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Abstract

Visual Information Extraction (VIE), which aims
to extract structured information from visually rich
document images, has drawn much attention due
to its wide applications in document understanding.
However, previous methods often treat the VIE task
as a sequence labeling problem and ignore the la-
bel correlations in the sequence, which may signif-
icantly degrade their performance. To address this
issue, this paper proposes a novel framework to ex-
ploit the potential of label correlations to improve
the VIE models’ performance. Its key idea is to
learn the label dependency of entities, and use it to
regularize the label sequence. Specifically, to cap-
ture the label dependency of entities, a label trans-
former is pre-trained to assign a higher likelihood
to the label sequence that respects the label patterns
of document layouts. During testing stages, an in-
ference transformer is used to predict the label se-
quence by considering not only the features of each
entity but also the likelihood of the label sequence
evaluated by the label transformer. Our framework
can be combined with existing popular VIE models
such as LayoutLM and GeoLayoutLM. Extensive
experiments on public datasets have demonstrated
the effectiveness of our framework.

1 Introduction
The visual information extraction task (VIE) involves extract-
ing texts of multiple key segments from given document im-
ages and saving these texts to structured documents. With
the acceleration of the digitization process, the VIE task has
been regarded as a crucial part of intelligent document pro-
cessing and is required by many real-world applications in
various industries such as finance, medical treatment, and in-
surance [Cui, 2021]. A VIE task is often divided into two
sub-tasks, namely semantic entity recognition (SER, a.k.a.
entity labeling) and relation extraction (RE, a.k.a. entity link-
ing) [Li et al., 2021c; Zhang et al., 2021]. The former aims
to extract meaningful text segments (namely entities) from
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Figure 1: A sample image selected from the CORD dataset. In
this image, two different kinds of labels, “menu” and “sub-menu”,
are not distinguishable based on text, image, and layout features.
A common mistake made by existing models is that they confuse
“sub-menu” related labels with “menu” related labels. By examin-
ing more images in the CORD dataset, we find that “menu” related
labels are always followed by “sub-menu” related labels. This pat-
tern is observable only in the label sequence. Better viewed in color.

images while the latter is to predict the relations between en-
tities. The past decades have witnessed the progress of VIE.
However, it remains an open problem, especially in the wild.
In this paper, we focus on the SER sub-task and exploit the
patterns in label sequence to improve the performance of ex-
isting VIE models.

Generally, the sub-task of semantic entity recognition
(SER) is formalized as a sequence tagging problem and how
to capture effectively the dependency between entities has
been the focus. Document layouts, which reflect the geo-
metric relationships between entities, have shown consistent
benefits in helping capture the dependency. So, some popular
methods directly learn the layout embedding (such as Lay-
outLM [Xu et al., 2020]), and have proven to be effective for
SER even without using other features (such as text) in [Wang
et al., 2022]. Another popular methods build various graphs
to capture the entities dependency, where each node repre-
sents an entity and each edge represents the distance be-
tween two entities. Graph neural networks (GNNs) are used
to fuse layout features and text features [Yu et al., 2020;
Liu et al., 2019; Tang et al., 2021] between different enti-
ties along the graphs. By considering the feature-level depen-
dency of entities, existing methods have achieved an impres-
sive performance in public data sets.

Besides the feature-level dependency of entities, the label-
level dependency of entities is also important for VIE tasks.
Label dependencies are defined as correlations between la-
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Figure 2: Correlation matrix between “menu” and “sub-menu” re-
lated labels in the CORD dataset. A higher value in each cell in-
dicates a higher correlation. We find the labels of this dataset are
spatially correlated by the following sampling procedures. First, we
generate 100 sampling bounding boxes randomly in the 2D plane for
each document image. Then, we collect the labels of text segments
whose bounding boxes overlap with the same generated sampling
box and increase the co-occurrence count between all pairs of the
collected labels. Finally, we apply the chi-squared test to compute
the correlation score using the co-occurrence matrix obtained in the
previous two steps. Better viewed in color.

bels, which means that two labels are not statistically inde-
pendent. Given a document image, the entity labels are dis-
tributed in a plane with a explicit pattern. Arising from these
patterns, the labels of entities have a high correlation, which
can be used to improve performance. Fig. 1 shows a receipt
of a restaurant in CORD dataset [Park et al., 2019]. Exist-
ing VIE models often fail to disguish the entity categories
of pink text segments (“menu”) from the blue text segments
(“sub-menu”) based on multimodal features. For example,
LayoutLMv3 [Huang et al., 2022] incorrectly predicted “sub-
menu” as “menu” as shown in subfigure B of Fig. 1. In fact,
a “menu” entity is always followed by several “sub-menu”
entities in a receipt of restaurants. If we can use the label de-
pendency, it’s reasonable to expect LayoutLMv3 to correctly
distinguish these entities labels.

What’s more, the label dependency occurs in large num-
bers in VIE tasks. Indeed, statistical testing shows that cor-
related labels tend to occupy the same space in the 2D plane.
Fig. 2 shows the testing result for the CORD dataset. More
results on the other datasets can be found in the appendixes.
This phenomenon exists a lot in document images because
entities need to be arranged in the 2D plane according to cer-
tain patterns (such as “key-value” pairs) for better readability.
Therefore, the label dependency of entities provides a com-
plementary yet important cue for VIE tasks. However, most
existing methods ignore the label dependency, which signifi-
cantly degrades their performance.

Meanwhile, it is non-trivial to learn the label dependency
because the short-range dependency between entities in a 2D
plane can become a long-range dependency in the process of
text serialization [Wang et al., 2021; Gu et al., 2022]. This
makes conventional methods such as linear-chain Conditional
Random Fields (CRFs) used in many works unsuitable in the
VIE task [Huang et al., 2015; Rrubaa and Amaresan, 2018;
Yu et al., 2020]. Linear-chain CRFs make two key assump-
tions: first, that the current label depends only on the pre-
vious label; second, that the transition probabilities between
different labels are independent of observed features. How-

ever, these assumptions are not true in the document image
domain. Moreover, the computational complexity of higher-
order CRFs grows exponentially. Therefore, it is still an open
problem to learn long-range label dependency in VIE tasks.

Inspired by above insights, this paper proposes a fine-
tuning framework to boost the performance of existing VIE
models. The core idea is to add a penalty loss during fine-
tuning such that the predicted label sequence is regularized by
the label dependency. Specifically, the negative loglikelihood
of a label sequence is used as the penalty loss. To this end,
we introduce a label transformer and pre-train it by the next
label prediction task using the ground truth label sequences.
During fine-tuning, this label transformer is expected to as-
sign a higher likelihood to the label sequence that respects
the label patterns of document layouts. Since the landscape
of our penalty term is highly non-convex, it’s non-trivial to
find the correct label sequence that can minimize this term.
To address this technical difficulty, we turn to the help of ad-
versarial training, i.e., a second model (namely the inference
transformer) is trained to predict the optimal label sequence
that minimizes the penalty loss evaluated by the label trans-
former. The reference transformer feeds on the sequence of
features and labels. We note that the initial label sequence is
random and this randomness can cause the inference trans-
former to predict unstable label sequences. To address this is-
sue, we propose to fit the label sequence by the fixed point of
inference transformer. Specifically, the inference transformer
model starts from a random label sequence and refines the
label sequence in parallel according to the feature sequence.
We iterate this process until the label sequence converges to
a fixed point.

Our contributions are summarized as follows:
• This paper proposes a fine-tuning framework to boost

the performance of pre-trained multimodal models. In
the framework, a label transformer is introduced to learn
long-range label dependency, and an inference trans-
former is introduced to predict the label sequence reg-
ularized by the label dependency.

• To address initial randomness in label sequences, the in-
ference transformer iteratively refines the label sequence
until it reaches a stable fixed point.

• Extensive experiments on public dataset show that label
dependency can boost the performance of existing pop-
ular VIE models.

2 Related Works
The VIE task has attracted the attention of many researchers
in recent years. Most previous works model the sets of
text segments either as a graph or as a sequence. Many
works [Qian et al., 2019; Liu et al., 2019; Yu et al., 2020;
Tang et al., 2021; Cheng et al., 2020; Yao et al., 2021] con-
struct a document graph, using text features as node features
and the relative spatial features of segments as edge features.
The typical works of this line include PICK [Yu et al., 2020]
and MatchVIE [Tang et al., 2021]. These approaches em-
ployed Graph Neural Networks (GNNs) to generate text em-
beddings from layout features, aiming to understand the key-
value relationships. By passing messages between nodes,
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Figure 3: Our framework consists of three neural networks, including feature transformer, label transformer, and inference transformer. Only
the inference transformer is used to do inference during the test. Feature and label transformers are used to calculate feature and label energy,
which will help train the inference transformer during training. They are termed energy transformers as indicated by the legends.

these models were capable of comprehending the entire lay-
out and the specific distribution of each text segment. The
advantage of graph-based models is that they have low com-
putational complexity. However, the state-of-the-art perfor-
mances are achieved by the sequence-based models.

The core of sequence-based models relies on how to lever-
age the power of pre-training to align multimodal features
and then learn discriminative features during fine-tuning. The
early baseline model applies a classical bi-directional long
short-term memory network (Bi-LSTM) [Huang et al., 2015]
to the sequence of text segments and marks where the inter-
ested categories of entities are by predicting BIO labels for
each segment [Yu et al., 2020]. The problem is that two
text segments that are close to each other in the 2D plane
can be separated by a large distance after serialization [Wang
et al., 2021; Gu et al., 2022]. This causes difficulty for se-
quential modeling because of the abrupt shift in thematic fo-
cus. To this end, more advanced sequential models (mostly
Transformers [Vaswani et al., 2017]) also feed on the co-
ordinates of each text segment or even the original images
to mitigate this problem. Inspired by the breakthrough of
pretraining technology [Devlin et al., 2019], many works
have been focusing on the alignment of multimodal features
(textual, layout, and images) in pretrainin [Xu et al., 2020;
Xu et al., 2021; Li et al., 2021a; Appalaraju et al., 2021;
Li et al., 2021b; Huang et al., 2022; Luo et al., 2023]. Then
the models learn discriminative features for each text segment
in fine-tuning such that the predicted BIO label sequence is
accurate. However, these methods cannot work well when
facing ambiguous multimodal features during fine-tuning.

Therefore, it is important to model the label dependen-
cies explicitly for VIE. The models [Huang et al., 2015;
Yu et al., 2020; Zhang et al., 2021] in VIE mainly apply the

linear-chain CRFs developed in structured learning [Nowozin
et al., 2011]. However, CRFs cannot work well when fac-
ing long-range label dependencies. To this end, the SPEN
model, which uses neural networks to learn energy functions,
is proposed in [Belanger and McCallum, 2016]. Sooner, [Tu
and Gimpel, 2018] proposes two adversarial neural networks
where one evaluates the plausibleness of a label sequence and
the other one learns to fool the evaluator.

3 Our Model
3.1 Problem Setup
Let x = {xn}n=1,··· ,N be a sequence of features. They are
the multimodal features of serialized text, including textual,
layout, and image features. N is the sequence length. We
aim to predict the label for each xn. The ground truth label
sequence is denoted as y = {yn}n=1,··· ,N . The predicted
label sequence is denoted as ŷ = {ŷn}n=1,··· ,N . Let M be
the size of the label set. Mathematically speaking, we aim to
build a model that learns the conditional probability distribu-
tion of a label sequence y given a feature sequence x from
the training dataset. Let P (y|x) be this distribution. By con-
sidering the long-range dependency between labels, P (y|x)
is precisely factorized as:

P (y|x) = P (y1|x)P (y2|y1;x) · · ·P (yn|y1,··· ,n−1;x).

3.2 The Framework of Our Model
Inspired by the assumption made in the structured learn-
ing area, we choose the exponential family distribution
to parameterize the conditional probabilities of each label,
P (yi|y1,··· ,i−1;x). In the exponential family distribution, a
parameterized function assigns a real value to any collection
of random variables. This real value serves as the unnormal-
ized probability of these random variables. This function is
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called an energy function. To gain the normalization con-
stant, one takes the exponential value of an energy function
and then summarizes it over the sample space.

P (y|x) is modeled by energy functions. According to the
rule of Bayes, P (y|x) is factorized as:

P (y|x) = Px(y1)
Px(y1,2)Px(y2) · · ·Px(y1,··· ,n)Px(yn)

Px(y1)Px(y2) · · ·Px(y1,··· ,n−1)Px(yn)
.

Take the logarithm value on both sides and rearrange terms:

logP (y|x) =
N∑

n=1

logPx(yn) + log
Px(y1,··· ,n)

Px(y1,··· ,n−1)Px(yn)
.

The first summation is called feature energy and it measures
the log-likelihood of y without considering the label depen-
dencies. The second term is called label energy and it specif-
ically models the influence of label dependencies. The expo-
nential function of P (y|x) will cancel the logarithm function.
This means the log-likelihood is reduced to the summation of
feature and label energy. We illustrate how to calculate fea-
ture and label energy in Fig.3, which also shows the frame-
work of our model.

Let Fϕ(·) denote the feature transformer and Lϕ(·) denote
the label transformer, where ϕ is the parameter of them. Then,
for the nth input feature, its corresponding logits vector pre-
dicted by Fϕ is denoted as Fϕ(x)n ∈ RM , where the ith
element of Fϕ(x)n is the possibility of xn having ith label.
Similarly, let Lϕ(y)n−1 ∈ RM denotes logits vector pre-
dicted by Lϕ(·) for nth input feature given the previous labels
{y0, · · · , yn−1}. Let Iφ(·) denote the inference transformer.
It feeds on both feature and predicted label sequences and
predicts a new label sequence, i.e., Iφ(x, ŷ)n ∈ RM rep-
resents the logits vector of nth input feature and ŷ is the
predicted label sequence. We can now introduce the fol-
lowing feature energy Efeat(Fϕ(x), Iφ(x, ŷ)), label energy
Elabel(Lϕ(x), Iφ(x, ŷ)) and energy function Etotal:

Efeat(x, Iφ(x, ŷ)) =
∑N

n=1 Fϕ(x)
⊤
n Iφ(x, ŷ)n,

Elabel(x, Iφ(x, ŷ)) =
∑N

n=1 Lϕ(ŷ)
⊤
n Iφ(x, ŷ)n,

Etotal(x, Iφ(x, ŷ)) = −(Efeat + Elabel).

(1)

3.3 Feature Transformer
We select open-source pre-trained models as feature trans-
formers, including LiLT [Wang et al., 2022], LayoutLM se-
ries [Xu et al., 2020; Xu et al., 2021; Huang et al., 2022],
and GeoLayoutLM [Luo et al., 2023]. In Fig. 3, the input for
the feature transformer illustrates only text and layout inputs,
omitting the input for images. More general types of trans-
formers are also permitted if they accept text, layout, and im-
ages as input feature sequences and calculate attention scores
between any two tokens based on these features. It is worth
emphasizing that the commonly used type of transformer here
is the encoder-only type, where any two tokens can mutually
attend to each other without the restriction of causal mask-
ing. We include the final linear layer and softmax layer in the
feature transformer. the softmax layer transforms the output
energy into bounded numerical values, facilitating the infer-
ence transformer to converge to the correct label sequence.

3.4 Label Transformer
We choose a decoder-only type of transformer to learn long-
range dependencies between labels. This involves applying a
causal mask when calculating attention scores between labels
to ensure that each token can only see itself and the preceding
labels when predicting the next label. As a result, the likeli-
hood of the nth token having a certain label depends on the
logits vectors output by the n − 1th token and before. Due
to the presence of a causal mask, the model is compelled to
learn how labels transition during training and avoid simply
memorizing the input label sequence.

In the domain of document images, when there is a sudden
change in layout, such as a line break or the insertion of a
tab character, the upcoming text will likely have a different
functional role. Similarly, abrupt changes in width and height
imply changes in font size, which may also result in changes
to text labels. To detect the changes, we first embed the layout
of each token and then subtract the layout embedding of the
current position from that of the next position.

Furthermore, we observe that it is beneficial to add atten-
tion scores from the feature transformer into the label trans-
former’s attention scores. This is reasonable because the at-
tention scores in the feature transformer allow the label trans-
former to focus on a limited set of labels in the preceding
context when predicting the next label.

Finally, we will fine-tune the feature transformer initially
following the conventional fine-tuning approach. Subse-
quently, we will pre-train the label transformer using the real
label sequences from the training set. During this process, we
leverage the attention scores produced by the feature trans-
former (with the Feature Transformer being frozen).

3.5 Inference Transformer
As observed in [Dupont et al., 2018], embedding the label
sequence into the feature sequence has been shown to effec-
tively enhance model performance. To address the challenge
of not knowing the ground truth label sequence initially, we
introduce the concept of fixed-point fitting. Inspired by the
work described in [Bai et al., 2019; Bai et al., 2020], the in-
ference transformer predicts the label sequence by iterative
denoising from an initial random label sequence. The output
of the inference transformer is used as its input in the next
iteration, formally expressed as:

ŷt+1 = Iφ(x, ŷ
t). (2)

In the above equation, the superscript t denotes the result of
the t-th iteration. As shown in Fig 3, we insert the label em-
bedding of ŷi after each feature embedding xi and call them
mixed embedding. This iteration stops when a fixed point,
ŷ∗, is reached. The fixed point ŷ∗ satisfies:

ŷ∗ = Iφ(x, ŷ
∗). (3)

We consider this iterative process as stepwise denoising of
the label sequence, allowing the model to repeatedly assess
whether the current label sequence can be improved until fur-
ther improvement is no longer possible. To ensure the exis-
tence of a fixed point, we use a normalized logit vector for
each ŷi. We can exploit any black-box root-finding algorithm
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Algorithm 1 Training procedures.
Require: Data {x,y}, Transformers Fϕ, Lϕ, and Iφ,
Inner/Outer Steps Tinner, Touter

1: for t ∈ Touter iterations do
2: Obtain sample x,y from dataset
3: Freeze Fϕ, Lϕ and fine-tune Iφ
4: for p ∈ Tinner iterations do
5: Find ŷ∗ = Iφ(x, ŷ

∗)
6: Compute LAux [y, Etotal(x, Iφ(x, ŷ

∗))]
7: φ← φ− gradient(LAux, φ)
8: Freeze Iφ and fine-tune Fϕ, Lϕ

9: Compute LPrim [y, Etotal(x,y)]
10: ϕ← ϕ− gradient(LPrim, ϕ)

to find the fixed point by solving the root of the following
equation, where RootF ind is the root-finding algorithm:

ŷ∗ = RootF ind(Iφ(x, ŷ
t)− ŷt+1). (4)

3.6 Training and Inference
In our framework, the energy score produced by the fea-
ture and label transformers can be interpreted as the emis-
sion energy and label transition energy in linear-chain CRFs.
Traversing all possible label sequences is an essential step
in the learning and inference process of such algorithms.
Linear-chain CRFs can use two linear complexity algorithms,
the forward-backward algorithm, and the Viterbi algorithm,
to estimate the partition function and the optimal label se-
quence, respectively. The core of designing training and in-
ference algorithms for our framwork lies in alleviating the
difficulties of traversing all possible label sequences.

For a given input feature sequence, the label sequence that
minimizes the energy function Etotal is considered the opti-
mal prediction result. To alleviate the difficulties of iterating
over all possible label sequences, the inference transformer is
trained to achieve the minimum value of Etotal. In the mean-
while, the energy transformers should learn to assign the low-
est energy to the ground truth label sequence during training.
Put it all together, the following bi-level optimization prob-
lem is introduced:

φ = argmin
φ
LAux [y, Etotal(x, Iφ(x, ŷ

∗))] ,

ϕ = argmin
ϕ
LPrim [y, Etotal(x,y)] .

(5)

where LPrim will be designed to let the ground truth label
sequence to achieve the minimal energy and LAux will be
designed to help the inference transformer learn to minimize
the energy function. The training procedures are described in
the algorithm 1.

Training loss. In the initial phase of training, Etotal has
not yet learned to score the true label sequence correctly.
Thus the inference transformer will receive poor supervision.
To alleviate this issue, we add direct supervision to the infer-
ence transformer using y. We use the cross entropy (CE) loss
to add this supervision:

LAux = CE(y, Iφ(x, ŷ
∗)) + λEtotal(x, Iφ(x, ŷ

∗))). (6)

Dataset # Images #Types
FUNSD Train 149, Test 50 Forms
CORD Train 800, Test 100 Receipts
SROIE Train 626, Test 276 Receipts

Table 1: Labels, types and the number of images for each dataset.

where λ is a hyperparameter. We use a contrastive learning
loss to train the energy transformers. For each ground truth
label sequence y, K random label sequences ŷ are sampled.
The loss reads:

LPrim = − log
exp(−Etotal,ϕ(x,y))∑K
k=0 exp(−Etotal,ϕ(x, ŷ))

. (7)

4 Experiments
4.1 Datasets
Table 1 lists three VIE benchmark datasets: FUNSD [Jaume
et al., 2019], CORD [Park et al., 2019], and SROIE [Huang
et al., 2019]. The FUNSD dataset is designed for form under-
standing. The dataset encompasses various document types,
including market reports, advertisements, academic reports,
etc. The CORD dataset collects 1,000 Indonesian receipts
from shops and restaurants and annotates them with 5 super-
class and 42 subclass labels. In the SROIE dataset, each re-
ceipt image contains four key text fields, such as total cost,
goods name, unit price, etc.

4.2 Baseline
In the VIE task, the current state-of-the-art (SOTA) models
are mostly based on the transformer architecture. We selected
LiLT [Wang et al., 2022], LayoutLM series [Xu et al., 2020;
Xu et al., 2021; Huang et al., 2022], and GeoLayoutLM [Luo
et al., 2023] as feature transformers. As baseline models, we
also presented their F1 scores in the paper before consider-
ing structural learning. Furthermore, to assess whether our
approach learned long-range label dependencies, we applied
the linear-chain CRF model to these baseline models for com-
parison. After hyperparameter searching using Bayesian op-
timization, we trained the label transition matrix in the linear-
chain CRF with a learning rate of 1e-3.

4.3 Implementation Details
Details of Fine-tuning Energy Transformers. The se-
lected feature transformers have reported in papers the fine-
tuning hyperparameters that achieve optimal performance.
Therefore, we fine-tune them using the reported hyperparam-
eters. After freezing their parameters, we utilize their atten-
tion scores to assist the Label Transformer in pre-training a
language model for labeling on public datasets. The AdamW
optimizer is employed for fine-tuning, with an initial learning
rate of 5e-5 and a linear decay learning rate scheduler.
Details of Fine-tuning Inference Transformers. We em-
ployed the AdamW optimizer to train it, with a learning rate
set to 5e-5 and a batch size of 1. For the fixed-point search, we
utilized the Broyden [Broyden, 1965] method, with a maxi-
mum iteration step limit set to 10.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6619



Models Original F1 With CRF With Ours

LiLT-base 88.4 89.0 (↑) 90.1 (↑)
LiLT-large 90 90.5 (↑) 91.2 (↑)
LayoutLM-base 78.7 79.3 (↑) 80.5 (↑)
LayoutLM-large 79 79.5 (↑) 83.2 (↑)
LayoutLMv2-base 82.8 83.4 (↑) 86.7 (↑)
LayoutLMv2-large 84.2 84.7 (↑) 88.5 (↑)
LayoutLMv3-base 90.3 91 (↑) 91.7 (↑)
LayoutLMv3-large 92.1 92.2 (↑) 92.7 (↑)
GeoLayoutLM 92.3 92.1 (↓) 93.1 (↑)

Table 2: Results of FUNSD Dataset

Models Original F1 With CRF With Ours

LiLT-base 95.11 95.91 (↑) 96.3 (↑)
LiLT-large 96.07 96.48 (↑) 96.86 (↑)
LayoutLM-base 94.6 94.9 (↑) 965.4 (↑)
LayoutLM-large 95.7 96.24 (↑) 97.1 (↑)
LayoutLMv2-base 96.25 96.8 (↑) 97.67 (↑)
LayoutLMv2-large 96.61 97.12 (↑) 97.99 (↑)

Table 3: Results of SROIE Dataset

4.4 Comparison with the SOTAs
Given the results presented across Tables 2, 4, and 3, which
show the performance of various models on the FUNSD,
CORD, and SROIE datasets, we can see our proposed method
has achieved the state-of-the-art results.

The proposed methods have led to a consistent improve-
ment in F1 scores across different datasets, indicating a robust
adaptability and effectiveness of the approach. Specifically,
the application of our methods has resulted in statistically sig-
nificant performance boosts as denoted by the upward arrows
in the tables, which suggests that the improvements are not
only consistent but also substantial.

For the FUNSD dataset, which is known for its challeng-
ing forms and diverse layouts, our methods have resulted
in marked performance improvements. The GeoLayoutLM
model, in particular, has shown exceptional gains, achiev-
ing a 93.1 F1 score which surpasses its original F1 score by
a significant margin. This enhancement is indicative of the
method’s efficacy.

Turning to the CORD dataset, which focuses on receipt
understanding, the results are even more pronounced. Here,
GeoLayoutLM again stands out, with a notable increase in
F1 score to 98.2 when our methods are applied. The CORD
dataset is particularly demanding due to the irregular formats
and dense information presented in receipts. The improve-
ments here underscore our method’s capability to discern and
interpret detailed information within noisy and unstructured
data environments.

The SROIE dataset, comprising receipt data similar to
CORD but with its own unique challenges, again shows a
similar trend of improvement. The introduction of our meth-
ods has pushed the boundaries of model performance, with
the F1 score for LayoutLMv2-large reaching an impressive

Models Original F1 With CRF With Ours

LiLT-base 95.11 96.10 (↑) 97.1 (↑)
LiLT-large 96.07 96.18 (↑) 97.36 (↑)
LayoutLM-base 94.5 94.9 (↑) 95.4 (↑)
LayoutLM-large 95.18 95.24 (↑) 96.1 (↑)
LayoutLMv2-base 95.37 95.43 (↑) 96.67 (↑)
LayoutLMv2-large 96.01 96.10 (↑) 96.99 (↑)
LayoutLMv3-base 96.6 96.66 (↑) 97.38 (↑)
LayoutLMv3-large 97.46 97.51 (↑) 97.83 (↑)
GeoLayoutLM 97.97 97.94 (↓) 98.2 (↑)

Table 4: Results of CORD Dataset

# Lϕ(·) ∆B Mix FIP F1 Precision Recall
1a ✓ × × × 88.7 88.2 89.3
1b ✓ ✓ × × 89.3 88.7 90
1c × × ✓ × 88.4 88.9 87.9
1d × × ✓ ✓ 88.6 88.9 88.3
2a ✓ × ✓ ✓ 89.5 90.5 88.6
2b ✓ ✓ ✓ × 90.0 90.0 90.0
3 ✓ ✓ ✓ ✓ 90.1 91.0 89.3

Table 5: Testing the impact of different components on the Funsd
Dataset with LiLT-base Feature Transformer. In the table head,
“Lϕ(·)” represents the label transformer; “∆B” represents the delta
box embedding; “Mix” represents mixed embedding; “Fix” repre-
sents fixed point iteration.

97.99. This further demonstrates the method’s strength in ex-
tracting text and understanding structure, which is crucial for
tasks such as information extraction from receipts where pre-
cision is paramount.

Across all datasets, it is evident that the incorporation of
CRF has provided a boost to model performance. How-
ever, the additional enhancements from our methods lead to
even higher F1 scores. This is particularly true for the larger
models, which already have a high baseline performance due
to their increased complexity and capacity to capture fine-
grained patterns in data. The fact that our methods can still
contribute to significant gains in performance speaks to the
innovative nature of the approaches we have implemented.

4.5 Abliation Study
To better understand the effectiveness of different compo-
nents in our framework, we conduct ablation studies for the
label transformer, delta box embedding, mixed embedding,
and fixed point iteration. We select the Funsd dataset and
LiLT-base Feature Transformer to conduct experiments.

The results from Table 5 present a clear indication of the
effectiveness of the proposed components in VIE tasks. The
ablation study shows how each element, including the label
transformer, delta box embedding, mixed embedding, and
fixed point iteration, contributes to the overall performance.

Notably, the label transformer emerges as a cornerstone
component, with its presence being essential for achieving
high F1, precision, and recall scores. Configurations without
the label transformer (1c and 1d) lag behind those that include
it (1a, 1b, 2a, 2b, and 3). This underscores its critical role in
our framework.
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Figure 4: Performance and computation complexity. Better viewed
in color.

The delta box embedding also proves to be a significant
factor. Its inclusion in configurations 1b and 3 results in a
noticeable improvement in the performance, indicating its ef-
fectiveness in capturing spatial relationships within the data,
which is pivotal for the label transformer.

In the configuration 1c and 2b, we stop the fixed point itera-
tion in the second iteration. As a result, the mixed embedding
component, although not as influential as the delta box em-
bedding when used alone, shows its strength when combined
with other components. The combination of mix embedding
and delta box embedding in configuration 2b yields an im-
proved F1 score over configuration 1b, suggesting that the
mix embedding contributes valuable contextual information
that complements the spatial insights provided by the delta
box embedding. The F1 score of 1d is higher than 1c by 0.2
and configuration 3 is higher than 2b by 0.1. This consistent
performance gain proves that fixed point iteration is another
vital contributor.

The culmination of all components in configuration 3 re-
sults in the highest F1 score (90.1), precision (91), and a
strong recall (89.3). This configuration underscores the syn-
ergistic effect of combining these components, leading to a
model that is precise in its predictions. In summary, the abla-
tion study validates the proposed components, each contribut-
ing uniquely to the VIE task. The incremental improvements
seen with the addition of each component confirm their value.

4.6 Hyperparameter Searching
We notice that the number of inner iterations Tinner described
in Algorithm 1 has a large impact on both the computational
complexity and performance. To achieve balance, we apply
grid searching to find the best Tinner. We conduct these ex-
periments on the CORD dataset using the LayoutLMv2-base.

As shown in Fig. 4, the performance of our framework is
not proportional to the iteration numbers. Large iterations
lead to worse performance and high computation complexity.
Therefore, we set Tinner to be 4 during training and testing.

4.7 Case Study
In the case study, we addressed a specific issue with the Lay-
outLMv3 model, which was struggling to accurately classify
entities in a document where text, layout, and image features
were similar but required distinct labels. As shown in Fig. 5,
we select five hard labels in the CORD dataset to varify our
framework. The result was a significant improvement in the
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Figure 5: Comparison of performance on 5 selected labels in the
CORD dataset. “ori” means the original model. Better viewed in
color.
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Figure 6: Label dependencies in the FUNSD and SROIE dataset.
Better viewed in color.

model’s performance. In these test cases, where LayoutLMv3
initially had a high error rate, our enhanced model correctly
identified and differentiated the entities, effectively rectifying
the previous inaccuracies.

5 Conclutions
In conclusion, this paper has demonstrated the efficacy of a
novel document understanding framework through rigorous
evaluation on the FUNSD, CORD, and SROIE datasets. The
introduction of key components such as the label transformer,
mix embedding, fixed-point iteration, and delta box embed-
ding, has significantly enhanced model performance. The
consistent performance improvements across diverse datasets
attest to the robustness and adaptability of the approach. With
its demonstrated superiority, the proposed methodology es-
tablishes a new state-of-the-art in document understanding,
promising to influence a wide array of applications in the
realm of automated document processing.

Appendix
We follow the procedures described in Fig. 2. Fig. 6 shows
the results. In the FUNSD dataset, we generate sampling
boxes that are 15 times bigger than the average bounding
box. In the CORD dataset, sampling boxes are 20 times big-
ger than the average value. The text segments are sparse in
FUNSD and SROIE datasets.
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