
Two-stage Semi-supervised Speaker Recognition with Gated Label Learning

Xingmei Wang1 , Jiaxiang Meng1 , Kong Aik Lee2 , Boquan Li1,3,∗ and Jinghan Liu1

1College of Computer Science and Technology, Harbin Engineering University, Harbin, China
2Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong

3School of Computing and Information Systems, Singapore Management University, Singapore
{wangxingmei, mjxwjy}@hrbeu.edu.cn, kong-aik.lee@polyu.edu.hk, {liboquan,

liujinghan}@hrbeu.edu.cn

Abstract

Speaker recognition technologies have been success-
fully applied in diverse domains, benefiting from
the advance of deep learning. Nevertheless, current
efforts are still subject to the lack of labeled data.
Such issues have been attempted in computer vi-
sion, through semi-supervised learning (SSL) that
assigns pseudo labels for unlabeled data, undertak-
ing the role of labeled ones. Through our empirical
evaluations, the state-of-the-art SSL methods show
unsatisfactory performance in speaker recognition
tasks, due to the imbalance between the quantity and
quality of pseudo labels. Therefore, in this work, we
propose a two-stage SSL framework, with the aim
to address the data scarcity challenge. We first con-
struct an initial contrastive learning network, where
the encoder outputs the embedding representation
of utterances. Furthermore, we construct an itera-
tive holistic semi-supervised learning network that
involves a clustering strategy to assign pseudo la-
bels, and a gated label learning (GLL) strategy to
further select reliable pseudo-label data. Systemati-
cal evaluations show that our proposed framework
achieves superior performance in speaker recogni-
tion than the state-of-the-art methods, matching the
performance of supervised learning.

1 Introduction
Speaker recognition technologies identify speakers based on
their voice features extracted from speaker utterances [Hanifa
et al., 2021], which have been broadly utilized in numerous in-
formation security applications such as identity authentication
and access control [Singh et al., 2012].

With the emergence of deep learning, speaker recogni-
tion is implemented as neural networks [Brecht et al., 2020],
and the performance is improved into a new level [Bai
and Zhang, 2021; Son et al., 2020]. Although remark-
able results have been achieved, these methods require mas-
sive labeled data to perform supervised learning [Vladimir,
2017], and the challenge of annotating utterances as well as
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huge time expenses make them hard to be applied in prac-
tice. In response to such limitations, researchers have at-
tempted strategies including few-shot learning [Prateek, 2020;
Yanxiong et al., 2023] and transfer learning [Cunwei et al.,
2018]. Based on their reported results, they still perform lim-
ited success if only limited labeled utterances are available.

Intuitively, compared to labeled utterances, the ones with-
out labels are widely available, which inspires a potential
direction, i.e., taking advantage of semi-supervised learning
(SSL) [Engelen and Hoos, 2020] that trains models based on
joint labeled as well as unlabeled data. To leverage unla-
beled data, typical SSL technologies assign pseudo labels
to them enabling such data to act as labeled ones, which
has been implemented in computer vision [Xiangli et al.,
2023]. Especially, those state-of-the-art holistic methods such
as FixMatch [Kihyuk et al., 2020] and FlexMatch [Bowen
et al., 2021] achieve promising performance matching su-
pervised learning. In contrast, there are only limited re-
search attempts in speaker recognition [Long et al., 2021;
Nakamasa and Keita, 2020; Kreyssig and Woodland, 2020;
Fuchuan et al., 2022], and their reported results are inferior
to the performance in computer vision. In general, SSL in
speaker recognition is still an open problem and has plenty of
room for improvement.

In this work, we propose a two-stage holistic SSL frame-
work customized for speaker recognition, and aim to achieve
matching performance to supervised learning. To achieve this,
the key is to understand why existing holistic methods per-
form excellently in computer vision but the same is not true
in speaker recognition? We attribute this question to the fact
that classes in utterance data greatly exceed image ones. To be
specific, such huge-class data inevitably causes the imbalance
between the quality and quantity of pseudo labels, i.e., SSL
models focus on either assigning correct labels or selecting
enough amounts of pseudo-label data. Such phenomena are
analogous to the confirmation bias [Eric et al., 2020] issue,
i.e., models overfit to the data assigned with incorrect pseudo
labels. Based on this intuition, we aim to implement effective
speaker recognition by addressing such imbalances.

In particular, our proposed framework mainly includes:

• In Stage I, we devise a contrastive learning-based net-
work [Danwei et al., 2021] (based on unlabeled data),
which provides an initial framework as well as produces
speaker embedding representations for the next stage.
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• In Stage II, we devise a holistic network to perform it-
erative semi-supervised learning (based on joint labeled
and unlabeled data). First, we apply a semi-supervised
clustering strategy to assign pseudo labels, rather than
based on classification layers. By performing clustering
based on the similarity between labeled and unlabeled
embeddings, those incorrect pseudo labels are prelimi-
narily mitigated. Second, we propose a gated label learn-
ing (GLL) network that involves flexible threshold and
label verification strategies, which balance the quality
and quantity of pseudo labels and further select reliable
pseudo-label data.

• Based on comparative and ablation experiments, our
framework (1) achieves promising speaker recognition
performance (1.18%, EER) that approximates supervised
learning (0.96%, EER), (2) effectively balances the qual-
ity and quantity of pseudo labels, and (3) is superior to
the state-of-the-art baseline methods.

• We release our models and codes resulting from this work
online1, and believe this work is pioneer to support future
research around SSL-based speaker recognition.

2 Related Work
In this section, we review and compare the related work around
speaker recognition and semi-supervised learning.

2.1 Speaker Recognition
Speaker recognition technologies involve identifying and veri-
fying the identity of an individual based on their unique audio
characteristics. It is a crucial branch in the domain of artificial
intelligence and information security [Singh et al., 2012].

Compared to conventional approaches that perform manual
feature engineering [Reynolds et al., 2000; Bai and Zhang,
2021; Noble, 2006; Billson et al., 2019; Campbell et al., 2006],
advanced deep learning models adopt Deep Neural Networks
(DNNs) to perform speaker recognition that extracts identifica-
tion features automatically. For example, Snyder et al. [David
et al., 2018] proposed a Time Delay Neural Network (TDNN)
that contained segment-level as well as time-delay layers, so
as to extract time-related features as x-vector for recognition.
Desplanques et al. [Brecht et al., 2020] augmented TDNN
with a series of Emphasized Channel Attention, Propagation,
and Aggregation blocks as ECAPA-TDNN, which learned
both temporal and context information for recognition. Deep
learning models achieve breakthrough performance benefiting
from automatic feature extraction. However, most of them fol-
low supervised learning schemes [David et al., 2021] based on
numerous labeled utterances. Expensive annotation expenses
make existing work hard to be applied in practice.

In response to the labeled data absence issue, Ali et
al. [Yanxiong et al., 2023] devised a few-shot learning method,
which designed a feature interaction strategy to enhance the
representational ability of its learned embedding. Sun et
al. [Cunwei et al., 2018] proposed a Convolutional Neural Net-
work mixed Restricted Boltzmann Machine (TLCNN-RBM)

1Our models, codes and data are available at https://github.com/
aitssgll/semi-supervised-speaker-recognition

to perform transfer learning. Although these methods mitigate
the data annotation issue to certain extents, based on their
reported results, limited labeled utterances still make their
performance inferior to supervised learning.

2.2 Semi-supervised Learning
Semi-supervised learning (SSL) technologies train deep learn-
ing models based on few labeled as well as enough unlabeled
data. Especially, those typical methods produce pseudo labels
for unlabeled data and thereby enable them to undertake the
role of labeled ones [Yassine et al., 2020]. We review exist-
ing SSL technologies based on their application domains, i.e.,
computer vision and speaker recognition.

SSL in Computer Vision
Existing methods are generally categorized into three groups,
i.e., consistency regularization, entropy minimization, and
holistic (the former two types) methods.

First, consistency regularization methods [Mehdi et al.,
2016] request models’ predictions to be consistent across unla-
beled as well as augmented data, so as to learn robust and con-
sistent features [Samuli and Timo, 2017; Takeru et al., 2019;
Antti and Harri, 2017]. For example, Laine et al. [Samuli and
Timo, 2017] proposed a Temporal Ensembling strategy on Pi-
Model that adopted an MSE loss to obtain similar predictions
between original as well as augmented inputs.

Second, entropy minimization methods [Yves and Yoshua,
2005] minimize the entropy of models’ predictions, so as to
encourage models to produce confident and reliable predic-
tions [Hyun, 2013; Qizhe et al., 2020]. For example, Lee et
al. [Hyun, 2013] present pseudo labels that pick up the class
with the maximum predicted probability, and can be used as if
they are true labels. Xie et al. [Qizhe et al., 2020] proposed
a self-training method, which assigned pseudo labels from
student-teacher models.

Third, holistic methods integrate the above consistent reg-
ularization and entropy minimization strategies. Specifically,
pseudo labels are assigned under weak augmentation for un-
labeled data, and the labeled and pseudo-label data is then
jointly utilized with cross-entropy loss [Kihyuk et al., 2020;
Bowen et al., 2021]. For example, Sohn et al. [Kihyuk et
al., 2020] proposed FixMatch that generated pseudo labels
using a model’s predictions on weakly-augmented unlabeled
data, and the model was further trained under a fixed threshold
when fed the strongly-augmented data. Zhang et al. [Bowen et
al., 2021] reported that FixMatch utilizes pre-defined constant
thresholds for all classes to select unlabeled data, ignoring
different learning statuses and difficulties of different classes.
They thus proposed FlexMatch that involved a Curriculum
Pseudo Labeling (CPL) strategy to obtain the flexible thresh-
old dynamically for each class. Chen et al. [Ting et al., 2020a]
proposed SimCLRv2, which adopted contrastive learning with
unlabeled data, and was then fine-tuned by a few labeled ones.
They found that semi-supervised learning can benefit from
two-stage training strategies, especially contrastive learning.

Among the above SSL methods, the holistic ones are ac-
knowledgedly deemed as the state-of-the-art SSL methods,
and have reported promising performance close to supervised
learning in computer vision tasks [Xiangli et al., 2023].
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SSL in Speaker Recognition
Currently, only limited work attempts SSL in the speaker
recognition domain. For example, Inoue et al. [Nakamasa
and Keita, 2020] proposed a framework based on Generalized
Contrastive Loss (GCL), which unified losses from supervised
metric learning as well as unsupervised contrastive learning.
Kreyssig et al. [Kreyssig and Woodland, 2020] proposed a
variant of VAT [Antti and Harri, 2017], where the loss was de-
fined as the robustness of the speaker embedding against input
perturbations, and measured by the cosine distance (termed as
CD-VAT). Tong et al. [Fuchuan et al., 2022] utilized a Graph
Convolutional Network (GCN) to cluster pseudo labels for
unlabeled data.

In contrast to the mature SSL technologies in computer vi-
sion, existing SS-based speaker recognition methods report
inferior results than supervised learning, and there is still
plenty of room for improvement. Thus, our work adopts the
holistic SSL strategy, given their promising performance in
computer vision, and aims to achieve performance as promis-
ing as supervised learning.

3 Methodology
In this section, we present our proposed two-stage speaker
recognition framework illustrated in Figure 1 in detail. As
in the figure, Stage I performs contrastive learning as a pre-
training task that provides an initial encoder. Stage II performs
iterative holistic semi-supervised learning, where a cluster-
ing strategy is first applied on the encoder, so as to assign
pseudo labels for unlabeled data based on labeled data. Fur-
ther, in holistic semi-supervised learning, a cross-entropy loss
is jointly utilized for supervised loss Ll (for labeled data xl)
and unsupervised loss Lu ft and Lu lv (for unlabeled data xu),
and the pseudo labels are adopted as supervision signals of the
unsupervised loss. Finally, we propose gated labeled learning
(GLL) that involves flexible threshold and label verification
strategies to further select reliable pseudo-label data. Note
that these operations are iteratively conducted.

3.1 Contrastive Learning
Motivated by the conclusion reported in SimCLR-v2 [Ting et
al., 2020a], contrastive learning in an upstream task is ben-
eficial to the SSL performance in a downstream task. Such
advantages are in accord with our aim to improve the perfor-
mance of SSL in speaker recognition. Thus, in Stage I, we
construct a contrastive learning network that provides an initial
SSL framework and produces speaker embeddings.

Specifically, contrastive learning [Danwei et al., 2021; Ting
et al., 2020b] trains all unlabeled data in a task-agnostic way
with both positive and negative utterance pairs. Formally, the
aim is to minimize the distance of the positive pairs:

Lscl =
1

2N

N∑
i=1

2∑
j=1

− log
exp(cos(ei,1,ei,2))

N∑
k=1

2∑
l=2

I
k ̸= i
j ̸= l

exp(cos(ei,j ,ek,l))

, (1)

where ei,j is the embedding obtained by encoder f (·) on seg-
ment xi,j , and cos (·) is a specific cosine similarity function.

From Equation 1, to perform contrastive learning, it is nec-
essary to obtain enough positive and negative pairs. However,
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Figure 1: The proposed two-stage semi-supervised speaker recogni-
tion framework, where Stage I (top) performs contrastive learning
and Stage II (bottom) performs iterative holistic semi-supervised
learning with gated label learning.

meaningful information contained in positive pairs is com-
monly not enough [Ruijie et al., 2022]. Thus, as illustrated in
Figure 1, two separate sub-segments xi,1 and xi,2 are cut ran-
domly from one utterance to positive pairs, so as to enrich the
quantity. In contrast, two segments from different utterances
are viewed as negative pairs. Moreover, to avoid false-negative
pairs, we adopt large-enough datasets and suitable batch sizes,
which are validated to reduce false-negative rates [Haoran et
al., 2021]. Additionally, our strategy of contrastive learning
follows [Ting et al., 2020b], where an Augmentation Adversar-
ial Training (AAT) loss [Jaesung et al., 2020] is jointly utilized
with the contrastive loss, so as to maintain the classification
ability of encoder f (·), whilst reducing its mislabeling.

3.2 Iterative Holistic Semi-supervised Learning
Based on the initial network in Stage I, we construct a further
SSL framework for speaker recognition in Stage II. Follow-
ing our analysis in Section 2.2, we adopt the holistic SSL
strategy. It generally utilizes labeled data with ground-truth
labels as well as abundant unlabeled data with pseudo labels
produced under weak augmentation, and the pseudo label is a
breakthrough factor to ensure reliable performance [Eric et al.,
2020]. Thus, we propose two strategies to assign and select
reliable pseudo labels, i.e., clustering and gated label learning.

Semi-supervised Clustering
Based on labeled and unlabeled utterances, a constrained seed
k-means [Sugato, 2002] clustering strategy is adopted to assign
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pseudo labels for the unlabeled utterance, upon the similarity
between unlabeled embedding eu

i
and labeled embedding el

j
.

This design preliminarily avoids the mislabeling of pseudo
labels for unlabeled utterances [Hieu et al., 2021], instead of
assigning them based on classification layers in conventional
methods [Kihyuk et al., 2020; Bowen et al., 2021].

The framework is then trained based on labeled utterances
with ground-truth labels as well as unlabeled ones with pseudo
labels. Moreover, an additive angular margin softmax (AAM-
softmax) loss [Jiankang et al., 2022] is augmented to the
encoder f (·). Note that we adopt an iterative learning strategy.
That is, the speaker encoder is iteratively trained with multiple
iterations until converges, and the best-performed parameters
in certain iterations are then utilized for clustering, which
reassigns pseudo labels in the next iteration.

Gated Label Learning
Next, in Stage II, we propose an additional gated label learn-
ing (GLL) strategy that involves flexible threshold and label
verification strategies, to further select reliable pseudo-label
data and balance the quality and quantity of pseudo labels.

General methods select pseudo labels based on either
fixed [Kihyuk et al., 2020] or flexible thresholds [Bowen
et al., 2021; Yidong et al., 2022]. Although such methods
achieve satisfactory performance in computer vision tasks, if
high-quality (correct) pseudo labels are over-focused, it in-
evitably reduces the quantity of selected labels and affects
the performance of SSL. In speaker recognition tasks, the
quantity and quality of pseudo labels are more challenging
to be balanced compared with image ones [Hao et al., 2023;
Nayeem et al., 2021]. Thus, we propose GLL that provides a
fusion way to filter pseudo labels.

Preliminarily, the quality refers to the ratio of the correctly
assigned pseudo labels compared with their ground-truth ones:

quality =
1

N

N∑
i=1

I(ypci == yu), (2)

where ypc
i

is the pseudo labels of the unlabeled samples
through GLL, yu represents their ground truth labels, and
N is the number of unlabeled samples selected by GLL.

The quantity refers to the ratio of the selected pseudo-label
data among the total unlabeled ones:

quantity =
1

NU

NU∑
i=1

I (B (i)), (3)

B (·) =
{

qui > τ GLL == flexiblethreshold
argmax (qui ) = ypc

i
otherwise

, (4)

where ypc
i

is the pseudo labels assigned by clustering, Nu

is the number of the total unlabeled samples, and τ is the
confidence threshold. qui is the speaker recognition prediction
on data xu

i , that is, qui = p (y|AW (xu
i )). p (·|·) is the output

probability, where AW (·) represents a weak augmentation
operation. Note that the ground truth labels of the unlabeled
sample in Equation 2 are only used to perform analysis, instead
of guiding model training.

First, we apply flexible thresholds [Bowen et al., 2021] into
the confidence of the loss function, so as to apply different

thresholds to select pseudo-label data. Formally, the flexible
threshold is:

τt =


1
K , t = 0

µτt−1 + (1− µ) 1
µB

µB∑
j=1

I(qui > τt−1) · qui , otherwise
, (5)

where µB is the batch size and µ is the hyperparameter to
balance the increasing speed of threshold τt. Here, the unsu-
pervised loss of the flexible threshold is:

Lu ft =
1

NU

NU∑
i=1

(
I(qui > τt) ·H

(
ypc
i
, p (y|AS (xu

i ))
))
, (6)

where H (·, ·) is the cross-entropy loss, and AS (·) represents
a strong augmentation operation.

Second, we apply label verification as a decision fusion to
the loss function, so as to enable pseudo labels to be assigned
by clustering or classification. Such strategies provide flex-
ible mechanisms to avoid incorrect pseudo labels caused by
poor classification ability at the beginning of model training.
Formally, the unsupervised loss of label verification is:

Lu lv = 1
NU

NU∑
i=1

I
(
argmax (qui ) = ypc

i

)
·H

(
ypc
i
, p (y|AS (xu

i ))
)
. (7)

Finally, the overall loss as:

L = Ll + λLu, (8)

where Ll is a cross-entropy loss (for training labeled data)
and Lu is the unsupervised training loss involving Lu ft and
Lu lv . Note that they are chosen alternatively to select reliable
pseudo labels until the next re-clustering.

4 Experiment
In this section, we first introduce our experimental setup, and
then present our comparative as well as ablation experiments.

4.1 Experimental Setup
We start with introducing the datasets, implementation, and
baseline methods of our experiments.

Datasets
To train our framework, we adopt the most typical datasets,
VoxCeleb2 [Son et al., 2018], which contains 1092009 utter-
ances from 5994 speakers. In addition, we collect the testing
set from VoxCeleb1 [Arsha et al., 2017], which contains 37721
utterance pairs from 40 speakers. Following the setting of typ-
ical SSL speaker recognition methods [Long et al., 2021] and
the general settings of SSL, i.e., the quantity of unlabeled
data should be more than labeled ones, different proportions
of utterances per speaker (1% (1 sample), 2% (4 samples),
6% (10 samples), 11% (20 samples), 22% (40 samples), 33%
(60 samples)) are selected as labeled data, and the remaining
utterances are selected as unlabeled ones.

Implementation
In Stage I, we construct our contrastive learning network based
on a Loss-gated Learning (LGL) [Ting et al., 2020b] archi-
tecture (one of the state-of-the-art self-supervised models),
following the parameter settings in ECAPA-TDNN [Brecht
et al., 2020], which is one of the state-of-the-art end-to-end
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Method The proportion of utilized labeled data
1% 2% 6% 11% 22% 33%

FlexMatch (0.9) [Bowen et al., 2021] 21.22 10.05 6.68 8.21 6.83 6.43
FlexMatch (0.000351) [Bowen et al., 2021] 19.89 16.53 18.57 6.99 7.49 1.24
FixMatch (0.9) [Kihyuk et al., 2020] 15.62 10.24 9.07 8.44 8.04 7.74
FixMatch (0.000351) [Kihyuk et al., 2020] 13.79 9.33 5.27 2.82 2.72 2.53
Mean Teacher [Takeru et al., 2019] 32.62 10.36 6.35 3.74 1.95 1.79
Pseudo Label [Hyun, 2013] 17.96 11.51 7.11 3.28 6.91 6.52
SimCLRv2 [Ting et al., 2020a] 6.05 3.16 2.97 2.66 2.59 2.03
GCL [Nakamasa and Keita, 2020] 2.56
CD-VAT [Kreyssig and Woodland, 2020] 6.46
GCN [Fuchuan et al., 2022] 1.30
Ours Stage I only 6.61
Ours w/o GLL 4.58 2.61 2.15 1.81 1.64 1.37
Ours 3.24 1.74 1.65 1.53 1.41 1.18
Full supervised 0.96

Table 1: EER (%) results of our framework as well as other baseline methods

networks in speaker recognition [Chen et al., 2023]. Specif-
ically, the channel size of ECAPA-TDNN is 1024, and the
log mel-spectrogram dimension is 80. In Stage II, we ap-
ply strong augmentation settings in X-Vectors [David et al.,
2018], and set weak augmentation as no data is augmented.
The clustering component is implemented based on a faiss
library [Mathilde et al., 2018]. Finally, the optimizer in both
stages is Adam [Kingma and Lei, 2015] with an initial learn-
ing rate of 0.001. The learning rate is decreased by 5% each
five epochs in Stage I and is decreased by 5% each epoch in
Stage II.

Baseline Methods
As illustrated in the first (Method) column in Table 1, to eval-
uate the effectiveness of our framework, we apply multiple
state-of-the-art SSL methods in both computer vision and
speaker recognition domains. Computer vision methods in-
clude the holistic FixMatch [Kihyuk et al., 2020] and Flex-
Match [Bowen et al., 2021], the consistency-regularization
Mean Teacher [Takeru et al., 2019], the entropy-minimization
Pseudo Label [Hyun, 2013], and SimCLRv2 [Ting et al.,
2020a] that inspires us from applying the contrastive learning
in Stage I. Speaker recognition methods include GCL [Naka-
masa and Keita, 2020], CD-VAT [Kreyssig and Woodland,
2020] and GCN [Fuchuan et al., 2022].

Note that the datasets utilized in speaker recognition and
computer vision tasks are greatly different, especially their
contained classes. For example, 5994 classes are contained
in VoxCeleb2 [Son et al., 2018] and about 1000 classes are
contained in ImageNet [Jia et al., 2009]. Thus, for fair compar-
isons, we explore the best settings for those computer vision
methods (to adapt to speaker recognition datasets), by adjust-
ing the confidence threshold.

Specifically, we explore the confidence threshold based on
the state-of-the-art holistic method, FixMatch, which com-
monly sets the threshold to 0.9, and the setting is validated ef-
fectively in computer vision tasks. By evaluating FixMatch in
our speaker recognition dataset (based on 6% labeled data), we
observe that the maximum confidence will not exceed 0.0005
and the maximized mean confidence is 0.00039. We apply the
obtained maximized mean confidence (0.00039) as a standard,

and multiply it by 0.9 to obtain the best threshold, 0.000351.
We also attempt multiple thresholds and find that 0.000351
achieves the best performance in terms of EER (6.49%), and
the value is thus selected in the subsequent experiments.

4.2 Comparative Experiments
In the following, we first evaluate and compare our framework
with other baselines. We then analyze the quality and quantity
of their pseudo labels to empirically explore the reason for
their success or failure.

Speaker Recognition Performance
Table 1 presents our results based on the metric of Equal Error
Rate (EER), which is commonly adopted to evaluate speaker
recognition models [Karen and Andrew, 2015; Chen et al.,
2023]. In the table, the results of SSL methods are obtained
with different proportions of utilized labeled data, and the
results of GCL, CD-VAT, and GCN are referred from their
original literature.

First, it is observed that our frameworks achieve the best
results (as the blue-highlighted values in the table) that outper-
form any baseline methods as well as our variants. Especially,
based on 1% labeled data, we achieve an EER of 3.24%, which
is worthy emphasized that our framework achieves promising
results with only few labeled data. Moreover, when 33% la-
beled data is utilized, our framework achieves an approximate
EER (1.18%) to the full supervised model (0.96%), which
presents great effectiveness and advancements.

Second, SimCLRv2 outperforms others (except our frame-
work), suggesting that the two-stage framework that inspires
us is effective in speaker recognition. FixMatch and Flex-
Match perform better based on the confidence threshold of
0.000351 than 0.9 in most cases. Moreover, FixMatch and
FlexMatch achieve generally better performance than Mean
Teacher and Pseudo Label, which demonstrates the superiority
of such holistic methods.

Third, Ours w/o GLL achieves better EER even if only 1%
labeled data is utilized (4.58%), which indicates our clustering
strategy make contributions to the performance.

In general, our framework is effective in the speaker recog-
nition task even if only limited labeled data is available, and is
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Figure 2: (a) Quantity and (b) Quality of selected pseudo labels in FixMatch. (c) Quantity and (d) Quality of selected pseudo labels in
FlexMatch.

superior to the state-of-the-art methods.

Quality and Quantity of Pseudo Labels
The above experiments demonstrate our framework is superior
to those baseline methods. Recall that we attribute our success
to the balance of the quality and quantity of pseudo labels.
Thus, in this experiment, we first take the holistic methods,
FixMatch (0.000351) and FlexMatch (0.000351), as baselines
to evaluate whether their pseudo labels are imbalanced, and
then compare them with our framework.

Figure 2 presents the quality and quantity results on Fix-
Match and FlexMatch, where quality and quantity are defined
in Equation 2 and Equation 3. In these figures, the quantity
and quality changes are evaluated based on utilizing different
amounts of labeled data, along with training epochs. First, to
observe the results of FixMatch in Figure 2 (b), high-quality
pseudo labels are obtained in most cases. However, in Figure 2
(a), the quantity of the selected pseudo-label data is below 0.1
in all cases. Such results confirm our intuition that FixMatch
is over-focusing on assigning correct pseudo labels, which
results in low quantity, i.e., the selected pseudo-label data for
model training is insufficient. Second, to observe the result of
FlexMatch in Figure 2 (c), the pseudo labels are high-quantity
in all cases, which indicates the utilization rate of unlabeled
data is satisfactory. However, in Figure 2 (d), the quality of
pseudo labels is unsatisfactory in most cases, which indicates
most of the labels are mislabeled. As an exception, as the
yellow curve in Figure 2 (d), high-quality pseudo labels can
be assigned with training iterations. This is explainable since
33% labeled data is enough for FlexMatch to assign pseudo
labels based on its classification layers. In general, the evalua-
tion results are in accordance with our intuitions, that is, such
state-of-the-art SSL models can not balance the quality and
quantity of pseudo labels when encountering speaker datasets,
and are thus not qualified for the speaker recognition task.

Figure 3 presents the comparison results of FixMatch, Flex-
Match, and our frameworks. Compared with FixMatch and
FlexMatch, our frameworks (with and without GLL) have
achieved both high-quality and high-quantity results. Espe-
cially, as the green curve in Figure 3 (b), the quality results
achieved by our framework (with GLL) are approaching 1.0,
which indicates most of the pseudo labels are correctly labeled.
Moreover, as the green curve in Figure 3 (a), the success
quality results (in Figure 3 (b)) are obtained based on accept-

Figure 3: Comparisons of the (a) Quantity and (b) Quality of selected
pseudo labels in baseline and our frameworks. Note that the red and
blue curves in (a) are coincident and are thus occluded by each other.

able quantity drops, which are approaching 1.0 after the 14-th
epoch. In general, the results have explained the success of our
framework, which has the ability to balance the two factors,
and is competent for the speaker recognition task.

4.3 Ablation Experiments
Next, we perform ablation experiments to explore the effect of
our designed components or strategies on the performance of
speaker recognition. Specifically, we first evaluate the flexible
threshold and label verification strategies in GLL, and then
analyze the impact of iterative learning.

Flexible Threshold and Label Verification
We have implemented four variants of our framework as base-
lines, their performance is still evaluated on EER, and the
quantity and quality of pseudo labels.

Table 2 presents EER results based on different proportions
of labeled data. It is first observed that our framework (with
GLL) performs best among these baselines in all cases, as the
blue-highlighted values in the tables. Second, our framework
without GLL generally performs the worst among these meth-
ods, which indicates the procedure of selecting pseudo-label
data is necessary for the task. For example, based on 1% la-
beled data, it achieves an EER of 4.58% that is worse than the
results of other methods (3.67%, 3.30%, 3.43%, and 3.24%).
Third, our framework with either flexible thresholds or label
verification, outperforms the fixed-threshold one. For example,
based on 2% labeled data, our framework with a fixed thresh-
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Method The proportion of utilized labeled data
1% 2% 6% 11% 22% 33%

Ours w/o GLL 4.58 2.61 2.15 1.81 1.64 1.37
Fixed threshold 3.67 2.24 2.13 1.79 1.58 1.54
Flexible threshold 3.30 2.57 2.02 1.75 1.49 1.50
Label verification 3.43 2.36 1.91 1.69 1.53 1.20
Ours 3.24 1.74 1.65 1.53 1.41 1.18

Table 2: EER (%) results of our variant methods

Figure 4: (a) Quantity and (b) Quality of selected pseudo labels in
variant methods.

old achieves an EER of 2.24%, which is higher than the rest
two methods (2.57% and 2.36%). Such results are in accord
with our intuition that the fixed-threshold strategy is challeng-
ing to assign pseudo labels thus affecting speaker recognition
performance, and we will further analyze it in the following
experiments. Fourth, the superiority of flexible thresholds and
label verification is optimal as they are jointly utilized in our
framework (with GLL), which demonstrates the rationality
of our designed GLL. In general, the evaluation results have
further confirmed the effectiveness of our proposed GLL, and
each of its involved strategies is indispensable.

Figure 4 presents the quantity and quality of pseudo labels,
and the results are obtained using 33% labeled data. Firstly,
as the blue curve in Figure 4 (b), the framework with a fixed
threshold achieves high-quality results, however, in Figure 4
(a), it performs extremely low quantity results. Such results
have explained their unremarkable EER performance in Ta-
ble 2, i.e., it over-focuses on the correctness of pseudo labels
resulting in the selected pseudo-label data being insufficient.
In contrast, as the green curves in Figure 4, our framework
achieves both satisfactory quality and quantity results, espe-
cially after the 14-th epoch, indicating it has balanced the two
factors and has selected reliable pseudo to perform SSL in
speaker recognition. In general, these curves are in accor-
dance with the EER results in Table 2, which provides further
evidence to prove the necessity of our designed strategies.

Iterative Learning
Recall that our proposed iterative learning strategy iteratively
performs clustering and GLL progresses for selecting optimal
pseudo labels. In Table 3, we compare the performance of
our framework as well as its variants in five iterations, i.e.,
evaluating their effectiveness with iterative learning.

It is first observed that each result in the second to the fifth

Labels Method Iteration
1 2 3 4 5

1% Ours w/o GLL 5.13 4.58 4.71 7.62 6.78
Ours 4.40 3.78 3.48 3.31 3.24

2% Ours w/o GLL 3.31 2.80 2.61 2.70 2.75
Ours 2.80 1.96 1.74 1.91 2.03

6% Ours w/o GLL 3.00 2.51 2.15 2.26 2.23
Ours 2.17 1.88 1.74 1.65 1.92

11% Ours w/o GLL 2.36 1.83 1.81 1.91 2.14
Ours 1.85 1.53 1.69 1.82 1.90

22% Ours w/o GLL 2.23 1.73 1.67 1.68 1.64
Ours 1.69 1.46 1.41 1.64 1.70

33% Ours w/o GLL 1.96 1.52 1.46 1.37 1.59
Ours 1.39 1.28 1.22 1.18 1.32

Table 3: EER (%) results of our frameworks in different iterations

iteration outperforms the first iteration, whether our framework
is with or without GLL. For example, based on 1% labeled
data, our framework (with GLL) achieves an EER of 4.40%
in the first iteration, and the results are respectively 3.78%,
3.48%, 3.31% and 3.24% in the rest ones, which indicates our
strategy of iteratively assigning and selecting pseudo labels
are beneficial to the task. Moreover, we find that the best
results (as the blue-highlighted values in the table) commonly
appear in the middle (second to fourth) iterations. Based on
2% labeled data, the best EER of our framework (with GLL)
appears in the third iteration (1.74%), which indicates the best
(quality and quantity) pseudo labels can be selected within
limited iterations. However, the degradation in Table 3 as
iterations go on is a normal phenomenon in deep learning
models, since the model inevitably overfits to labeled data.
In general, the experimental results have demonstrated our
proposed iterative learning strategies are effective.

5 Conclusion and Future Work
This work proposes a two-stage semi-supervised speaker
recognition framework, towards overcoming the challenge
posed by limited labeled data, and achieving promising per-
formance matching supervised learning. Specifically, we (1)
construct an initial network trained on contrastive learning,
(2) apply clustering strategies to produce pseudo labels for
unlabeled data, and (3) propose a gated label learning (GLL)
network to select reliable pseudo-label data. Experimental
results show that our framework is (1) superior to the state-of-
the-art methods, (2) explainable by balancing the quantity and
quality of pseudo labels, and (3) comparable to the outstand-
ing performance of SSL in computer vision. In the future,
achieving promising results with the least labeled data and
fine-tuning an broader SSL method to the audio-related tasks
are still interesting topics to be perseverely explored.
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