the impact
of knowledge editing [Ilharco et al., 2023; Gupta et al., 2023;
Cohen et al., 2023; Wu et al., 2023; Wang et al., 2023b;
Gandikota et al., 2023; Brown et al., 2023; Wei et al., 2023;
Li et al., 2023d; Li et al., 2023a; Ju and Zhang, 2023; Li
et al., 2023c; Onoe et al., 2023; Pinter and Elhadad, 2023;
Gupta et al., 2024; Huang et al., 2024; Gu et al., 2024;
Lo et al., 2024; Yin et al., 2024; Yu et al., 2024; Ma et
al., 2024]. Researchers have diligently classified existing
knowledge editing approaches into two main paradigms:

Preserve Models’ Parameters. For those approaches, knowl-
edge can be updated without altering models’ parameters, pri-
marily following two paradigms: Additional Parameters
and Memory Based. Additional Parameters integrate ex-
tra trainable parameters into the models. These added parame-
ters are trained on a modified knowledge dataset, while the orig-
inal models parameters remain unchanged. T-Patcher [Huang
et al., 2023] embeds a single neuron (patch) for each er-
ror in the model’s final Feed-Forward Network (FFN) layer,
activating only upon encountering the respective mistake. Ca-
liNet [Dong et al., 2022] drawing inspiration from [Dai et
al., 2022], introduces additional trainable parameters into the
FFNs. Memory Based store edit examples in memory and use
a retriever to select relevant edit facts for new inputs, thereby
directing the model’s fact generation. SERAC [Mitchell et al.,
2022b] presents a method that utilizes a distinct counterfactual
model while maintaining the integrity of the original model.
GRACE [Hartvigsen et al., 2023] employs a distinct codebook
as an adapter, progressively incorporating and refreshing ele-
ments to refine the model’s predictions. In-context Knowledge
Editing [Zheng et al., 2023] produces outputs aligned with
given knowledge using refined in-context prompts.

Modify Models’ Parameters. Those methods edit LLMs by
modifying a portion of the parameter 𝜃 via applying anΔmatrix.
There are primarily two paradigms: Locate-Then-Edit and
Meta-learning. Locate-Then-Edit targets and directly
updates specific parameters. ROME [Meng et al., 2022a]
utilizes causal mediation analysis for targeted editing but is
limited to one fact at a time. Addressing this, MEMIT [Meng
et al., 2022b] has been proposed, enabling direct memory
embedding into the model through rank-one modifications of
single-layer MLP weights. Meta-learning utilizes a hyper-
net to predict specific Δ for each data point. MEND [Mitchell
et al., 2022a] and Knowledge Editor (KE) [Cao et al., 2021]
propose strategies that include an external editor, adept at iden-
tifying the optimal Δ for knowledge editing, while enforcing
constraints to preserve the stability of the model.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6634

Task (Dataset) Instruction

CounterFact
Task: CounterFact
Description: A dataset designed to
challenge and assess model on...
Input: The official language of...

ConvSent
Task: ConvSent
Description: Teach the chatbot to
sound [LABEL] about [TOPIC]...
Input: What do you think of...

... ...

Table 2: Examples of the instructions. As for ConvSent, we need to
replace [LABEL] and [TOPIC] according to the input.

2.2 Instruction Tuning
Instruction Tuning [Zhang et al., 2023b] markedly improves
models’ capability to handle new and unseen tasks by teaching
them to comprehend and follow natural language instruc-
tions. In NLP, the focus is rapidly shifting towards refining
LLMs [OpenAI, 2022; Sun et al., 2023; Su et al., 2023] to
follow natural language instructions for real-world tasks. The
effectiveness of these approaches is evident in the enhanced
zero-shot and few-shot learning capabilities of these LLMs,
demonstrating their improved proficiency in adapting to new
tasks with minimal prior exposure. Inspired by the general-
ization capabilities of Instruction Tuning [Liang et al., 2022;
Ouyang et al., 2022], we take the first step to integrate instruc-
tions into knowledge editing, endowing one unified Editor
with commendable instruction generalization and zero-shot
capabilities to concurrently handle multiple editing tasks.

3 Background
Knowledge Editing Task Definition. Knowledge editing,
as described by [Zhang et al., 2024], aims to alter the behavior
of an initial base model 𝑓𝜃 (where 𝜃 represents the model’s
parameters) in reaction to a specific edit descriptor (𝑥𝑖 , 𝑦𝑖)
while maintaining the model’s performance on other samples.
The target is to create an edited model 𝑓𝜃 ′ , which succinctly
encapsulates the intended modifications in the model’s per-
formance. Concretely, the model 𝑓𝜃 can be represented with
a function 𝑓 : X → Y which associates an input 𝑥 with its
corresponding prediction 𝑦. Given an edit descriptor that
includes the edit input 𝑥𝑖 and edit label 𝑦𝑖 with the condition
that 𝑓𝜃 (𝑥𝑖) ≠ 𝑦𝑖 , the revised model 𝑓𝜃 ′ is engineered to yield
the anticipated output, ensuring that 𝑓𝜃 ′ (𝑥𝑖) = 𝑦𝑖 .
Pilot Experiments. We conduct pilot experiments to high-
light the issue inherent in current knowledge editing methods.
Note that the generalization of current knowledge editing meth-
ods is primarily focused on discussions about In-Distribution
data, where the concept of generalization in the context of
original knowledge editing is related to rephrasing sentences
from the edited text data [Mitchell et al., 2022a]. Nonetheless,
our empirical findings indicate that while existing knowledge
editing methods can adapt to rephrased sentences, their gener-
alization ability to OOD data is limited.

Multi-Task Editing Definition. In this paper, we mainly
focus on multi-task editing setting, which means the editing
approach should have the ability to handle various multi-
ple tasks. We denote a LLM as 𝑓 , characterized by its
parameters 𝜃 to form 𝑓𝜃 . For editing in a single task, we
introduce a dataset as 𝐷𝑒𝑑𝑖𝑡 . When we extend to multi-
tasking scenarios, the dataset becomes a set comprising a
collection {𝐷𝑡1

𝑒𝑑𝑖𝑡
, 𝐷

𝑡2
𝑒𝑑𝑖𝑡

, ..., 𝐷
𝑡 𝑗

𝑒𝑑𝑖𝑡
} ∼ T , with each element

representing to a unique task. In each specific task 𝑡 𝑗 , we
engage with original input-output knowledge pairs, expressed
as (𝑥𝑡 𝑗

𝑖
, 𝑦

𝑡 𝑗

𝑖
) ∼ 𝐷

𝑡 𝑗

𝑒𝑑𝑖𝑡
. The editing objective is to evolve the

model’s output from the original erroneous 𝑦′
𝑖

to a more accu-
rate 𝑦

𝑡 𝑗

𝑖
, achieved by adjusting the model’s parameters from 𝑓𝜃

to 𝑓𝜃 ′ . Formally, the procedure can be described as follows:

𝑓𝜃 (𝑥
𝑡 𝑗

𝑖
) = 𝑦′𝑖 → 𝑓𝜃 ′ (𝑥

𝑡 𝑗

𝑖
) = 𝑦

𝑡 𝑗

𝑖
(1)

Note that for all experiments, we utilize the multi-task
editing setting and report the performance in Table 3. We also
select one unseen dataset (a.k.a., ZsRE is unseen when training
the Editor) for hold out editing evaluation.

4 Instruction-Based Knowledge Editing
4.1 Instruction Dataset Construction
Selected Task. To ensure diversity in multi-task editing,
we select a range of datasets: Recent [Zhang et al., 2024]
for knowledge insertion, CounterFact [Zhang et al., 2024]
for counterfactual generation, and ConvSent [Mitchell et al.,
2022b] for sentiment editing in knowledge updating.

Recent focusing on triplets added to WikiData after July
2022, is used to enable model updates with the latest knowledge.

CounterFact emphasizes triplets from top-viewed
Wikipedia pages to address the issue of models overlooking
less prominent entities in modification edits.

ConvSent is a sentiment editing task aimed at adjusting a
dialog agent’s sentiment on a specific topic, like “What do
you think of bananas?” without affecting responses of other
topics. The training approach retains the original settings
of the ConvSent. Additionally, we utilize a balanced subset,
randomly sampled from the original ConvSent, for multi-task
training. Detailed analyses are presented in Figure 4.
Hold Out Task. Empirically, we find that transferring knowl-
edge from other tasks to ZsRE is challenging as shown in Table
1. Therefore, we utilize ZsRE, a zero-shot relation extraction
dataset, to evaluate the generalization ability of multi-task
editing, which means we do not incorporate ZsREin multi-task
editing training. Specifically, we use the extended version
by [Yao et al., 2023], which adds a portability test and new
locality sets to the original dataset.
Instruction Generation. We develop instruction templates
for multi-task knowledge editing, encompassing four task fami-
lies, they are: CounterFact, Recent, ConvSent, and ZsRE. Each
includes instructions for task-specific model discovery, with in-
put and target templates, and associated metadata. Specifically,
we craft tailored instruction sets for each task family, including
[Task], [Description], and [Input]. The [Task] repre-
sents the specific task linked to a data item, while the [Input]

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6635

Instruction Construction

PROMPT: “Geography is a dataset…”
Based on this description, please
provide 10 generic [DESCRIPTIONS].

GPT-4

Instruction Initialization

INSTRUCTION: A targeted
evaluation dataset focusing on
assessing model …

Trial Editor

PROMPT: The instruction’s
performance is [METRICS],
Please optimize it.

Instruction
Optimization

GPT-4

INSTRUCTION: A dataset
designed to challenge and
assess models on their
ability to…[METRICS]

update

In which country is
Mount Everest located?

Nepal and China.

Single-Task Editing

What are symptoms
of a cold?

Rash and Itching.

Pre-Editor

𝑓𝜃

In-Distribution
Task Editing

𝑓𝜃′

What are symptoms of a cold? [INSTRUCTION]

What are symptoms of a cold?

𝑓𝜃′

𝑓𝜃′

𝑓𝜃

Out-of-
Distribution
Task Editing

𝑓𝜃′

𝑓𝜃′

𝑓𝜃′𝑓𝜃′′

Rash and Itching.

HyperNet

HyperNet

Coughing and fever.

𝑓𝜃

In-Distribution
Task Editing

𝑓𝜃′

𝑓𝜃′

𝑓𝜃′

𝑓𝜃

Out-of-
Distribution
Task Editing 𝑓𝜃′

𝑓𝜃′

𝑓𝜃′
𝑓𝜃′

Multi-Task Editing

InstructEdit

Pre-Editor

<INSTRUCT>
<INSTRUCT>

∇
Edit

Gradient

∇
Edit

Gradient

Figure 2: Assuming access to multi-domain task data: Law, Geography, Medicine, and Math. Single-Task Editing) Original editing is
domain-specific (e.g., a Geography Editor edits geography-related knowledge but can’t transfer it to Medicine). Multi-Task Editing) Previous
methods (Pre-Editor) trained across domains (Law, Geography, and Math) often misdirect In-Distribution Task Editing. For OOD Task Editing
(Medicine), a lack of guidance ∇ leads to missing the correct edit region. Instructions enable precise editing and improve generalization.
Instruction Construction) We utilize GPT-4 to generate instructions through well-crafted prompts, evaluate metrics using the Trial Editor, and
then employ GPT-4 for continuous Instruction Optimization, enhancing the instructions until there is no further improvement in metrics.

embodies the data item itself. We delve into the specifics with
the [Description], which is the essential component that
uniquely tailors each task. Leveraging GPT-4 [OpenAI, 2023].
and detailed task information, we generate 20 descriptions
for each task and manually select 10 candidates based on
their clarity and conciseness. Subsequently, we concatenate
[Task], [Description], and [Input] to form the instruc-
tions presented in Table 2. Notably, while the last instruction
is used to evaluate the model’s generalization capabilities with
instructions, the others are utilized for training. We further op-
timize instructions by feeding them with performance metrics
into GPT-4 to improve the quality as shown in Figure 2. All
instruction data will be released to the community.

4.2 Unified Editor Learning with Instructions
In this section, we primarily focus on the crucial role of
instructions in directing the editing process and delve into a
detailed explanation of how InstructEdit works. Specifically,
we define the instruction set as {𝐼 𝑡1 , 𝐼 𝑡2 , ..., 𝐼 𝑡 𝑗 } ∼ I, where 𝐼 𝑡 𝑗

represents a collection of instructions for task 𝑡 𝑗 . Based on the
instructions, we outline the editing process as follows:{

𝑓𝜃 ′ (𝑖𝑛𝑡 𝑗 , 𝑥𝑖) = 𝑦
𝑡 𝑗

𝑖
𝑥𝑖 ∈ 𝐸 (𝑥

𝑡 𝑗

𝑖
), 𝑥𝑡 𝑗

𝑖
∈ 𝐷𝑡 𝑗

𝑒𝑑𝑖𝑡

𝑓𝜃 ′ (𝑥𝑖) = 𝑓𝜃 (𝑥𝑖) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

where 𝑖𝑛𝑡 𝑗 refers to an instruction randomly selected from
𝐼 𝑡 𝑗 , 𝐸 (𝑥𝑡 𝑗

𝑖
) includes both 𝑥

𝑡 𝑗

𝑖
and its equivalent expressions.

InstructEdit employs the editing architecture of MEND, uti-
lizing a meta-learning editor (hypernetwork) for implementing

edits. InstructEdit updates the model’s parameters 𝑢ℓ ∈ M
with an editor parameterized by 𝜙. It does this by mapping 𝑢𝑖

ℓ
(the input to layer ℓ for each batch element 𝑖) and the gradient
𝛿𝑖
ℓ+1 (calculated as 𝛿𝑖

ℓ+1 ← ∇𝑊ℓ
𝐿 (𝑥𝑖 , 𝑦𝑖)) to pseudoactivations

�̃�𝑖
ℓ

and pseudodelta 𝛿𝑖
ℓ+1. The knowledge editing gradient for

the weight matrix 𝑢ℓ is then represented as follows:

∇̃𝑢ℓ = 𝛿𝑖
ℓ+1�̃�

𝑖⊤
ℓ
. (3)

Additionally, we scale the gradient ∇̃𝑢ℓ with 𝐿2 norm of
the gradient to isolate its directional component, denoted
by ®∇𝑢ℓ = ∇̃𝑢ℓ / ∥∇̃𝑢ℓ ∥2. Intuitively, ®∇𝑢ℓ pinpoints the key
knowledge area for editing elements 𝑖. This facilitates a more
meaningful comparison across various tasks by focusing solely
on the gradient’s direction while discarding its magnitude. We
term this focused area as editing area.

Our primary objective is to equip the editor with the ability
to comprehend and apply editing instructions, thus enhancing
its capability to edit tasks that fall outside the usual distribu-
tion. Additionally, we append instructions before the input to
facilitate multi-task editing. InstructEdit aims to augment
multi-task editing capabilities, seeking a synergistic impact
where the collective result surpasses the individual contribu-
tions. Through the concatenation of instructions, as shown in
Figure 2, InstructEdit aims to cluster task vectors and reduce
conflicts between tasks, which guarantees that the performance
of the multi-task editor on individual tasks matches or even
surpasses that of dedicated single-task editors.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6636

DataSet Model Metric Base FT-L CaliNet KE MEND GRACE InstructEdit
Multi-Task Editing

CounterFact

GPT2-XL
Reliability 0.00 0.40 0.24 33.97 74.26 96.31 80.81

Generalization 0.00 0.32 0.12 8.70 46.48 0.00 53.16
Locality 100.0 43.73 82.81 90.94 58.68 99.99 67.83

Portability 11.00 0.87 3.64 27.41 41.88 11.00 50.83

LLaMA-2
Reliability 0.00 0.00 0.00 2.98 84.15 54.35 84.39

Generalization 0.00 0.00 0.00 0.00 44.10 0.36 50.18
Locality 100.0 70.66 89.28 90.86 91.18 99.75 88.04

Portability 27.04 3.19 26.93 33.43 65.84 27.04 69.43

Recent

GPT2-XL
Reliability 2.61 6.48 11.53 49.37 85.62 99.68 85.70

Generalization 1.58 2.21 5.37 10.98 52.76 1.58 51.66
Locality 100.0 26.58 83.87 87.12 57.94 100.0 64.61

Portability 17.19 16.78 10.31 30.41 42.26 17.73 47.36

LLaMA-2
Reliability 9.87 6.16 9.79 15.88 82.31 83.72 83.73

Generalization 7.27 3.87 6.64 0.08 54.66 7.35 55.92
Locality 100.0 70.66 89.28 88.88 78.57 99.98 87.04

Portability 43.52 3.15 43.26 43.52 60.84 44.13 62.39

ConvSent GPT2-XL
Reliability 40.74 7.48 37.47 53.07 54.67 40.74 65.43
Locality 100.0 42.86 87.47 94.58 96.58 100.0 94.27
Fluency 613.13 548.55 396.43 615.61 601.93 414.03 617.65

Hold Out Editing

ZsRE

GPT2-XL
Reliability 0.00 0.11 0.00 13.50 40.79 0.00 82.83

Generalization 0.00 0.08 0.10 10.13 31.15 0.00 78.40
Locality 100.0 74.06 95.66 82.59 94.79 100.0 94.57

Portability 47.07 0.96 0.39 43.90 45.08 47.07 40.84

LLaMA-2
Reliability 0.00 2.23 0.00 2.70 76.95 0.00 76.57

Generalization 0.00 1.93 0.00 0.19 67.89 0.00 70.11
Locality 100.0 98.89 99.66 95.15 90.14 100.0 94.16

Portability 56.66 0.54 0.87 48.02 58.63 56.66 58.19

Table 3: Multi-Task Editing Setting: Editors train on a hybrid of CounterFact, Recent, and ConvSent datasets, and test on their specific test
sets. Hold Out Editing Setting: The abovementioned editors are tested on ZsRE (OOD data). All metrics are “the higher, the better”.

5 Experiments
5.1 Experimental Settings
Editing Models. We conduct experiments on GPT2-
XL(1.5B) [Radford et al., 2019] and LLaMA-2-Base (7B) [Tou-
vron et al., 2023].
Baselines. In this paper, we compare our method with FT-L
method, which involves fine-tuning a specific layer’s FFN
identified via causal tracing in ROME [Meng et al., 2022a]. We
further compare our method with preserve models’ parameters
editing baselines including CaliNet and GRACE, and modify
models’ parameters editing baselines including MEND and KE.

5.2 Metrics
We apply several evaluation metrics consistent with those
described in [Yao et al., 2023].
Reliability. Reliable editing is defined when the post-edit
model 𝑓𝜃 ′ generates the target answer correctly for the case
(𝑥𝑖 , 𝑦𝑖). Reliability is assessed based on the average accuracy
of the edit case.

E𝑥′i ,𝑦
′
i ∼{ (𝑥i ,𝑦i) }1

{
argmax𝑦 𝑓𝜃 ′

(
𝑦 | 𝑥′i

)
= 𝑦′i

}
(4)

Generalization. The post-edit model 𝑓𝜃 ′ should predict the
equivalent neighbor 𝑁 (𝑥i, 𝑦i), like rephrased sentences, and its

performance is assessed by the average accuracy on examples
uniformly sampled from this equivalence neighborhood3.

E𝑥′i ,𝑦
′
i ∼𝑁 (𝑥i ,𝑦i)1

{
argmax𝑦 𝑓𝜃 ′

(
𝑦 | 𝑥′i

)
= 𝑦′i

}
(5)

Locality. Editing should be implemented locally, ensuring
that the post-edit model 𝑓𝜃 ′ preserves the outputs for out-of-
scope examples 𝑂 (𝑥𝑖 , 𝑦𝑖). Therefore, locality is measured by
the rate at which 𝑓𝜃 ′ maintains the same predictions as the
pre-edit model 𝑓𝜃 .

E𝑥′i ,𝑦
′
i ∼𝑂 (𝑥i ,𝑦i)1

{
𝑓𝜃 ′

(
𝑦 | 𝑥′i

)
= 𝑓𝜃

(
𝑦 | 𝑥′i

)}
(6)

Portability. Portability, proposed by [Yao et al., 2023],
gauges the edited knowledge application of the post-edit model
𝑓𝜃 ′ . [Yao et al., 2023] adds 𝑃(𝑥𝑖 , 𝑦𝑖) to the existing dataset and
calculates Portability by the edited model’s average accuracy
on these new reasoning parts.

E𝑥′i ,𝑦
′
i ∼𝑃 (𝑥i ,𝑦i)1

{
argmax𝑦 𝑓𝜃 ′

(
𝑦 | 𝑥′i

)
= 𝑦′i

}
(7)

Fluency. Fluency measures the edited model 𝑓𝜃 ′ ’s generative
performance by using a weighted average of bi-gram and tri-
gram entropies to evaluate text diversity. Lower values suggest
higher repetition.

3We follow [Cao et al., 2021; Yao et al., 2023] to evaluate the
rephrase-based generalization.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6637

Fluency =

∑
𝑤𝑛 · 𝐻𝑛∑
𝑤𝑛

(8)

where 𝐻𝑛 represents n-grams entropy (bi-gram for 𝑛 = 2,
tri-gram for 𝑛 = 3) and 𝑤𝑛 the respective weights. This metric
is specifically tailored for ConvSent testing, where longer
responses require scrutiny of the model’s fluency.

5.3 Main Results
We evaluate the efficacy of InstructEdit by examining three
key aspects: Multi-Task Editing, Hold Out Editing, and
Transfer to Unseen Instruction.
Multi-Task Editing Results. Table 3 presents the corre-
sponding results. FT-L [Yao et al., 2023] exhibit subpar
performance in Reliability for multi-task editing, which we
believe is due to the interference of the original models’ prior
knowledge, complicating the editing process. Moreover, we
notice that FT-L does not enhance Portability or Generaliza-
tion, as expected due to its focus on fitting updated knowledge.
Our experiments reveal that FT-L substantially reduces the
original model’s parameter knowledge, significantly lowering
Locality. Preserve Models’ Parameters Editing Methods like
CaliNet [Dong et al., 2022] maintain backbone model in-
tegrity, resulting in high Stability, but their performance in
other metrics is unsatisfactory. Similar to FT-L, CaliNet
overfits updated knowledge, leading to poor Generalization
and Portability, but it has better Locality than FT-L as it doesn’t
alter the original parameters of the LLMs. While GRACE rep-
resents the state-of-the-art of Preserve Models’ Parameters
Editing Methods, delivering outstanding Reliability and Local-
ity, it falls short in the metrics of Generalization and Portability.
Modify Models’ Parameters Editing Methods, such as KE [Cao
et al., 2021] and MEND [Mitchell et al., 2022a], surpass previous
editing approaches in effectiveness. Both MEND and KE excel
across all metrics, achieving a balance between Reliability and
Locality. This is attributed to their optimization objectives
that limit update extents, thus enabling editors to adjust pa-
rameters while preserving model stability. We can observe
our InstructEdit improves editing precision and control with
instruction-guided methods, reaching effectiveness akin to ad-
vanced hypernets like MEND and KE. While MEND and KE
yield effective editing results, their performance is suboptimal
on OOD data, with editing in In-Distribution data often causing
misdirection in the update trajectory of the posterior vector
space. However, we find that providing specific command
hints to the Editor can substantially alleviate this issue.
Hold Out Editing Results. To evaluate the adaptability of
knowledge editing methods to OOD data, we devise the “Hold
Out Editing Setting”. In this setup, the editor is trained using
datasets like Recent, CounterFact, and ConvSent, and then
evaluated on ZsRE. From Table 3, we notice a linear decline
in the performance of all previous knowledge editing baselines
when applied to OOD data. This decline can be attributed
primarily to the editor’s limitations in defining new editing
tasks and its insufficient generalization capability for handling
OOD scenarios. We observe that InstructEdit can effectively
address these challenges. Note that such robust generalization
abilities are mainly inherent in instruction tuning, a synergy

that enables InstructEdit to attain performance levels on par
with single-task editing, even on task datasets that are unseen
during the training phase.

Portability

Locality

Generalization

Reliability

47.3 47.0

64.6 64.9

Recent

51.6 47.4

85.7 84.7

Seen Unseen

50.8 51.0

67.8 68.2

53.2 49.9

80.8 80.4

CounterFact

Seen Unseen

Figure 3: InstructEdit demonstrates proficiency in generalizing to
Unseen instructions (unseen instructions introduced in Section 4.2),
achieving results comparable to Seen instructions.

Transfer to Unseen Instructions. To delve deeper into the
generalizability of Instruction-based Editing, we evaluate In-
structEdit’s capacity with instructions that have not been
encountered previously. This setting is different from the
hold-out editing setting since we still use the data in Counter-
Fact, Recent, ConvSent, and ZsRE, but with new instructions.
Specifically, as outlined in Section 4.2, we construct five novel,
unseen instructions to assess the Editor’s proficiency in gener-
alizing instructions. Observations from Figure 3 reveal that
the Editor is indeed capable of adapting to these Unseen In-
structions. It is noteworthy that utilizing instructions on which
the Editor has been trained can result in enhanced editing
performance. Thus, InstructEdit can achieve comparable
outcomes by employing instructions that are semantically akin
to those encountered during training. These empirical results
also indicate that we can develop an Editor to follow human
instructions and we leave this for future works.

5.4 Why Instruction Helps Multi-Task Editing?
We analyze the principal components of the editing area ®∇𝑢ℓ
using t-SNE, as presented in Section 4.2, which is generated
by the editor for specific layers of LLMs. Our underlying
assumption is that these principal components encapsulate the
intrinsic characteristics of the editing area involved in editing
the data. Specifically, we focus our analysis on cases where the
conventional editing methods fall short, while InstructEdit
demonstrates effectiveness.
Finding 1: Instruction can Help Control Optimization
Direction. As observed in Table 2, MEND exhibits subpar
performance in multi-task scenarios, particularly in terms of
Reliability and Generalization, where it is significantly outper-
formed by InstructEdit. Upon analyzing the left panel in
Figure 4(a), we observe that MEND, when handling multi-task
editing, tends to show significant overlap in editing area across
different tasks. This overlap could potentially cause MEND to
not only confuse previously learned tasks but also struggle in
effectively generalizing to new tasks with shifted distribution
compared to the training tasks. However, by introducing in-
structions, InstructEdit can effectively control the knowledge
editing gradient and encourage distinct separation with ade-
quate margin in the editing area for various tasks, which aligns
with the distribution observed in the single-task training setting

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6638

CF (InstructEdit)
ZsRE (InstructEdit)

Recent (InstructEdit)

ZsRE (Multi-Task)
CF (Multi-Task)
Recent (Multi-Task)

CF (Multi-Task)
ZsRE (Multi-Task)

Recent (Multi-Task)

CF (Single-Task)
ZsRE (Single-Task)

Recent (Single-Task)

CF (InstructEdit)
ZsRE (InstructEdit)

Recent (InstructEdit)

Recent & CF → CF
Recent & CF → Recent

Recent & CF → ZsRE

Recent → CF
Recent → Recent

Recent → ZsRE

CF (InstructEdit)
ZsRE (InstructEdit)

Recent (InstructEdit)

(b)(a)

(d)

CF (Multi-Task)
Recent (Multi-Task)

ZsRE (Multi-Task)

Recent & ConvSent (Balanced) → Recent
Recent & ConvSent (Balanced) → CF
Recent & ConvSent (Balanced) → ZsRE

Recent & ConvSent → ZsRE

Recent & ConvSent → Recent
Recent & ConvSent → CF

ZsRE (Multi-Task)
CF (Multi-Task)
Recent (Multi-Task)

0

20

40

60

80

100
Task Scaling

ZsRE

Recent
CounterFact

Reliability

(c)

1 2 3
0

20

40

60

80

100

ZsRE

Recent

CounterFact

Generalization

Tasks

Figure 4: (a) Compares instruction effects on knowledge editing gradient ∇̃𝑢ℓ . Recent (InstructEdit) and Recent (Multi-Task) illustrate ∇̃𝑢ℓ
on Recent using InstructEdit and MEND in multi-task settings, respectively. Recent (Single-Task) shows MEND’s results of training on
Recent alone. (b) Demonstrates task scaling’s impact on InstructEdit, with Recent→ZsRE for training on Recent and testing on ZsRE,
and Recent&CF→ZsRE for joint training on Recent, CounterFact, and testing on ZsRE. (c) Illustrates the reliability and generalization
performance across task scaling. (d) Balances ConvSent by extracting 1,427 entries for ConvSent (Balanced).

in the right panel of Figure 4(a). Furthermore, the discrimina-
tive editing area in InstructEdit is adaptable to OOD data,
which leads to superior knowledge editing when handling new
tasks, while maintaining performance comparable to models
trained on single tasks on ID tasks.
Finding 2: More Tasks, Stronger OOD Generalization.
Figure 4(b) illustrates that when InstructEdit is trained on a
single task, the editing areas of the three tasks appear somewhat
discriminative. Instead, the performance of the corresponding
tasks is suboptimal, as demonstrated in Figure 4(c). We think
that even though instructions aid in distinguishing different
tasks, the knowledge learned from a single task struggles
to generalize to others. By scaling the number of tasks in
training, we notice that the editing areas of InstructEdit for
various tasks almost see no overlap, and editing reliability
improves correspondingly in Figure 4(c). Furthermore, as the
scope of tasks broadens, the directions of knowledge editing
gradient of different tasks start to converge, yet they retain
their relative margin. Intuitively, InstructEdit trained across
diverse domains harnesses these domain-related instructions to
extrapolate effectively to new, unseen domains, while offering a
trade-off between specialized knowledge adaptation and broad
generalization. Nevertheless, it is crucial to acknowledge that
a scalability bottleneck might be encountered, and confronting
entirely new types of editing tasks, such as cross-linguistic
tasks, will introduce further complexities.
Finding 3: Improving Performance with Appropriate Data
Proportion. In preliminary experiments, we notice task
imbalances impede proper multi-task training and cause a
significant performance decline when ConvSent is involved
in the training. Hence, we contemplate balancing the data
proportions across different tasks. By observing Figure 4(d),

we find that the knowledge editing gradient directions become
more regular after data balancing and editing reliability of
the editor increases from 18.23 to 25.55 on the OOD tasks.
Additionally, we find that task imbalances lead to the editor
inducing editing gradients of relatively large magnitudes, and
the gradient magnitude distributions for each task vary sig-
nificantly, which appears to be a key factor influencing the
editor’s generalization. This result confirms the significance
of appropriate data proportions for multi-task editing.

6 Discussion and Conclusion
We focus on a new problem of knowledge editing for LLMs:
generalizing to new tasks. We introduce multi-task edit-
ing, illustrating the limitations of existing knowledge editing
approaches in task transferability and presenting a viable so-
lution InstructEdit which can effectively guide the Editor
for precise editing, with its effectiveness confirmed through
comprehensive experiments and visualization analysis.

Acknowledgments
Ningyu Zhang, Bozhong Tian, Siyuan Cheng, and Xiaozhuan
Liang equally contribute. Xi Chen and Huajun Chen are the
corresponding authors. We want to express gratitude to the
anonymous reviewers, EasyEdit [Wang et al., 2023b], and many
other related works. This work was supported by the National
Natural Science Foundation of China (No. 62206246), the
Fundamental Research Funds for the Central Universities (226-
2023-00138), Zhejiang Provincial Natural Science Foundation
of China (No. LGG22F030011), Yongjiang Talent Introduction
Programme (2021A-156-G), CCF-Tencent Rhino-Bird Open
Research Fund, and Information Technology Center and State
Key Lab of CAD&CG, Zhejiang University.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6639

References
[Akyürek et al., 2023] Afra Feyza Akyürek, Eric Pan, Garry

Kuwanto, and Derry Wijaya. Dune: Dataset for unified
editing. In EMNLP, 2023.

[Brown et al., 2023] Davis Brown, Charles Godfrey, Cody
Nizinski, Jonathan Tu, and Henry Kvinge. Edit at your
own risk: evaluating the robustness of edited models to
distribution shifts, 2023.

[Cao et al., 2021] Nicola De Cao, Wilker Aziz, and Ivan Titov.
Editing factual knowledge in language models. In EMNLP,
2021.

[Cheng et al., 2023] Siyuan Cheng, Bozhong Tian, Qingbin
Liu, Xi Chen, Yongheng Wang, Huajun Chen, and Ningyu
Zhang. Can we edit multimodal large language models? In
EMNLP, 2023.

[Cheng et al., 2024] Siyuan Cheng, Ningyu Zhang, Bozhong
Tian, Xi Chen, Qingbing Liu, and Huajun Chen. Editing
language model-based knowledge graph embeddings. In
AAAI, 2024.

[Cohen et al., 2023] Roi Cohen, Eden Biran, Ori Yoran, Amir
Globerson, and Mor Geva. Evaluating the ripple ef-
fects of knowledge editing in language models. CoRR,
abs/2307.12976, 2023.

[Dai et al., 2022] Damai Dai, Li Dong, Yaru Hao, Zhifang
Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. In ACL, 2022.

[Dong et al., 2022] Qingxiu Dong, Damai Dai, Yifan Song,
Jingjing Xu, Zhifang Sui, and Lei Li. Calibrating factual
knowledge in pretrained language models. In EMNLP,
2022.

[Gandikota et al., 2023] Rohit Gandikota, Joanna Materzyn-
ska, Jaden Fiotto-Kaufman, and David Bau. Erasing con-
cepts from diffusion models. CoRR, abs/2303.07345, 2023.

[Gu et al., 2024] Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma,
Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun Peng.
Model editing can hurt general abilities of large language
models, 2024.

[Gupta et al., 2023] Anshita Gupta, Debanjan Mondal, Ak-
shay Krishna Sheshadri, Wenlong Zhao, Xiang Lorraine Li,
Sarah Wiegreffe, and Niket Tandon. Editing commonsense
knowledge in GPT. In EMNLP, 2023.

[Gupta et al., 2024] Akshat Gupta, Anurag Rao, and Gopala
Anumanchipalli. Model editing at scale leads to gradual
and catastrophic forgetting, 2024.

[Hartvigsen et al., 2023] Tom Hartvigsen, Swami Sankara-
narayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghas-
semi. Aging with GRACE: lifelong model editing with
discrete key-value adaptors. In NeurIPS, 2023.

[Hase et al., 2023] Peter Hase, Mohit Bansal, Been Kim, and
Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs.
knowledge editing in language models, 2023.

[Huang et al., 2023] Zeyu Huang, Yikang Shen, Xiaofeng
Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.

Transformer-patcher: One mistake worth one neuron. In
ICLR, 2023.

[Huang et al., 2024] Youcheng Huang, Wenqiang Lei, Zheng
Zhang, Jiancheng Lv, and Shuicheng Yan. See the un-
seen: Better context-consistent knowledge-editing by noises,
2024.

[Ilharco et al., 2023] Gabriel Ilharco, Marco Tulio Ribeiro,
Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In
ICLR, 2023.

[Ju and Zhang, 2023] Yiming Ju and Zheng Zhang. Klob: a
benchmark for assessing knowledge locating methods in
language models, 2023.

[Li et al., 2023a] Kenneth Li, Oam Patel, Fernanda Viégas,
Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language
model. In NeurIPS, 2023.

[Li et al., 2023b] Xiaopeng Li, Shasha Li, Shezheng Song,
Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model editing
in a transformer. 2023.

[Li et al., 2023c] Zhoubo Li, Ningyu Zhang, Yunzhi Yao,
Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the
pitfalls of knowledge editing for large language models.
arXiv preprint arXiv:2310.02129, 2023.

[Li et al., 2023d] Zichao Li, Ines Arous, Siva Reddy, and
Jackie C. K. Cheung. Evaluating dependencies in fact
editing for language models: Specificity and implication
awareness. In EMNLP, 2023.

[Liang et al., 2022] Xiaozhuan Liang, Ningyu Zhang, Siyuan
Cheng, Zhenru Zhang, Chuanqi Tan, and Huajun Chen.
Contrastive demonstration tuning for pre-trained language
models. In EMNLP, 2022.

[Lo et al., 2024] Michelle Lo, Shay B. Cohen, and Fazl Barez.
Large language models relearn removed concepts, 2024.

[Ma et al., 2024] Jun-Yu Ma, Jia-Chen Gu, Ningyu Zhang,
and Zhen-Hua Ling. Neighboring perturbations of knowl-
edge editing on large language models, 2024.

[Mao et al., 2023] Shengyu Mao, Ningyu Zhang, Xiaohan
Wang, Mengru Wang, Yunzhi Yao, Yong Jiang, Pengjun
Xie, Fei Huang, and Huajun Chen. Editing personality for
llms. 2023.

[Mazzia et al., 2023] Vittorio Mazzia, Alessandro Pedrani,
Andrea Caciolai, Kay Rottmann, and Davide Bernardi. A
survey on knowledge editing of neural networks, 2023.

[Meng et al., 2022a] Kevin Meng, David Bau, Alex Ando-
nian, and Yonatan Belinkov. Locating and editing factual
knowledge in GPT. In NeurIPS, 2022.

[Meng et al., 2022b] Kevin Meng, Arnab Sen Sharma, Alex
Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. CoRR, abs/2210.07229, 2022.

[Mitchell et al., 2022a] Eric Mitchell, Charles Lin, Antoine
Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale. In ICLR, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6640

[Mitchell et al., 2022b] Eric Mitchell, Charles Lin, Antoine
Bosselut, Christopher D. Manning, and Chelsea Finn.
Memory-based model editing at scale. In ICML, 2022.

[Onoe et al., 2023] Yasumasa Onoe, Michael J. Q. Zhang,
Shankar Padmanabhan, Greg Durrett, and Eunsol Choi.
Can lms learn new entities from descriptions? challenges
in propagating injected knowledge. In ACL, 2023.

[OpenAI, 2022] OpenAI. Introducing chatgpt. https://openai.
com/blog/chatgpt, 2022.

[OpenAI, 2023] OpenAI. GPT-4 technical report. CoRR,
abs/2303.08774, 2023.

[Ouyang et al., 2022] Long Ouyang, Jeffrey Wu, Xu Jiang,
Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul F.
Christiano, Jan Leike, and Ryan Lowe. Training language
models to follow instructions with human feedback. In
NeurIPS, 2022.

[Pinter and Elhadad, 2023] Yuval Pinter and Michael El-
hadad. Emptying the ocean with a spoon: Should we
edit models? In EMNLP, 2023.

[Radford et al., 2019] Alec Radford, Jeff Wu, Rewon Child,
David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[Sinitsin et al., 2020] Anton Sinitsin, Vsevolod Plokhotnyuk,
Dmitry V. Pyrkin, Sergei Popov, and Artem Babenko. Ed-
itable neural networks. In ICLR, 2020.

[Su et al., 2023] Hongjin Su, Weijia Shi, Jungo Kasai,
Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih,
Noah A. Smith, Luke Zettlemoyer, and Tao Yu. One em-
bedder, any task: Instruction-finetuned text embeddings. In
ACL, 2023.

[Sun et al., 2023] Tianxiang Sun, Xiaotian Zhang, Zhengfu
He, Peng Li, Qinyuan Cheng, Hang Yan, Xiangyang Liu,
Yunfan Shao, Qiong Tang, Xingjian Zhao, Ke Chen, Yin-
ing Zheng, Zhejian Zhou, Ruixiao Li, Jun Zhan, Yunhua
Zhou, Linyang Li, Xiaogui Yang, Lingling Wu, Zhangyue
Yin, Xuanjing Huang, and Xipeng Qiu. Moss: Training
conversational language models from synthetic data. 2023.

[Tan et al., 2024] Chenmien Tan, Ge Zhang, and Jie Fu. Mas-
sive editing for large language models via meta learning. In
ICLR, 2024.

[Touvron et al., 2023] Hugo Touvron, Thibaut Lavril, Gautier
Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient
foundation language models. CoRR, abs/2302.13971, 2023.

[Wang et al., 2023a] Jiaan Wang, Yunlong Liang, Zengkui
Sun, Yuxuan Cao, and Jiarong Xu. Cross-lingual knowledge
editing in large language models, 2023.

[Wang et al., 2023b] Peng Wang, Ningyu Zhang, Bozhong
Tian, Zekun Xi, Yunzhi Yao, Ziwen Xu, Mengru Wang,

Shengyu Mao, Xiaohan Wang, Siyuan Cheng, Kangwei
Liu, Yuansheng Ni, Guozhou Zheng, and Huajun Chen.
Easyedit: An easy-to-use knowledge editing framework for
large language models. CoRR, abs/2308.07269, 2023.

[Wang et al., 2023c] Song Wang, Yaochen Zhu, Haochen Liu,
Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
editing for large language models: A survey, 2023.

[Wei et al., 2022] Jason Wei, Maarten Bosma, Vincent Y.
Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language
models are zero-shot learners. In ICLR, 2022.

[Wei et al., 2023] Yifan Wei, Xiaoyan Yu, Huanhuan Ma,
Fangyu Lei, Yixuan Weng, Ran Song, and Kang Liu. As-
sessing knowledge editing in language models via relation
perspective, 2023.

[Wu et al., 2023] Suhang Wu, Minlong Peng, Yue Chen, Jin-
song Su, and Mingming Sun. Eva-kellm: A new bench-
mark for evaluating knowledge editing of llms. CoRR,
abs/2308.09954, 2023.

[Xu et al., 2022] Yang Xu, Yutai Hou, and Wanxiang Che.
Language anisotropic cross-lingual model editing. ArXiv,
abs/2205.12677, 2022.

[Yao et al., 2023] Yunzhi Yao, Peng Wang, Bozhong Tian,
Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, and
Ningyu Zhang. Editing large language models: Problems,
methods, and opportunities. In EMNLP, 2023.

[Yin et al., 2024] Xunjian Yin, Jin Jiang, Liming Yang, and
Xiaojun Wan. History matters: Temporal knowledge editing
in large language model. In AAAI, 2024.

[Yu et al., 2024] Lang Yu, Qin Chen, Jie Zhou, and Liang
He. MELO: enhancing model editing with neuron-indexed
dynamic lora. In AAAI, 2024.

[Zhang et al., 2023a] Ningyu Zhang, Yunzhi Yao, and
Shumin Deng. Editing large language models. In AACL:
Tutorial Abstract, 2023.

[Zhang et al., 2023b] Shengyu Zhang, Linfeng Dong, Xiaoya
Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. Instruc-
tion tuning for large language models: A survey. CoRR,
abs/2308.10792, 2023.

[Zhang et al., 2024] Ningyu Zhang, Yunzhi Yao, Bozhong
Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng,
Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang, Pengjun
Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu,
Jun Zhou, and Huajun Chen. A comprehensive study of
knowledge editing for large language models, 2024.

[Zheng et al., 2023] Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan
Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can we
edit factual knowledge by in-context learning? In EMNLP,
2023.

[Zhong et al., 2023] Zexuan Zhong, Zhengxuan Wu, Christo-
pher D. Manning, Christopher Potts, and Danqi Chen.
Mquake: Assessing knowledge editing in language models
via multi-hop questions. In EMNLP, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6641

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

	Introduction
	Related Work
	Knowledge Editing
	Instruction Tuning

	Background
	Instruction-Based Knowledge Editing
	Instruction Dataset Construction
	Unified Editor Learning with Instructions

	Experiments
	Experimental Settings
	Metrics
	Main Results
	Why Instruction Helps Multi-Task Editing?

	Discussion and Conclusion

