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Abstract
Multimodal Sentiment Analysis (MSA) aims to
identify speakers’ sentiment tendencies in mul-
timodal video content, raising serious concerns
about privacy risks associated with multimodal
data, such as voiceprints and facial images. Re-
cent distributed collaborative learning has been ver-
ified as an effective paradigm for privacy preser-
vation in multimodal tasks. However, they of-
ten overlook the privacy distinctions among differ-
ent modalities, struggling to strike a balance be-
tween performance and privacy preservation. Con-
sequently, it poses an intriguing question of max-
imizing multimodal utilization to improve perfor-
mance while simultaneously protecting necessary
modalities. This paper forms the first attempt at
modality-specified (i.e., audio and visual) privacy
preservation in MSA tasks. We propose a novel
Hybrid Distributed cross-modality cGAN frame-
work (HyDiscGAN), which learns multimodality
alignment to generate fake audio and visual fea-
tures conditioned on shareable de-identified tex-
tual data. The objective is to leverage the fake
features to approximate real audio and visual con-
tent to guarantee privacy preservation while effec-
tively enhancing performance. Extensive experi-
ments show that compared with the state-of-the-art
MSA model, HyDiscGAN can achieve superior or
competitive performance while preserving privacy.

1 Introduction
With the growing prevalence of video content on social me-
dia, Multimodal Sentiment Analysis (MSA) is poised to pro-
vide new opportunities by leveraging multimodal data to en-
hance and go beyond traditional text-based sentiment analy-
sis [Zhao et al., 2023]. MSA aims to predict the speaker’s
sentiment by utilizing extra information available in audio
and visual content instead of only textual content. The au-
dio/visual modality extracts facial emotions and vocal expres-
sions, enabling a more comprehensive sentiment understand-
ing in wide-ranging applications.

∗Duoqian Miao is the corresponding author.
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(a) Video data often contains personal information, whereas text
content, when properly de-identified, easily maintains privacy.
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Figure 1: Illustration of privacy preservation and MSA frameworks.

Notably, social video data contains massive private infor-
mation, including Personally Identifiable Information (PII)
and biometric data like face images and voiceprints [Regu-
lation, 2016]. Unfortunately, the misuse of personal informa-
tion often causes a string of public security incidents, raising
widespread concerns regarding personal privacy and security
within society [Nguyen et al., 2021; Yang et al., 2020]. Upon
closer examination of video data, we uncover a crucial yet
often overlooked fact: different modalities carry varying re-
quirements for privacy, as depicted in Figure 1(a). For in-
stance, legislative efforts aimed at preserving privacy data
have emphasized the privacy of personal audio or visual data
over textual data [Regulation, 2016]. In addition, techniques
such as introducing noises or blurring faces (e.g., differential
privacy [Dwork, 2006]) to de-identify audio and visual data
can significantly impede the recognition of sentiment cues. In
contrast, de-identifying textual data, such as removing sensi-
tive words, can effectively protect privacy without altering
the primary semantics [Wang et al., 2023]. The observations
encourage us to contemplate an intriguing question: how to
protect the privacy of specific modalities (i.e., audio and vi-
sual) when building MSA models?

Existing MSA approaches typically adopt a centralized
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paradigm where multimodal data is collected from personal
devices and stored centrally for training, achieving excellent
performance yet posing considerable challenges and risks in
preserving personal privacy, as shown in Figure 1(b). Instead,
increasing efforts have been made to apply Distributed Col-
laborative Learning (DCL) to multimodal tasks [Yu et al.,
2022; Chen and Zhang, 2022; Bao et al., 2023]. Existing
DCL frameworks [Kairouz et al., 2021], such as federated
learning [Nguyen et al., 2021] and split learning [Thapa et
al., 2022], have gained prominence, offering privacy preser-
vation by avoiding centralized data hosting and access. They
rely on exchanging multimodal networks between a central
server and clients that hold unshareable data for model train-
ing and testing, however, they struggle to strive a balance be-
tween performance and privacy preservation. Additionally,
these endeavors primarily focus on scenarios where all multi-
modal content is isolated on separate clients, which does not
align with the goal of modality-specific privacy preservation
in practice. These insights prompt us to explore strategies for
maximizing data utilization to improve performance while si-
multaneously protecting necessary modalities.

An intuitive solution to modality-specific privacy preser-
vation is combining centralized and DCL frameworks to cre-
ate a hybrid distributed learning paradigm, guaranteeing data
utilization and protection, respectively. Accordingly, we can
initiate a primary idea: train shareable modality data (text)
centrally while private modality data (audio and visual) dis-
tributively. However, in the setting, where we have separate
copies of shareable modality and private modality data on the
server and clients respectively, we face a dilemma when it
comes to performing model inference. On one hand, per-
forming inference on the server requires access to the data
representations of the private modality, which can increase
communication costs and pose risks to privacy [Thapa et al.,
2022]. On the other hand, performing inference on the client-
side necessitates each client to train the entire MSA model to
guarantee effective multimodal fusion, needing more client
computational resources. Note that it is practically impos-
sible for personal devices (clients) such as smartphones or
laptops to have sufficient computing power to accommodate
widespread large-scale MSA models. As a result, the hybrid
distributed mode inevitably poses two primary challenges
stemming from the misaligned treatment between modalities:
1) achieving effective multimodal alignment, and 2) ensuring
efficient collaborative communication.

In light of the above discussion, we propose a novel hy-
brid distributed collaborative learning framework based on a
cross-modality conditional Generative Adversarial Network
(cGAN), termed HyDiscGAN. Specifically, we build an au-
dio generator and a visual generator to generate fake features
of private audio and visual data respectively in an autoregres-
sive manner. The generators are placed in the server to ap-
proximate real features in the clients. On one hand, the gen-
erated features are sent to the corresponding audio and visual
discriminators in the clients which are regulated by two cus-
tomized contrastive losses and a cGAN loss. Generators and
discriminators are based on Transformers to cater to the se-
quential audio and visual data. On the other hand, the features
are fed into Transformer layers, followed by the gated atten-

tion unit to fuse multimodal features of text, visual, and au-
dio, to perform the downstream sentiment analysis. Note that
HyDiscGAN is trained in two stages: 1) the cross-modality
cGAN is pre-trained to guarantee effective multimodal align-
ment, where global generators and local discriminators are
distributively optimized in an alternating manner; 2) the MSA
components are trained along with fine-tuning the generators
under keeping the discriminators frozen. Its learning process
simulates guessing audio and visual (semantic) features con-
ditioned on text inputs, which is inspired by the empirical
observation that individuals can envision the tone and facial
expressions associated with a piece of text when it is narrated.
Consequently, HyDiscGAN does not require any client-side
computation during inference, reducing large collaborative
costs to boost efficient communication.

Our key contributions can be summarized as follows:
• We propose a novel hybrid DCL framework HyDisc-

GAN for audio-visual privacy preservation in MSA. To
the best of our knowledge, this forms the first endeavor
to address modality-specified privacy preservation.

• We customize a cross-modality cGAN to achieve ef-
fective multimodal alignment and efficient collaborative
communication in HyDiscGAN.

• Experiments on two MSA benchmarks show HyDis-
cGAN achieves desirable performance competent to
SOTA baselines while preserving audio-visual privacy.

2 Related Work
2.1 Multimodal Sentiment Analysis
The current approaches to MSA can be broadly categorized:
representation-based and fusion-based methods [Yu et al.,
2023; Lao et al., 2024]. Representation-based methods aim
to acquire effective representations for each modality, facili-
tating subsequent fusion processes. One perspective argues
that effective sentiment representations should encompass
both modality-invariant and modality-invariant features [Haz-
arika et al., 2020; Yu et al., 2021; Lin and Hu, 2022]. An-
other viewpoint suggests that, in multimodal data, the textual
modality predominates, seeking to enhance text representa-
tion by integrating textual and non-textual modality informa-
tion [Wang et al., 2019; Yang et al., 2021; Guo et al., 2022;
Su et al., 2023]. Recently, Yang et al. [Yang et al., 2023]
further improved multimodal informative representation by
incorporating contrastive learning and contrastive feature de-
composition alongside representation learning. Regarding
fusion-based methods, early research categorized them into
early-fusion and late-fusion [Yu et al., 2023]. Early-fusion
emphasizes learning dependencies in multimodal sequence
data [Zadeh et al., 2018a], while late-fusion initially learns
independent unimodal representations, integrating them later
for sentiment inference [Zadeh et al., 2017]. Recently, Zhao
et al. [Zhao et al., 2023] achieved SOTA performance in
MSA by acquiring more enriched multimodal representations
through data augmentation strategies on limited datasets.

2.2 Distributed Collaborative Learning
DCL has gained significant attention in recent years due to its
data protection capabilities [Kairouz et al., 2021]. The two
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Figure 2: The overall process of HyDiscGAN generates “sufficiently realistic” fake features for private modalities (audio and visual) through
hybrid DCL between the server and clients and subsequently fuses them with the real features of the shareable modality (text) for MSA tasks.

most popular frameworks are federated learning [McMahan
et al., 2017] and split learning [Gupta and Raskar, 2018].
For federated learning, the FedAvg was initially proposed
by Brendan et al. [McMahan et al., 2017]. In FedAvg, a
complete model is trained on each local client holding data,
and the locally updated models are then sent to the server
for aggregation, resulting in a global model. Subsequent re-
searchers have made further improvements, such as introduc-
ing penalty terms to address non-convex problems [Li et al.,
2020] and incorporating momentum mechanisms to enhance
its convergence speed and performance [Hsu et al., 2019;
Zhu et al., 2020]. The advantages of federated learning lie
in the parallelization of computations across multiple clients,
while its drawback is its inapplicability to scenarios where
client resources are limited. On the contrary, split learn-
ing [Gupta and Raskar, 2018] divides a model, such as a
deep neural network, into multiple parts, and then performs
computations on different devices. Thapa et al. [Thapa et al.,
2022] proposed the integration of federated learning and split
learning, introducing federated split learning, which elimi-
nates the inherent limitations of both frameworks.

2.3 Generative Adversarial Networks
Generative Adversarial Networks (GANs) were initially pro-
posed by Goodfellow et al. [Goodfellow et al., 2014]. Sub-
sequently, researchers have proposed various improvements
and variations [Radford et al., 2015; Almahairi et al., 2018;
He et al., 2024]. Importantly, conditional Generative Ad-
versarial Network (cGAN) [Mirza and Osindero, 2014] in-
troduces conditional information during the training process,
enabling the generator to produce samples related to the given
conditions. GANs were initially applied in computer vision
to generate realistic images in a self-supervised manner and
later spread rapidly to other fields [Goodfellow et al., 2014],
for natural language processing, like text generation [Zhang
et al., 2017], adversarial training [Zhang et al., 2016], and
data augmentation [Zhao et al., 2023].

3 Methodology
3.1 Problem Statement
MSA is formulated as a binary/multi-classification or regres-
sion task for predicting sentiment labels. In contrast to all pre-
vious centralized models, our HyDiscGAN is implemented in
a more realistic and secure scenario, encompassing a central
server and numerous personal clients. Each client C holds
NC video clips as training or test samples. According to the
Introduction, each sample comprises shareable modality data,
i.e., text (t), as well as two private modality data, namely, au-
dio (a) and visual (v). The raw data and extracted true fea-
tures of private modalities are securely maintained on their
personal clients throughout the entire process.

For each sample, we obtain its real feature embedding se-
quences Xm = [xm

1 , xm
2 , ..., xm

Lm ] ∈ RLm×dm

from three
modality data using BERT [Kenton and Toutanova, 2019],
COVAREP [Degottex et al., 2014], and FACET [De la Torre
and Cohn, 2011], respectively. Here, Lm denotes the length
of the sequence, and dm is the feature dimension. m ∈ {t, ∗}
and ∗ ∈ {a, v} denote the set of private modalities. Following
BERT, we introduce <CLS> tag features x∗

<CLS> at the end of
the audio and visual feature sequences to represent the com-
prehensive semantics of the sequence. x∗

<CLS> is initialized
through the average pooling of all features in the sequence.

It is worth noting that our primary motivation is to gener-
ate fake feature sequences Z∗ = [z∗1 , z

∗
2 , ..., z

∗
L∗ , z∗<CLS>] ∈

R(L∗+1)×d∗
, which approximate the real features X∗ ex-

tracted from the raw audio and visual data, rather than the
raw data itself. This not only reduces sentiment-irrelevant
redundant computations but also applies gradient truncation
to prevent adversaries from reconstructing the raw data from
gradients [Thapa et al., 2022]. Subsequently, Z∗ and Xt are
utilized for the training or testing of MSA models.

3.2 Hybrid Distributed Collaborative Learning
The training pipeline of HyDiscGAN for MSA is shown in
Figure 2. Specifically, its training consists of two steps:
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Algorithm 1 Training Cross-Modality cGAN
Input: Multiple training clients; training epoch T ; audio and vi-
sual generators G∗; audio and visual global discriminators D∗

for i = 1 to T do
S training clients are randomly selected;
▷ Send global discriminators D∗ to each client
for each client C in [S] in parallel do

▷ Send textual data t to the central server
Server Executes:
Xt = BERT(t);
Z∗ = G∗ (µ∗

C , X
t; θG∗

)
, ∗ ∈ {a, v};

▷ Send features Xt and Z∗ to client C
Client Executes:
Xa = COVAREP (a), Xv = FACET (v);
LD∗ ,L∗

real = D∗ ([X∗||Z∗], Xt; θD∗
)
, ∗ ∈ {a, v};

Update local discriminators D∗ based on (1 − λD)LD∗ +
λDL∗

real;
LG∗ ,L∗

fake = D∗ (Z∗, Xt; θD∗
)
, ∗ ∈ {a, v};

▷ Send losses LG∗ , L∗
fake, and updated local discrimina-

tors D∗ to the central server
end for
Server Executes:
Update generators G∗ based on (1− λG)LG∗ + λGL∗

fake;
Update global discriminators D∗ by averaging the local dis-
criminator parameters received from S clients

end for
Output: Updated audio and visual generators G∗

(1) Training Cross-Modality cGAN involves hybrid dis-
tributed collaborative learning among numerous clients and
a central server to ensure effective multimodal alignment of
generators on the server. As shown in Algorithm 1, at the be-
ginning of each training epoch, the central server receives tex-
tual data from a group of clients. Guided by the text seman-
tics, the generators G∗ on the server generate fake features for
the audio and visual modalities, which are then transmitted
to their respective clients. Each client computes losses LD∗ ,
LG∗ , L∗

real, and L∗
fake using its own real features and the

received fake features, and then sends generator’s losses and
the local discriminator’s parameters back to the server. The
central server updates generators G∗ based on the received
losses and updates discriminators D∗ by averaging the local
parameters received from multiple clients.

(2) Training MSA Component begins with specific
Transformer Layers to further encode the fake features from
the generators G∗ corresponding to the private modalities.
Subsequently, the Fusion Module is employed to combine
these private modality fake features with the real features of
the shareable modality, which are then used for computing
the MSA task loss Ltask. During this stage, the generators
G∗ are fine-tuned as part of the MSA Component, while the
global discriminators remain frozen.

3.3 Cross-Modality cGAN
cGAN [Mirza and Osindero, 2014] is a variant of the Genera-
tive Adversarial Network [Goodfellow et al., 2014] designed
to enable targeted sample generation based on given condi-
tions. It comprises a generator and a discriminator, where
the generator produces samples satisfying specific conditions,
while the discriminator is used to determine whether the input

samples are generated by the generator or are real.
In our conception, we aim to generate the fake features of

private modalities that semantically align with corresponding
shareable modality features. To achieve this, we use text in-
formation, i.e., the feature sequence Xt encoded by BERT,
as the conditional input. Additionally, since private modality
features are sequential data, to maintain the contextual corre-
lation in generated fake feature sequences Z∗, we adopt an
autoregressive manner to generate features at each temporal
position. The generation process can be formalized as:

z∗i = G∗ (z∗0:i−1, X
t; θG∗

)
(1)

where θG∗ is the set of trainable parameters. Especially, z∗0 =
µ∗ and µ∗ ∼ N (0, 1) is a random feature vector sampled
from a Gaussian distribution.

Transformer Layer
In our framework, apart from the classifier and Fusion Mod-
ule, all other components utilize the Transformer [Vaswani et
al., 2017] as the backbone, with distinctions solely in input
and output. Transformer is an efficient neural architecture for
modeling sequential data. The core computation is the Scaled
Dot-Product Attention, which is defined as:

Att (Q,K, V ) = softmax(
QKT

√
dK

)V (2)

where Q, K, and V are obtained by linear mapping of the in-
put feature sequence. Furthermore, the “Multi-head” opera-
tion [Vaswani et al., 2017] is used to jointly focus on different
parts of the input sequence on multiple subspaces, enhancing
the ability to capture information.

Transformer-based Autoregressive Generator
Inspired by the neural machine translation model [Vaswani
et al., 2017], we construct a Transformer-based Autoregres-
sive Generator. It is a simple variant of the basic Transformer
Layer. Specifically, it comprises two attention structures serv-
ing different purposes: (1) Intra-modality Multi-Head Atten-
tion is employed to capture contextual relationships within
the unimodal feature sequence, and corresponding Q∗

ra, K∗
ra,

and V ∗
ra are all derived from the mapping of Z∗

0:i−1, i.e.,
[Q∗

ra, K
∗
ra, V

∗
ra] = [z∗0:i−1W

∗
Qra

, z∗0:i−1W
∗
Kra

, z∗0:i−1W
∗
Vra

],
where W ∗

Qra
, W ∗

Kra
, and W ∗

Vra
are parameter matrices.

(2) Inter-modality Multi-Head Attention is used to cap-
ture cross-modality alignment information attentive to the
shareable modality feature sequence Xt. Hence, Q∗

er,
K∗

er, and V ∗
er are calculated as [Q∗

er, K∗
er, V ∗

er] =
[z∗0:i−1W

∗
Qer

, XtW ∗
Ker

, XtW ∗
Ver

], where W ∗
Qer

, W ∗
Ker

, and
W ∗

Ver
are parameter matrices.

Transformer-based Discriminator
For discriminators D∗, their structure is identical to genera-
tors G∗, except for the exclusion of autoregressive iteration
steps. The inputs includes fake feature sequences Z∗ gen-
erated by G∗ and corresponding real feature sequences X∗.
An additional binary classifier is added to the output layer
to discriminate between the generated and real features. The
discriminator plays a crucial role by providing feedback to
the generator to enhance its ability to generate “sufficiently
realistic” fake features.
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3.4 MSA Component
We further introduce two Transformer Layers for learning
deep semantic representations of non-textual modality fea-
tures. Specifically, the generated fake audio and visual fea-
ture sequences Z∗ are encoded through corresponding Trans-
former Layers before being fed to the Fusion Module.

Fusion Module
This module is used to fuse <CLS> tag features of different
modalities and regulate the influence of each modality fea-
ture in the final sentiment prediction via the gated attention
unit [Dhingra et al., 2017]. The operation of the gated atten-
tion unit is formulated for each modality as follows:

hm
output = GAtt(hm

input; θ
m
GAtt)⊙ hm

input (3)

where the gated attention function GAtt is a fully connected
linear layer with sigmoid activation, and its output dimension
is equal to the input dimension. θGAtt is the set of train-
able parameters. The symbol ⊙ denotes the Hadamard prod-
uct [Horn, 1990]. Specifically, hinput = xt

<CLS> for the tex-
tual modality and hinput = z∗<CLS> for the audio and visual
modalities. Finally, the tensor hfinal = [hv

output : ht
output :

ha
output] is formed by concatenating features from the three

modalities, which is then utilized for sentiment prediction.

3.5 Learning Objectives
Our framework contains three learning objectives: cGAN
Losses, customized Contrastive Losses, and MSA task Loss.

cGAN Losses
For a training sample that has private modality real feature se-
quences X∗ and generated fake feature sequences Z∗, cGAN
losses are defined as:

LG∗ =
1

L∗ + 1

L∗+1∑
i=1

[log(1−D∗(G∗(z∗0:i−1, X
t)))] (4)

LD∗ =
1

L∗ + 1

L∗+1∑
i=1

[log(1−D∗(x∗
0:i−1, X

t))

+ logD∗(G∗(z∗0:i−1, X
t))]

(5)

where LG∗ and LD∗ represent the losses of the generator
and discriminator, respectively. L∗ are lengths of feature se-
quences. Specifically, the <CLS> tag feature is also utilized
for computation. In the training of Cross-modality cGAN,
LG∗ and LD∗ are alternately minimized.

Contrastive Losses
We design two sample separation loss terms based on NT-
Xent contrastive loss [Chen et al., 2020], which are used to
further regularize the learning process for both the discrimi-
nator and the generator. Specifically, for a sample in training
client C, its real and fake <CLS> tag features are x∗

<CLS> and
z∗<CLS>, respectively. (1) the Real-Real contrastive loss L∗

real
is employed to regulate the discriminator:

L∗
real = −log

e(sim(x
∗
<CLS>, x

∗
<CLS>

+)/τ)∑
{x∗

<CLS>
−}∈C

e(sim(x∗
<CLS>, x

∗
<CLS>

−)/τ)
(6)

Dateset Train Valid Test

#S #Sp #S #Sp #S #Sp

MOSI 1,284 52 229 10 686 31
MOSEI 16,326 150 1,871 50 4,659 100

Table 1: Statistics of the MOSI and MOSEI Datasets. #S represents
the number of video clips, i.e., the number of samples. #Sp indicates
the number of distinct speakers, i.e., the number of clients.

where sim is Cosine similarity function and τ is the temper-
ature parameter. {x∗

<CLS>
−} ∈ C denotes the feature set of

samples in client C with a different sentiment polarity from
the sample corresponding to x∗

<CLS>. Conversely, x∗
<CLS>

+ is
the feature of a sample with the same sentiment polarity, ran-
domly sampled from client C.

(2) the Real-Fake contrastive loss L∗
fake is introduced to

regulate the generator:

L∗
fake = −log

e(sim(z∗
<CLS>, x

∗
<CLS>)/τ)∑

{z∗
<CLS>

other}∈C

e(sim(z
∗
<CLS>, z

∗
<CLS>

other)/τ)
(7)

where {z∗<CLS>
other} ∈ C is the feature set of samples in

client C, excluding the sample corresponding to z∗<CLS>.

MSA Loss
Let y and ŷ denote the true and predicted sentiment labels of
a sample, respectively. The MSA task loss Ltask is defined:

Ltask =

{
1

NB

∑NB

n=1 yn · logŷn for classification
1

NB

∑NB

n=1 (yn − ŷn)
2 for regression

(8)

where NB is the batch size. ŷ is obtained through classifica-
tion or regression predictions on hfinal.

4 Experiments
4.1 Datasets and Distributed Settings
Two popular MSA benchmark datasets, MOSI [Zadeh et al.,
2016] and MOSEI [Zadeh et al., 2018b], are utilized to eval-
uate the performance of our HyDiscGAN. Statistical details
are shown in Table 1. Our results, averaged over five random
seed runs, encompass both classification (Acc-2, F1-Score,
and Acc-7) and regression (Mean Absolute Error (MAE) and
Correlation Coefficient (Corr)) tasks.

4.2 Baselines
To validate the performance of the features generated by Hy-
DiscGAN, we conducted a comparison with several advanced
and SOTA MSA models [Zhao et al., 2023; Yang et al.,
2023]. These baseline models can be broadly categorized
based on their backbone networks: (1) LSTM-based mod-
els, denoted as TFN [Zadeh et al., 2017], LMF [Liu et al.,
2018], MFN [Zadeh et al., 2018a], MISA [Hazarika et al.,
2020], and Self-MM [Yu et al., 2021]; (2) Transformer-based
models, denoted as MulT [Tsai et al., 2019], TMMDA [Zhao
et al., 2023], and ConFEDE [Yang et al., 2023]. Addition-
ally, there is a model MTAG [Yang et al., 2021] based on
GNN. Note that only our HyDiscGAN utilizes generated pri-
vate modality fake features for MSA, while all other baseline
models neglect the preservation of the speaker’s privacy.
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Model MOSI MOSEI
Acc-2 ↑ F1-Score ↑ Acc-7 ↑ MAE ↓ Corr ↑ Acc-2 ↑ F1-Score ↑ Acc-7 ↑ MAE ↓ Corr ↑

(G) TFN [Zadeh et al., 2017] - / 80.8 - / 80.7 34.9 0.901 0.698 - / 82.5 - / 82.1 51.6 0.593 0.700
(G) LMF [Liu et al., 2018] - / 82.4 - / 82.4 33.2 0.917 0.695 78.5 / 81.9 79.0 / 81.7 51.6 0.573 0.714
(G) MFN [Zadeh et al., 2018a] 77.4 / - 77.3 / - 34.1 0.965 0.632 79.0 / 82.9 79.6 / 82.9 51.3 0.573 0.718
(G) MulT [Tsai et al., 2019] - / 83.0 - / 82.8 40.0 0.871 0.698 - / 82.5 - / 82.3 52.8 0.580 0.703

(B) MISA [Hazarika et al., 2020] 81.8 / 83.4 81.7 / 83.6 42.3 0.783 0.761 83.6 / 85.5 83.8 / 85.3 52.2 0.555 0.756
(B) MTAG [Yang et al., 2021] - / 82.3 - / 82.1 - 0.866 0.722 - - - - -
(B) Self-MM [Yu et al., 2021] 83.4 / 85.5 83.4 / 85.4 46.7 0.708 0.796 83.8 / 85.2 83.8 / 84.9 53.9 0.531 0.765
(B) TMMDA [Zhao et al., 2023] - / 86.9 - / 86.9 - 0.703 0.801 - - - - -
(B) ConFEDE [Yang et al., 2023] 84.2 / 85.5 84.1 / 85.5 42.3 0.742 0.784 81.7 / 85.8 82.2 / 85.8 54.9 0.522 0.780
(B) HyDiscGAN (ours) 84.1 / 86.7 83.7 / 86.3 43.2 0.749 0.782 81.9 / 86.3 82.1 / 86.2 54.4 0.533 0.761

Table 2: Predicted results of different MSA models on MOSI and MOSEI datasets. “↑” indicates that larger values represent better results
and “↓” signifies the opposite. (G) and (B) represent using Glove and BERT as text feature extractors, respectively. In Acc-2 and F1
score columns, the number on the left side of “/” corresponds to “negative/non-negative” and the number on the right side corresponds to
“negative/positive”. Bold values represent optimal performance and underlined values indicate suboptimal performance.

Term ConFEDE -FL -SL -SFL HyDiscGAN
Privacy preservation ✗ ✓ ✓ ✓ ✓
Distributed computing ✗ ✓ ✓ ✓ ✓
Generative capacity ✗ ✗ ✗ ✗ ✓
No computations on testing clients ✓ ✗ ✗ ✗ ✓

Client-side training - Parallel Sequential Parallel Parallel
Scale of parameters (per client) - 109.5M 23.9M 23.9M 77.8K
Scale of communication parameters (one epoch) - 109.5M×2S 23.9M×2S 23.9M×2S 77.8K×2S

Table 3: Comparison of key attributes and training costs (on the MOSI dataset) of foundational DCL frameworks, including Federated
Learning (-FL), Split Learning (-SL), Federated Split Learning (-SFL), and our HyDiscGAN. S is the count of training clients in one epoch.

Model Acc-2 ↑ F1-Score ↑ Acc-7 ↑ MAE ↓ Corr ↑
ConFEDE 84.2 / 85.5 84.1 / 85.5 42.3 0.742 0.784
-FL 81.4 / 81.7 81.3 / 81.5 40.7 0.803 0.721
-SL 83.5 / 84.2 83.1 / 83.9 41.6 0.765 0.767
-SFL 82.8 / 83.2 82.7 / 83.0 41.3 0.811 0.734

HyDiscGAN 84.1 / 86.7 83.7 / 86.3 43.2 0.749 0.782

Table 4: Predicted results of different DCL frameworks on the MOSI
dataset, including Federated Learning (-FL), Split Learning (-SL),
Federated Split Learning (-SFL), and our HyDiscGAN.

To assess the MSA performance and communication costs
of HyDiscGAN in distributed training, we deployed Con-
FEDE across three widely used DCL frameworks: Federated
Learning (-FL) [McMahan et al., 2017], Split Learning (-
SL) [Gupta and Raskar, 2018], and Federated Split Learning
(-SFL) [Thapa et al., 2022]. ConFEDE and its three variants
are implemented using the provided codes from the authors.
In -FL, each client independently trains a complete ConFEDE
model using its local data, which is then aggregated at the
central server. In -SL and -SFL, we adhere to the minimum
split principle, aiming to perform as much computation as
possible on the central server.

4.3 Performance Analysis
Comparison with Advanced MSA Models
Table 2 presents the comparative results between our pro-
posed HyDiscGAN and other MSA models on MOSI and
MOSEI datasets. In detail, HyDiscGAN achieves suboptimal
performance across all classification metrics on the MOSI
dataset. In the fundamental binary sentiment classification
metrics (Acc-2 and F1-Score), the results of HyDiscGAN are,
on average, only 0.325% lower than the SOTA performance.

Note that in the “negative/positive” binary classification, Hy-
DiscGAN ranks second, closely trailing behind the SOTA
model TMMDA which incorporates data augmentation tech-
niques. Moreover, on the MOSEI dataset, HyDiscGAN sig-
nificantly outperforms ConFEDE and achieves SOTA perfor-
mance in this task, exhibiting an average improvement of
0.45% higher than the suboptimal model ConFEDE. Further-
more, in other metrics, HyDiscGAN also demonstrates com-
petitiveness. This indicates that the private modality fake fea-
tures generated by HyDiscGAN contain high-quality senti-
ment cues, comparable to real features.

HyDiscGAN does not exhibit the same level of perfor-
mance in regression tasks, i.e., MAE and Corr, as in clas-
sification tasks. One possible reason is that the Real-Real
contrastive loss can only separate samples with different sen-
timent polarities, lacking regularization for samples with the
same sentiment polarity but differing only in intensity during
the feature generation process.

Comparison with Existing DCL Frameworks
Table 3 presents a comparison of key attributes and train-
ing costs between our HyDiscGAN and three existing DCL
frameworks that deploy the SOTA MSA model ConFEDE.
Overall, the training costs on the client side are significantly
reduced with HyDiscGAN (reduced by 99.93% compared to
-FL, and 99.68% compared to -SL and -SFL). Simultane-
ously, HyDiscGAN possesses the capability to generate fake
features for private modalities, resulting in zero costs on the
client side during testing. In contrast, other DCL frameworks
require the same costs during testing as in training, making
HyDiscGAN more suitable for testing scenarios with com-
pletely limited resources.

The results of comparative MSA methods are outlined in
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Variant Acc-2 ↑ F1-Score ↑ MAE ↓ Corr ↑
Real feature (Only Audio)† 58.2 57.0 1.150 0.144
Fake feature (Only Audio) 65.2 61.6 1.147 0.162
Real feature (Only Visual)† 57.4 57.0 1.160 0.143
Fake feature (Only Visual) 65.3 65.1 1.139 0.168

cGAN loss (Only) 85.3 84.9 0.751 0.778
w/o L∗

real 85.4 85.2 0.752 0.774
w/o L∗

fake 86.0 85.7 0.750 0.779

HyDiscGAN 86.7 86.3 0.749 0.782

Table 5: Ablation results of real/fake features for private modalities
(audio-visual). † indicates the results from the baseline TMMDA.
“w/o” denotes “without”.

Table 4. While HyDiscGAN may not surpass the centralized
model ConFEDE on specific evaluation metrics, it demon-
strates notable superiority over ConFEDE across all metrics
when ConFEDE is deployed in existing DCL frameworks.
The influence arises from the label distribution skew [Zhang
et al., 2022] in client data within existing DCL frameworks
for ConFEDE. When applied to MSA tasks, HyDiscGAN fol-
lows the two-stage training approach and employs the hybrid
DCL strategy exclusively during the stage of learning the pri-
vate modality real feature distribution on the client. This
stage involves self-supervised learning and is therefore not
influenced by the distribution of sentiment labels.

4.4 Ablation Study
Effects of Generated Fake Features
Table 5 upper section displays the performance of predict-
ing sentiment tendencies using only visual or audio modal-
ity features. One observation is that in both modalities, the
fake features we generated show significant performance im-
provements across all metrics compared to real features. This
is attributed to the Cross-Modality cGAN we constructed,
which generates non-textual modality features from text fea-
tures. As the textual modality contains more sentiment cues,
the generated features carry more sentiment information.

Effects of Customized Contrastive Losses
Table 5 lower section demonstrates the impact of two cus-
tomized contrastive losses L∗

real and L∗
fake, developed by

us, on the performance of MSA tasks. We observed a per-
formance enhancement with both losses, particularly with
L∗
real. This is because L∗

real is based on a regularization
term applied to real features with different sentiment polar-
ities. It promotes the aggregation of samples with the same
polarity in the feature space while encouraging the separation
of samples with different polarities, leading to a more distinct
representation of sentiment information.

4.5 Convergence Analysis
When training Cross-modality cGAN, there is a mutual game
between the generator and discriminator, which may lead to
training instability [Radford et al., 2015]. We present the
convergence curves of losses during the training of Cross-
Modality cGAN in HyDiscGAN, as shown in Figure 3. It
can be observed that the losses of generators and discrimi-
nators eventually converge to low values. This indicates that
HyDiscGAN is capable of generating “sufficiently realistic”
fake features.
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Figure 3: Convergence visualization of training the cross-modality
cGAN in HyDiscGAN on MOSI and MOSEI datasets, respectively.
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Figure 4: Visualization of the gated attention weights in the Fusion
Module for audio-visual features on the test set of MOSI. Brighter
regions imply higher unimodal information flow through the gates.

4.6 Visualization
To further validate the effectiveness of generated fake features
for MSA tasks, we qualitatively visualize the differences in
their contributions to the final sentiment prediction compared
to real features. As shown in Figure 4, the information in
audio and visual fake features generated by HyDiscGAN is
more retained in hfinal, indicating their broader involvement
in sentiment prediction and underscoring their effectiveness.

5 Conclusion
In this paper, we propose a novel hybrid DCL framework Hy-
DiscGAN for audio-visual privacy preservation in MSA. Hy-
DiscGAN conducts training through direct communication
between the server and clients, aiming to avoid constructing
centralized datasets that expose personal privacy. Compared
to other DCL frameworks, HyDiscGAN achieves a better bal-
ance between performance and privacy preservation. Addi-
tionally, it demonstrates significantly superior training effi-
ciency on the client side, making it more suitable for sce-
narios with limited client resources. Extensive experiments
verify that, while preserving privacy, HyDiscGAN competes
comparably with the SOTA models in MSA tasks.
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