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Abstract
Fine-tuning pre-trained models on downstream
tasks is a common practice in leveraging large lan-
guage models (LLMs) today. A critical issue is how
to adapt pre-trained models to downstream tasks
better, thereby enhancing their performance. This
paper introduces Task-aware Decoding (TaD), a
plug-and-play method that exploits the difference
in output probability distributions before and after
fine-tuning to boost the performance of LLMs on
downstream tasks. The proposed TaD argues that
the difference between the pre-fine-tuning proba-
bility distribution and the post-fine-tuning one rep-
resents the direction from common knowledge to-
wards specific downstream-task knowledge. Align-
ing the final output probability distribution to that
direction can probably result in superior down-
stream task performance, compared to the original
fine-tuned model. Experiments on various datasets
across four different task categories well demon-
strate TaD’s effectiveness on different LLMs, i.e.,
GPT, BLOOM, and LLaMA, with different fine-
tuning methods. Moreover, further experiments re-
veal that TaD better enhances model performance
in data-scarce scenarios.

1 Introduction
Large language models, including closed-source models like
ChatGPT and GPT-4 [OpenAI, 2023], as well as open-source
models such as LLaMA [Touvron et al., 2023], have exhib-
ited remarkable performance in a wide range of tasks [Brown
et al., 2020; Ding et al., 2021; Wang et al., 2023; Chen
et al., 2020]. Such success is largely due to diverse tech-
niques explored to enhance the pre-trained LLMs in down-
stream tasks. Among those methods, fine-tuning is a common
strategy and has been thoroughly investigated in the litera-
ture. It mainly focuses on designing better fine-tuning meth-
ods from the algorithmic side [Ding et al., 2023; Hu et al.,
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2021], or constructing more effective datasets from the data
side [Christiano et al., 2017]. For example, the Parameter-
Efficient Fine-Tuning (PEFT) methods [Houlsby et al., 2019;
Lester et al., 2021; Li and Liang, 2021] stand out among var-
ious fine-tuning methods due to their cost-efficient nature and
impressive performance. Concurrently, a multitude of high-
quality, manually annotated datasets have been constructed,
as an increasingly focal technique aimed at aligning the out-
puts of LLMs with human-like responses [Ouyang et al.,
2022].

Despite their remarkable success, existing fine-tuning
works rarely investigate the inherent knowledge acquisition
of fine-tuned LLMs. Recent works indicate that the outputs of
pre-trained LLMs do not always accurately reflect the knowl-
edge they possess. Even if a model generates an incorrect
output, it may still possess correct knowledge. For example,
[Li et al., 2023b] suggests that the intermediate representa-
tions in pre-trained LLMs might be correct, even if the final
output is erroneous. [Kadavath et al., 2022] finds that pre-
tained LLMs can self-assess their correctness. Therefore, we
pose a question: How can we leverage such inherent knowl-
edge in the fine-tuned LLMs to enhance their performance in
downstream tasks? Intuitively, the inherent knowledge within
fine-tuned LLMs should be reflected by their token-predicting
behavior alterations during the fine-tuning process. We ar-
gue that such token-predicting behavior alterations indicate
an adaptive shift from common knowledge gained via pre-
training to specific knowledge for downstream tasks. And we
can improve the adaptation of LLMs on downstream tasks by
manually mining and leveraging such inherent knowledge, re-
gardless of the fine-tuning methods.

In this paper, we propose a novel Task-aware Decoding
(TaD) method, which takes advantage of the differences
in knowledge before and after fine-tuning to enhance the
adaptation of LLMs on downstream tasks. Firstly, we
formulate the knowledge difference as a knowledge vector
to explicitly denote the direction of knowledge adaptation
(or domain adaptation) learned by a pre-trained LLM during
fine-tuning for a downstream task. As illustrated in Figure 1,
though the fine-tuned LLM (i.e., after fine-tuning) outputs the
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Figure 1: An illustration of the proposed knowledge vector and
task-aware decoding (TaD), where LLMs are asked for a profes-
sional explanation of photosynthesis. The underlined tokens
are examples to illustrate the professional levels of the outputs of
pre-trained, fine-tuned, and TaD-enhanced fine-tuned LLMs, and
the corresponding probability distributions are displayed on the left.
The proposed TaD enhances the predicted probability distribution of
a token with the knowledge vector, and thus amplifies the knowl-
edge learned during fine-tuning and achieves superior performance
in downstream tasks.

same token “engage” as the pre-trained LLM (i.e., before
fine-tuning) for the next token, the shift of the corresponding
predicted probability distributions from the latter to the
former implicitly reflects how the LLM adapts its knowledge
to the downstream task during fine-tuning. Specifically,
the predicted probability w.r.t the more professional token
“catalyze” increases, while that w.r.t the less professional
token “engage” actually decreases. Therefore, here we
construct the knowledge vector based on the difference
of output probability distributions w.r.t tokens from the
pre-trained and the fine-tuned LLMs, which also reveals the
output token preferences for downstream tasks. Given that
tokens are inherently semantic, the knowledge vector natu-
rally possesses semantic information. We then implement
our proposed TaD by enhancing the fine-tuned LLM’s output
probability distribution with the knowledge vector, thereby
reinforcing the model’s knowledge adaptation to downstream
tasks for better performance. Figure 1 shows that, with
TaD to enhance the output probability distribution with the
knowledge vector, the fine-tuned LLM can then generate
a more professional next token “catalyze”, instead of
“engage”. In that manner, the enhanced LLM can finally
yield a better answer with more professional words, including
“catalyze”,“oxygen”,“glucose”,“chlorophyll”,
etc. The proposed TaD is a plug-and-play decoding method,
and extensive experiments well demonstrate that it can

enhance the performance of various fine-tuned LLMs in
many downstream tasks.

In summary, our contributions are as follows:
1. To enhance the adaptation of LLMs to downstream

tasks, we propose a concept of knowledge vector, which
explicitly denotes the knowledge adaptation learned by
LLMs during fine-tuning.

2. We further develop TaD to enhance fine-tuned LLMs’
output probability distribution w.r.t tokens with the
knowledge vector, and enhance their performance in
downstream tasks.

3. We conduct extensive experiments to validate the effec-
tiveness of TaD across various tasks, models, and fine-
tuning methods. Experimental results well demonstrate
its superiority over baselines and promising potential in
data-scarce scenarios.

2 Related Work
2.1 Adapting LLMs for Downstream Tasks
Many efforts tackle the challenge of adapting pre-trained
LLMs for downstream tasks by focusing on both fine-tuning
techniques and the construction of training datasets [Ding et
al., 2023; Christiano et al., 2017]. Among various fine-tuning
techniques, PEFT methods [Hu et al., 2021; He et al., 2022;
Ding et al., 2023; Xiong et al., 2024], due to their capabil-
ity of freezing most model parameters while yielding im-
pressive performance, have drawn much attention from the
community. And thus recently PEFT methods specifically
for LLMs, like [Houlsby et al., 2019; Li and Liang, 2021;
Li et al., 2022], have been proposed. Concurrently, for align-
ing LLM’s behaviors with human-like responses, fine-tuning
LLMs typically requires manually labeled datasets [Ouyang
et al., 2022], which incurs significant costs. In contrast, some
studies construct high-quality training datasets by maximiz-
ing the utilization of existing datasets. For example, [Sanh et
al., 2022] enriches the training instances by inverting input-
output pairs of existing instances with specially crafted task
descriptions. [Wei et al., 2021] augments labeled datasets
with human-written task descriptions to instruct LLMs to un-
derstand the tasks.

Aside from those efforts, there are initiatives that enhance
LLMs by focusing on their intrinsic features. [Li et al.,
2023a; Hernandez et al., 2023] employs post-pretraining ac-
tivation editing to modulate LLM behaviors. [Subramani et
al., 2022; Turner et al., 2023] demonstrate that steering vec-
tors, whether trained or manually selected, effectively facil-
itate style transfer in LLMs. ITI [Li et al., 2023b] enhances
LLMs’ performance in downstream tasks by discovering vec-
tors for activations based on positive and negative instances.
Our TaD follows a similar direction. But it opts for the dif-
ferences in output probability distributions w.r.t tokens as the
direction of knowledge adaptation, and derives a knowledge
vector to enhance the performance of fine-tuned LLMs.

2.2 Decoding Strategies for LLMs
Decoding strategies are critical for LLMs, which significantly
affect the generation quality. Basic decoding strategies in-
clude Greedy Search, Beam Search [Sutskever et al., 2014],
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Top-k Sampling [Fan et al., 2018], and Top-p (Nucleus) Sam-
pling [Holtzman et al., 2019]. Greedy Search always selects
the most probable next token, one by one. While efficient,
it tends to yield repetitive text. In contrast, Beam Search
maintains and expands multiple hypotheses for superior se-
quences. Top-k Sampling, choosing from highly probable to-
kens, injects diversity but may compromise coherence. Build-
ing on that, Top-p Sampling dynamically adjusts the selection
pool based on the cumulative probability, targeting at a bal-
ance between randomness and coherence for more engaging
outputs.

Additionally, there exists a range of incremental works,
which can be integrated with and effectively optimize those
basic strategies. Within this scope, the contrastive decod-
ing series serves as a prime example. CD [Li et al., 2023c]
utilizes the likelihood difference between a large language
model and a small one to produce higher-quality texts. Fur-
thermore, ACD [Gera et al., 2023] improves upon CD by
maximizing log-probability differences across different lay-
ers in a single model. DoLa [Chuang et al., 2023] extends
ACD’s principles, integrating Jensen-Shannon divergence to
dynamically choose layers for contrastive decoding. Those
decoding strategies, however, are primarily focused on the
performance of pre-trained LLMs, neglecting the changes in
models after fine-tuning. Consequently, they fail to utilize the
knowledge adaptation learned during fine-tuning, resulting in
limited performance improvement or even performance de-
cline in downstream tasks when applied to fine-tuned LLMs.
On the contrary, our proposed TaD focuses on fine-tuned
LLMs, and we define a knowledge vector to denote knowl-
edge adaptation for downstream tasks. TaD is a plug-and-
play method that can be natively integrated with those basic
decoding strategies above to enhance the performance of fine-
tuned LLMs in downstream tasks.

3 Method
In this section, we first discuss the construction of the knowl-
edge vector, then detail the process of the proposed TaD, dur-
ing which we utilize the knowledge vector to improve LLMs’
outputs for a better adaptation to downstream tasks.

3.1 Constructing the Knowledge Vector
For a pre-trained language model θ, the conditional probabil-
ity distribution for tokens is modeled as follows:

pθ(xt|x<t), xt ∈ V , (1)

where V denotes the vocabulary and t represents the token’s
position. After applying a fine-tuning method Φ on the pre-
trained model θ, we get a fine-tuned model ϕ:

ϕ = Φ(θ,D), (2)

where Φ can be any fine-tuning method like LoRA, AdapterP,
etc., and D denotes the training set for a downstream task.
Similarly, for the fine-tuned model ϕ, the conditional proba-
bility distribution for tokens is formulated as Eq. 3:

pϕ(xt|x<t), xt ∈ V (3)

Given the finite size of vocabulary V , at each position t, both
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Figure 2: A simplified illustration of our method. The knowledge
vector is constructed as the vector pointing from pθ to pϕ, which
indicates an approximate direction towards the training objective.
TaD subsequently improves the inferior outputs in this direction to
obtain superior outputs.

pθ(xt|x<t) and pϕ(xt|x<t) can be viewed as coordinates in
a |V|-dimensional space. Consequently, we can derive a |V|-
dimensional vector VK on the logit scale, extending from the
fine-tuning start point pS (i.e., θ) to the fine-tuning endpoint
pE (i.e., ϕ):

VK = pE − pS
= log pϕ(xt|x<t)− log pθ(xt|x<t)

(4)

VK reflects the shift in conditional probability distributions
during fine-tuning, representing a directional move from the
common knowledge to the task-specific knowledge. Notably,
VK directly shows the influence of fine-tuning on the model’s
output probability distribution, and thus also enhances the in-
terpretability of the fine-tuning process.

It is important to note that VK may exhibit false positive
cases, as mentioned in CD [Li et al., 2023c]. For example,
tokens with extremely low pϕ and pθ (e.g., 10−5 and 10−10)
might have disproportionately high VK values, misleadingly
indicating an incorrect direction in the corresponding dimen-
sion (i.e., token). Therefore, we introduce a constraint func-
tion Ct to ensure the probability values of tokens output by
fine-tuned model ϕ are at least α times the maximum token
probability:

Ct = {xt ∈ V : pϕ(xt|x<t) ≥ α max
x
′
t∈V

pϕ(x
′

t|x<t)}, (5)

where α ranges from 0 to 1.
Moreover, the indicator function I(xt),

I(xt) =

{
1 if xt ∈ Ct
0 otherwise,

(6)

determines whether a token xt satisfies the constraint func-
tion Ct. We then introduce a penalty coefficient λ to penalize
tokens that violate the constraint function, while maintain-
ing the original values of VK for all others. This adjustment
yields a revised V̂K , which can effectively prevent false posi-
tive cases, as follows:

V̂K = I(xt) · VK + (1− I(xt)) · λ (7)

Then we have the final knowledge vector V̂K .
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Model Method Multiple Choices CBQA

MC1 MC2 MC3 True*Info
G

PT
-J

-6
b

LoRA 30.6 51.3 25.6 35.7
+TaD 33.0 52.5 27.1 37.0
AdapterP 34.9 54.3 28.0 51.5
+TaD 38.2 55.5 29.5 51.7
AdapterH 36.4 55.0 28.5 53.0
+TaD 38.3 55.8 28.7 55.3
Parallel 34.3 54.0 27.7 47.2
+TaD 37.5 55.1 28.9 47.4

B
L

O
O

M
z-

7b

LoRA 30.8 51.4 25.7 17.4
+TaD 32.8 52.3 27.2 17.5
AdapterP 35.3 53.8 28.5 20.6
+TaD 35.7 54.8 28.4 20.7
AdapterH 36.8 54.5 28.9 50.3
+TaD 37.9 55.2 29.2 50.8
Parallel 34.5 53.6 28.2 21.8
+TaD 36.5 54.4 28.5 22.7

Model Method Multiple Choices CBQA

MC1 MC2 MC3 True*Info

L
L

aM
a-

7b

LoRA 32.9 55.0 28.5 49.1
+TaD 34.2 55.7 29.0 51.2
AdapterP 38.1 57.4 30.8 61.4
+TaD 40.6 58.5 32.1 61.8
AdapterH 37.8 57.6 30.3 60.3
+TaD 39.8 59.0 32.0 61.0
Parallel 37.0 56.3 29.5 54.3
+TaD 39.5 57.0 30.4 55.2

L
L

aM
a-

13
b

LoRA 33.4 55.7 29.0 54.1
+TaD 35.1 56.7 29.7 54.7
AdapterP 40.6 58.8 32.4 58.6
+TaD 42.6 60.0 33.1 60.0
AdapterH 38.2 57.0 30.4 61.8
+TaD 39.5 57.8 31.2 63.3
Parallel 39.8 58.2 31.7 60.0
+TaD 42.0 60.2 33.8 61.6

Table 1: Results on multiple-choice and closed-book question answering (CBQA) tasks.

3.2 Task-Aware Decoding
With the constructed knowledge vector, i.e., V̂K in Eq. 7, we
advance the probability outputs of the fine-tuned model in the
direction indicated by the knowledge vector, effectively am-
plifying the downstream task knowledge adaptation learned
during fine-tuning. It is important to note that V̂K is not
a probability distribution. Hence, we apply the softmax
function to convert it into a probability distribution:

pK(xt|x<t) = softmax(V̂K) (8)

Then we obtain the probability distribution p̂ w.r.t xt out-
put by TaD, via merging pϕ(xt|x<t) and pK(xt|x<t) with
a weighting parameter µ.

p̂(xt|x<t) = (1− µ) · pϕ(xt|x<t) + µ · pK(xt|x<t) (9)

With the improved output probability distribution w.r.t xt,
i.e., p̂(xt|x<t), we can simply apply various basic decoding
methods like Greedy Search for text generation. A simplified
illustration of the proposed TaD is shown in Figure 2.

Deriving from the knowledge vector, i.e., V̂K , pK indicates
the impact of fine-tuning on the model’s output. Eq. 9 en-
ables the modulation of this impact by adjusting µ. Therefore,
we can make LLM’s implicit knowledge learned during fine-
tuning explicit by simply increasing the value of µ to amplify
this impact. Additionally, we preserve pϕ in Eq. 9 to prevent
false negative cases caused by using pK alone. The false neg-
ative case occurs when the next token is easily predictable. In
this circumstance, both pϕ and pθ yield a probability near 1,
but the value of pK is close to 0. Preserving pϕ and choosing
a proper µ guarantee that the model outputs tokens with high
probability in pϕ. We believe this preservation addresses the
limitations of using pK alone, proving essential for preserv-
ing the baseline fine-tuned model’s efficacy and ensuring the

effectiveness of TaD. Moreover, it also can be seen that when
µ = 0, the proposed TaD would degrade to the original fine-
tuned model, i.e., pϕ, and thus the performance of TaD would
at least match that of the original fine-tuned model.

4 Experiments
4.1 Setup
Models and Datasets
For our experiments, we select three remarkable LLMs:
LLaMA (including LLaMA-7b and LLaMA-13b) [Touvron
et al., 2023], GPT-J (6b) [Wang and Komatsuzaki, 2021] and
BLOOMz (7b) [Muennighoff et al., 2022], and focus on two
main categories of downstream tasks: multiple-choice tasks
and open-ended generation tasks.

For multiple-choice tasks, we employ the commonly used
TruthfulQA [Lin et al., 2022] benchmark, following previous
works [Li et al., 2023b; Chuang et al., 2023]. In this bench-
mark, questions are concatenated with correct or incorrect an-
swers and fed into the model. Then the model’s performance
is evaluated with MC (multiple-choice accuracy) based on the
predicted probabilities for each question-answer pair. Specif-
ically, TruthfulQA involves three specific MC scores, i.e.,
MC1, MC2, and MC3, for different experimental setups, and
higher MC1/2/3 scores indicate better model performance.

For open-ended generation tasks, we focus on three sub-
tasks: closed-book question answering, mathematical reason-
ing, and commonsense reasoning. For closed-book question
answering, we use TruthfulQA, where the model’s input and
output are, respectively, given questions and generated an-
swers. The answers are evaluated for Truthfulness and Infor-
mativeness using GPT-3 [Brown et al., 2020] fine-tuned with
the official dataset. For mathematical reasoning, we utilize
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Model Method Math Reasoning CS Reasoning

GSM8K MultiArith BoolQ PIQA

GPT-J-6b

LoRA 21.9 92.5 61.8 63.4
+TaD 22.8 94.2 62.7 64.6
AdapterP 19.0 92.2 63.9 71.0
+TaD 19.5 92.5 64.2 71.2

BLOOMz-7b

LoRA 18.9 91.7 66.8 73.6
+TaD 19.3 94.2 66.9 73.9
AdapterP 16.3 90.7 66.2 74.4
+TaD 17.1 93.0 66.2 75.0

LLaMa-7b

LoRA 26.6 90.5 68.7 78.9
+TaD 27.7 91.0 69.3 79.5
AdapterP 31.5 93.5 65.4 76.3
+TaD 32.0 93.7 66.3 76.3

LLaMa-13b

LoRA 35.9 91.5 70.1 82.5
+TaD 38.1 92.0 70.8 83.1
AdapterP 36.8 91.5 69.4 78.1
+TaD 37.5 94.0 69.4 79.2

Table 2: Results on mathematical reasoning and commonsense rea-
soning tasks.

GSM8K [Cobbe et al., 2021] and MultiArith [Roy and Roth,
2016]. GSM8K offers a variety of high-quality, grade-school
math word problems crafted by human writers. MultiArith
involves math problems requiring extensive reasoning and
computational steps. For commonsense reasoning, we em-
ploy BoolQ [Clark et al., 2019] and PIQA [Bisk et al., 2020].
BoolQ comprises a dataset of 15,942 yes/no questions. PIQA
offers a collection of questions demanding physical common-
sense reasoning.

Following previous works [Chuang et al., 2023; Hu et
al., 2023], we employ the same prompt as the official one
proposed in [Lin et al., 2022], and formulate specific in-
structions for both mathematical and commonsense reasoning
tasks.

Fine-Tuning Methods and Implementation Details
PEFT methods are widely adopted for LLM fine-tuning, of-
fering computational efficiency and comparable performance
to full-parameter fine-tuning. In our experiments, we em-
ploy four PEFT methods to incorporate the proposed TaD,
i.e., LoRA [Hu et al., 2021], AdapterP [Pfeiffer et al., 2020],
AdapterH [Houlsby et al., 2019] and Parallel Adapter [He
et al., 2022]. Specifically, our fine-tuning settings are based
on LLM-Adapters [Hu et al., 2023], which provides compre-
hensive insights on applying PEFT to LLMs. We align our
fine-tuning hyper-parameters with the study.

For TruthfulQA, we adopt a 2-fold cross-validation strat-
egy following ITI [Li et al., 2023b], ensuring no test data
leakage, and we perform fine-tuning with only <Question,
Best Answer> pairs. In mathematical and commonsense rea-
soning, we utilize Math10K and Commonsense170K datasets
from LLM-Adapters for fine-tuning, followed by evaluations
on GSM8K, MultiArith, BoolQ, and PIQA.

Model Method Multiple Choices Math Reasoning

MC1 MC2 MC3 GSM8K MultiArith

L
L

aM
a-

7b

LoRA 32.9 55.0 28.5 26.6 90.5
+DoLa 31.6 48.6 22.7 26.6 89.7
+TaD 34.2 55.7 29.0 27.7 91.0
AdapterP 38.1 57.4 30.8 31.5 93.5
+DoLa 39.7 54.9 25.5 31.5 93.3
+TaD 40.6 58.5 32.1 32.0 93.7

L
L

aM
a-

13
b

LoRA 33.4 55.7 29.0 35.9 91.5
+CD 36.2 55.4 26.5 19.0 70.3
+DoLa 34.9 51.2 24.8 38.0 94.2
+TaD 35.1 56.7 29.7 38.1 92.0

AdapterP 40.6 58.8 32.4 36.8 91.5
+CD 41.1 56.0 26.2 17.8 72.5
+DoLa 41.3 56.5 27.5 35.9 93.5
+TaD 42.6 60.0 33.1 37.5 94.0

Table 3: The comparison results with other contrastive decoding
strategies on multiple-choice and mathematical reasoning tasks.

Moreover, we set α in Eq. 5 and λ in Eq. 7 by default
to 0.1 and −∞, respectively, without additional tuning. For
TruthfulQA, we set the weighting parameter µ in Eq. 9 to
0.8 empirically for all setups. For mathematical and com-
monsense reasoning tasks, we select the optimal µ based on
the model’s performance on the training sets of GSM8K and
BoolQ, respectively, because we utilize Math10K and Com-
monsense170K rather than them for fine-tuning. Then the
selected µ on GSM8K is applied to MultiArith, and simi-
larly, the selected µ on BoolQ is applied to PIQA, so as to
see the transferability of µ from one dataset to another in
the same task category. Unless explicitly stated, all exper-
iments employ Greedy Search, which is a commonly used
and time-efficient decoding strategy adopted in many previ-
ous works [Li et al., 2023b; Chuang et al., 2023].

4.2 Main Results
Results on Multiple-Choice and Closed-Book Question
Answering Tasks
As shown in Table 1, TaD consistently improves fine-tuned
LLMs’ performance across different models and PEFT meth-
ods. The experimental results well demonstrate its general
applicability. Moreover, given that the metric MC1 focuses
on only Best Answer while MC2/MC3 also considers other
Correct Answers, we can see that, despite our training data
comprising only <Question, Best Answer> pairs, the align-
ment to the knowledge vector introduced by TaD also im-
proves both MC2 and MC3.

Results on Mathematical Reasoning and Commonsense
Reasoning Tasks
Table 2 illustrates the performance of our method on more
challenging reasoning tasks. Without loss of generality, we
just present LoRA and AdapterP’s results here. The results
show that TaD exhibits substantial improvement across vari-
ous mathematical reasoning datasets and models, and exceeds
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Model Method G / M
L

L
aM

a-
7b

Greedy 26.6/90.5
+TaD 27.7/91.0
Beam-4 30.5/91.3
+TaD 30.9/91.8
Top-p 26.7/90.7
+TaD 27.4/91.3
Top-k 27.0/90.3
+TaD 27.7/91.6

Model Method G / M

L
L

aM
a-

13
b

Greedy 35.9/91.5
+TaD 38.1/92.0
Beam-4 43.6/93.3
+TaD 43.7/94.3
Top-p 36.7/91.7
+TaD 37.1/93.0
Top-k 36.8/91.7
+TaD 37.2/93.0

Table 4: Integrating TaD with four basic decoding strategies, Greedy
Search, Beam Search, Top-p sampling, and Top-k sampling, where
Beam-4 represents the number of beams is 4. G and M represent
GSM8K and MultiArith, respectively.

the performance of fine-tuned models in commonsense rea-
soning datasets.

Compared to commonsense reasoning tasks, TaD gets
larger performance gains in mathematical reasoning tasks.
It can be attributed to the characteristics of the latter’s out-
puts, which are usually longer and semantically dense. That
enhances TaD’s benefits in iterative generation and reason-
ing. In contrast, the commonsense reasoning benchmarks
typically require outputs formatted like “the correct answer
is solution[N]”, which generally have limited semantic infor-
mation. And TaD’s effectiveness primarily lies on the single
token [N], which is limited and leads to smaller performance
gains. Nonetheless, TaD still yields considerable improve-
ments for commonsense reasoning tasks in nearly all cases,
as shown in Table 2.

Comparison With Other Contrastive Decoding Strategies
We compare TaD with other baselines that do not consider
the knowledge adaptation for downstream tasks during fine-
tuning. Our experiments are conducted on TruthfulQA for
multi-choice tasks and on mathematical reasoning datasets
for open-ended generation tasks. Specifically, we compare
TaD with CD [Li et al., 2023c] and DoLa [Chuang et al.,
2023].

Following DoLa, we conduct comparisons on LLaMA-
7b and LLaMA-13b. And for CD, we treat the fine-tuned
LLaMA-7b as an amateur and the fine-tuned LLaMA-13b as
an expert. For fairness, we apply both CD and DoLa on fine-
tuned models, and we carefully tune their hyper-parameters
to yield the best results for comparisons. Specifically, for
TruthfulQA, considering the training data comprises only
<Question, Best Answer> pairs, we select the optimal DoLa
interval and hyper-parameters based on MC1 scores using a
2-fold cross-validation strategy.

The comparison results, as shown in Table 3, indicate that
TaD outperforms the baselines in most cases. Specifically,
TaD exhibits a significant advantage over CD and DoLa in
maintaining or improving fine-tuned LLMs’ performance in
various tasks. Actually, CD or DoLa can even degrade the
performance of the original fine-tuned LLMs. For example,
on TruthfulQA, though CD’s performance surpasses that of
TaD in terms of MC1 under the “LLaMA-13b + LoRA” setup,

M pS −→ pE G / M

7b / 10.8/37.5

7b* / 26.6/90.5

13b / 16.7/53.2

13b* / 35.9/91.5

(a) Comparison results on pre-
trained and fine-tuned models.

M pS −→ pE G / M

7b* / 26.6/90.5
7b −→ 7b* 27.7/91.0

13b* / 35.9/91.5
13b −→13b* 38.1/92.0

(b) TaD’s effectiveness on the
fine-tuned models.

M pS −→ pE G / M

7b*
/ 26.6/90.5

7b*−→ 7b 23.7/79.0

(c) The effect of the opposite di-
rection of the proposed knowl-
edge vector (from the fine-tuned
to the pre-trained model).

M pS −→ pE G / M

13b / 16.7/53.2
7b −→13b 17.2/51.8

13b* / 35.9/91.5
7b*−→13b* 36.2/91.8

(d) The effect of the direction of
the model size difference (from the
smaller to the larger model).

M pS −→ pE G / M

7b
/ 10.8/37.5

7b −→ 7b* 11.9/38.1
7b −→13b 11.2/37.6

(e) Comparison results on the
direction of the knowledge and
model size difference.

M pS −→ pE G / M

13b*

/ 35.9/91.5
7b*−→13b* 36.2/91.8
13b −→13b* 38.1/92.0
7b −→13b* 38.2/92.0

(f) The cumulative effect of the
direction of the knowledge and
model size difference.

Table 5: Ablation study results of the knowledge vector on LLaMa
models. The column M and pE −→ pS represent the models used for
calculating pϕ in Eq. 5, Eq. 9 and the logarithm of the distribution
in Eq. 4, respectively. A / in column pE −→ pS indicates the inde-
pendent performance of model M without applying TaD. Models
marked with an * signify those fine-tuned with LoRA on Math10K.
G and M represent GSM8K and MultiArith, respectively. We high-
light our method with a gray background.

it leads to a significant decline in terms of MC2 and MC3. In
contrast, TaD consistently maintains and mostly improves the
fine-tuned LLMs’ performance in all MC1/2/3 metrics. On
GSM8K and MultiArith, the decrease in CD’s performance
is particularly pronounced, which well aligns with the results
reported in DoLa. In contrast, TaD still gains performance
improvement upon fine-tuned LLMs. Overall, TaD generates
better results in various downstream tasks by considering the
knowledge adaptation learned during fine-tuning and consis-
tently maintains and improves the fine-tuned LLMs’ perfor-
mance.

4.3 Analysis
Integrated With Different Basic Decoding Strategies
As previously mentioned, our derived p̂ in Eq. 9 is compat-
ible with various basic decoding strategies. Table 4 shows
the experimental results for the more challenging mathemati-
cal reasoning task, with TaD incorporated in Greedy Search,
Beam Search, Top-p sampling, and Top-k sampling, respec-
tively. It is observed that TaD consistently improves upon the
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Model Method 10% 30% 60% 100%

LoRA 58.8 80.5 86.2 90.5
+TaD 62.2 83.2 88.0 91.0LLaMa-7b

∆ +3.4 +2.7 +1.8 +0.5
LoRA 70.8 86.5 90.2 91.5
+TaD 79.8 89.3 91.5 92.0LLaMa-13b

∆ +9.0 +3.2 +1.3 +0.5

Table 6: TaD’s performance with different ratios of Math10K as
training dataset. ∆ represents the improvement after applying TaD.

fine-tuned LLMs’ performance across different basic decod-
ing strategies on both mathematical reasoning datasets.

Ablation Study of the Knowledge Vector

Table 5 displays the ablation study results of the knowledge
vector on the more challenging mathematical reasoning task.
We conduct extensive experiments by defining different di-
rections of the knowledge vector to demonstrate the effective-
ness and reasonableness of the proposed one.

Firstly, we present the pre-trained and fine-tuned LLMs’
performance and showcase the effectiveness of the proposed
TaD. Table 5 (a) shows that the performance of the fine-
tuned LLaMA-7b* and LLaMA-13b* is significantly im-
proved compared to the original pre-trained LLaMA-7b and
LLaMA-13b. Table 5 (b) further shows that the proposed
TaD consistently enhances the performance of the fine-tuned
LLaMA-7b* and LLaMA-13b* by setting the direction of the
knowledge vector as 7b−→7b* or 13b−→13b*. To validate our
motivation in setting the knowledge vector’s direction, we fur-
ther investigate the effect of reverting the original knowledge
vector, i.e., from the fine-tuned LLM to the pre-trained LLM,
as shown in Table 5 (c). We can see that reverting the direc-
tion of the proposed knowledge vector significantly degrades
the fine-tuned LLaMA-7b*’s performance, which is consis-
tent with our illustration in Figure 2.

Furthermore, we find that the direction from the smaller
LLMs to the larger LLMs can also improve the pre-trained or
fine-tuned LLMs’ performance, as can be seen in Table 5 (d).
Therefore, we further conduct experiments to compare the
knowledge vector derived from knowledge adaptation (i.e.,
from the pre-trained LLMs to the fine-tuned LLMs) and that
derived from model size increase (i.e., from the smaller LLMs
to the larger LLMs). The results are reported in Table 5 (e),
and we can see that the former outperforms the latter. It sug-
gests that the direction indicated by the knowledge adaptation
learned during fine-tuning is more essential in deriving the
proposed knowledge vector. Moreover, we investigate the cu-
mulative effect of combining these two kinds of directions, by
setting the direction of knowledge vector from the pre-trained
LLaMA-7b to the fine-tuned LLaMA-13b*. Table 5 (f) shows
that combining both directions can gain slight or even neg-
ligible further improvement over the default direction from
LLaMA-13b to LLaMA-13b*, which further demonstrates
the reasonableness of how we define the direction of the pro-
posed knowledge vector.

Figure 3: Ablation study results on the weighting parameter µ in
the LLaMA-13b model. The numbers in the legend represent the
training data ratios and µ̂ marks the optimal value in each ratio.

Different Ratios of Training Datasets and the Selection of
µ
Table 6 displays the performance of models fine-tuned with
LoRA using different ratios of training data and highlights
TaD’s improvement over the original fine-tuned models. For
each setup, we select the optimal hyper-parameters and train
the LLMs for sufficient epochs to ensure convergence. As
shown in Table 6, we can see that, for smaller ratios of the
training data, the proposed TaD yields larger performance
gains.

Furthermore, we conduct an ablation study on the selection
of µ, and present the results in Figure 3. It can be observed
that the optimal µ̂ incrementally increases as the ratio of train-
ing data decreases, meaning that the fine-tuned LLMs prefer
stronger alignment with the knowledge vector for smaller ra-
tios of training data.

Intuitively, with less training data, the LLMs’ output prob-
ability distribution w.r.t tokens is far from reaching the final
training objective in Figure 2. Therefore, starting from a more
distant point, moving in the direction of the knowledge vector
can strengthen the knowledge adaptation for the downstream
tasks and lead to more significant improvements. Interest-
ingly, the results above also indicate that even with limited
training data, the model can be guided in the correct direction.
Such a finding well highlights our method’s effectiveness in
data-limited scenarios.

5 Conclusion
In this paper, we introduce TaD, a plug-and-play method to
enhance the performance of fine-tuned LLMs in downstream
tasks. TaD leverages the differences in output probability dis-
tributions w.r.t tokens before and after fine-tuning, to con-
struct the knowledge vector for downstream tasks. Then TaD
refines the output probability distribution of the fine-tuned
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Model Method MC Average

LLaMa-7b FPFT 44.4
+TaD 46.1

LLaMa-13b FPFT 45.7
+TaD 47.3

Table 7: Full-parameter fine-tuning results. ‘MC Average’ indicates
the average values of metrics MC1, MC2, and MC3 on the multiple-
choice tasks.

Model Method MC Average

50% 100%

LLaMa-7b
LoRA 37.9 38.8
+TaD 39.2 39.6
∆ +1.3 +0.8

LLaMa-13b
LoRA 38.2 39.4
+TaD 39.7 40.5
∆ +1.5 +1.1

Table 8: TaD’s performance with different ratios of training dataset
on the multiple-choice tasks. ∆ represents the improvement after
applying TaD. ‘MC Average’ indicates the average values of metrics
MC1, MC2, and MC3 on the multiple-choice tasks.

LLMs with the derived knowledge vector, enhancing it with
knowledge adaptation learned during fine-tuning. Extensive
experiments well demonstrate that TaD can consistently gain
performance improvement across different LLMs, different
fine-tuning methods, and different downstream tasks. And it
exhibits superiority over existing approaches. Moreover, our
experiments also show that TaD has a distinct advantage in
data-limited scenarios.

A Experimental Results with Full-Parameter
Fine-Tuning

We conduct experiments with full-parameter fine-tuning
(FPFT) on the multiple-choice tasks. As shown in Table 7,
the experimental results demonstrate that TaD achieves com-
parable and even more significant improvement compared to
being applied to PEFT models. This further demonstrates that
TaD can achieve performance that cannot be obtained with
the distribution of training data.

B The Difference in Improvements on the
Multiple-Choice Tasks

To investigate the difference in improvements observed in Ta-
ble 6 across other tasks, we conduct experiments using the
LLaMa series models on the multiple-choice tasks with 50%
and 100% of the training data, respectively. As shown in Ta-
ble 8, we observe a consistent pattern with that in Table 6.
The performance of TaD’s performance is notably enhanced
when the training data is reduced.

Model Method Multiple Choices CBQA

MC1 MC2 MC3 True*Info (%)

GPT-J-6b
LoRA 0.982 1.008 0.996 0.485
+TaD 0.989 0.987 0.813 0.401
∆ 0.614 0.493 0.477 0.274

LLaMa-7b
LoRA 1.030 1.140 1.057 0.482
+TaD 0.978 0.986 0.746 0.388
∆ 0.554 0.385 0.382 0.283

Table 9: Standard deviations of GPT-J-6b and LLaMa-7b experi-
ments for multiple-choice and CBQA tasks over 5 runs. ∆ repre-
sents standard deviations of the improvement after applying TaD.

MC1 MC2 MC3 True*Info
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Im
pr

ov
em

en
t a

ft
er

 a
pp

ly
in

g 
Ta
D GPT-J-6b

LLaMa-7b

Figure 4: A bar graph of the mean value of the improvement after
applying TaD to GPT-J-6b and LLaMa-7b with standard deviation
error bars.

C Standard Deviations of Experiments
Table 9 shows the standard deviations of the performance of
fine-tuned models, TaD-enhanced fine-tuned models, and the
improvement after applying TaD over 5 runs, respectively.
Figure 4 correspondingly displays a bar graph of the mean
value of the improvement with standard deviation error bars.
It is noted that the standard deviation of the improvement is
smaller than that of the single model’s performance. Con-
currently, we observe that although the performance of fine-
tuned models and TaD-enhanced models varies across dif-
ferent runs, TaD guarantees the improvement upon the fine-
tuned models’ performance. The experimental results above
well demonstrate the robustness of our proposed TaD.
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