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Abstract
Multi-intent Spoken Language Understanding
(Multi-intent SLU) can extract multiple intents in
a single utterance, gaining increasing attention.
Nevertheless, current multi-intent SLU approaches
still heavily rely on large amounts of annotated
multi-intent SLU data, which makes it hard to
be satisfied in real-world scenarios without suf-
ficient data. Motivated by this, we introduce a
novel decoupled pre-training framework (DPF) to
address the data-scarcity problem, achieving to
leverage of abundant multi-intent-free SLU data
to enhance multi-intent SLU. Specifically, DPF
first decouples the multi-intent SLU task into two
abilities: (1) task-agnostic ability to locate the
task-agnostic slot entity span and (2) task-specific
ability to predict the task-specific slot and intent
labels simultaneously. The key insight of DPF is
that such decomposition allows us to design a two-
stage decoupled pre-training procedure to enhance
both task-agnostic ability and task-specific ability
with abundant multi-intent-free SLU data (i.e.,
NER and single-intent SLU data), respectively.
Experimental results on two standard benchmarks
(e.g., MixATIS and MixSNIPS) demonstrate the
effectiveness of DPF by achieving superior perfor-
mance. In addition, extensive analyses reveal that
utilizing the multi-intent-free data can effectively
enhance multi-intent SLU.

1 Introduction
Spoken Language Understanding (SLU) is an essential com-
ponent of dialog systems, which can be used to extract
the semantic parsing results of user query (e.g., intents and
slots) [Tur and De Mori, 2011; Young et al., 2013; Qin et al.,
2019]. Specifically, SLU consists of two typical sub-tasks:
slot filling and intent detection. Take the query “add Despac-
ito to POP playlist and play it” in the Figure 1 as an exam-
ple, the former task is regarded as a sequence labeling task
to output a sequence of slots (i.e., “O, B-music-name,
O, B-playlist, O, O, O, O”) and the latter task is

Add
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B-playlistB-music-name O

Slot FillingIntent 
Detection

playlist and play it

O OO O
AddToPlaylist

Utterance Input
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Figure 1: An example of multi-intent SLU, which consists of a se-
quence of slots and multiple intents.

considered as a classification task to predict intents (i.e.,
“AddToPlaylist, PlayMusic”).

Recently, Gangadharaiah & Narayanaswamyet al. [2019]
discover that over 50% of samples in the internal Amazon
dataset exhibit multiple intents. Consequently, dominant
SLU systems shift their eyes from single-intent settings to
multi-intent scenarios [Qin et al., 2020; Wu et al., 2022;
Song et al., 2022b]. To this end, Qin et al. [2020] in-
troduce AGIF, a method that adaptively integrates informa-
tion from multi-intent predictions into the slot filling pro-
cess. Song et al. [2022b] incorporate statistical information
regarding the co-occurrence frequencies of intents and slots to
improve multi-intent SLU. Xing & Tsang et al. [2022] pro-
pose a heterogeneous semantics-label graphs framework to
model the mutual guidance between the two tasks. Pham et
al. [2023] introduce MISCA, a joint model with intent-slot
and label attention mechanisms to capture intent-slot correla-
tions, achieving promising performance.

However, despite its success, current dominant multi-intent
SLU models still heavily rely on a large amount of annotated
data for training, which poses a significant cost burden for the
real-world scenario without sufficient data. In addition, an-
notating multi-intent data is extremely time-consuming and
labor-intensive, because annotators are not only required to
have professional knowledge in task-oriented dialogue sys-
tems but also to understand the complex multi-intent relation-
ships within a user query. Therefore, in this work, we aim to
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(a) Task-Agnostic Ability Pretraining (b) Task-Specific Ability Pretraining (c) DownStream Task Finetuning
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Figure 2: The overall workflow for DPF, which consists of (a) task-agnostic ability pretraining, (b) task-specific ability pretraining, and (c)
downstream task finetuning.

investigate a research question “Can we leverage the readily
accessible multi-intent-free data, such as NER and single-
intent SLU data, to enhance multi-intent SLU?”.

Motivated by this, in this paper, we introduce a novel de-
coupled pre-training framework (DPF) for multi-intent SLU,
aiming to utilize abundant multi-intent-free data (i.e., NER
and single-intent SLU data). Specifically, DPF decouples
multi-intent SLU into two abilities: (1) the task-agnostic abil-
ity to identify the slot entity span and (2) the task-specific
ability to predict domain-specific slot and intent labels si-
multaneously. Such decomposition allows us to design a
two-stage pre-training framework to enhance the two abili-
ties, respectively, which is shown in Figure 2. Concretely,
to enhance the task-agnostic ability, DPF first proposes a
task-agnostic ability pre-training stage. This stage contains
a token-level entity span prediction pre-training task and
sentence-level entity number prediction pre-training task, fa-
cilitating representation learning for token-level slot filling
and sentence-level intent detection. Since the task-agnostic
ability pre-training stage does not require any task-specific
annotation data, this process can be achieved with abun-
dant NER data (see Figure 2 (a)). To improve the task-
specific ability, DPF further proposes a task-specific abil-
ity pre-training stage, which mainly focuses on learning the
mutual guidance between intent detection and slot filling by
leveraging single-intent SLU data (see Figure 2 (b)). Fi-
nally, after completing the two-stage pre-training procedure,
we achieve the multi-intent SLU by conducting the down-
stream task finetuning (see Figure 2(c)).

With the help of decoupled pre-training, it brings us at
least two advantages: (1) By disentangling the multi-intent
SLU into task-agnostic and task-specific ability learning, our
model is able to sequentially solve multi-intent SLU step by
step; (2) In contrast to previous approaches that heavily rely
on multi-intent SLU training data, DPF can leverage a large
amount of NER and single-intent SLU data, which are much
easier to obtain.

Contributions of this work are summarized as:
(1) To the best of our knowledge, this study is the first to in-

vestigate a decoupled pre-training framework (DPF) for
multi-intent SLU;

(2) DPF offers the advantage of utilizing a vast amount of
multi-intent-free data to enhance multi-intent SLU, thus
effectively alleviating the data scarcity problem;

(3) Experimental results show that DPF achieves the supe-
rior performance and extensive analyses reveal its supe-
riority in low-resources scenarios.

To facilitate the research, all codes used in this work are
publicly available at https://github.com/LightChen233/DPF.

2 Methodology
This section provides the overall workflow of DPF, which
consists of task-agnostic ability pretraining stage (TAAP)
(§2.1), a task-specific ability pretraining stage (TSAP) (§2.2)
and downstream task finetuning (DSTF) (§2.3). Specifically,
Algorithm 1 shows the overall process of DPF. Lines 1-4
denote the two-stage pretraining procedures including task-
agnostic and task-specific ability pretraining. Lines 5-7 de-
note the fine-tuning stage. We will describe each stage in the
following sub-sections.

2.1 Stage 1: Task-Agnostic Ability Pretraining
Task-Agnostic Ability Pretraining (TAAP) is used to enhance
the general task-agnostic ability of multi-intent SLU that does
not require any task-oriented dialogue domain knowledge.
Therefore, we can leverage abundant NER data for the task-
agnostic ability pre-training. Since multi-intent SLU con-
tains token-level slot filling and sentence-level intent detec-
tion sub-tasks, we introduce token-level entity span prediction
pretraining task and sentence-level entity number prediction
pretraining task to capture the token-level and sentence-level
general knowledge, respectively.

Token-Level Entity Span Prediction
Token-level entity span prediction pretraining task can be
used to capture token-level task-agnostic ability. Specifically,
it is considered as a binary task of token-level entity span pre-
diction to judge whether a token belongs to an entity span or
not. As shown in Figure 2 (a), take the input sentence “John
works at Google in California.” as an example, the entities in
this sentence are labeled as follows: “John [B-Person] works
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Algorithm 1 Overall Workflow of DPF

Input: Dataset D = {(task, x, y)i}|D|
i=1; The number of

trained epochs in each tasks etask
max; Initial model

parameters Θ.
Output: Trained Model Θ.

// decoupled pretraining for TAAP and
TSAP

1 for task in {TAAP, TSAP} do
2 for e in {1, ..., etask

max} do
// batch optimization

3 for B in {(task, x, y)j}|B|
j=1 ∈ D do

4 Optimizing Θ using Ltask;

// downstream task finetuning
5 for e in 1, ..., eDSTF

max do
6 for B in {(DSTF, x, y)j}|B|

j=1 ∈ D do
7 Optimizing Θ using LDSTF;

at Google [B-Company] in California [B-Location]”, we use
the sketch to replace the original entities annotation as “John
[B-X] works at Google [B-X] in California [B-X]” to perform
an entity binary prediction task.

Formally, given input sentence X = {[CLS], x1, x2, . . . ,
xn}, we first encode X to obtain hidden vector H =
{h[CLS], h1, h2, . . . , hn}, where n is the sequence length:

H = Encoder(X), (1)

where we use Debertav3 [He et al., 2023] as the Encoder in
this work.

Furthermore, given the H, token-level entity span predic-
tion pretraining task is used to output the entity sequence
E = {e1, e2, . . . , en}, where e∗ ∈ {B-X, I-X,O}, which is
denoted as:

ej = softmax(WEHj + b), (2)

where the WE and b are learnable parameters.
The objective of the token-level entity span prediction task

is formulated as:

LTL = − 1

3n

3∑
i=1

n∑
j=1

êj log ej + (1− êj) log(1− ej), (3)

where êj refers to the gold entity label at j token.

Sentence-Level Entity Number Prediction
To enhance the sentence-level task-agnostic ability, we intro-
duce a sentence-level entity number prediction pre-training
task to predict the number of entities in an utterance, which
achieves to improve the model’s understanding ability of the
whole sentence. The underlying intuition is that by accurately
predicting the number of entities in a sentence, the model can
successfully capture the entire sentence representation, which
is beneficial for sentence-level intent detection.

Similarly, as shown in Figure 2 (b), given the input utter-
ance “John works at Google in California.” the number of

Dataset Train Dev Test
BBN [Weischedel and Brunstein, 2005] 33K - 6K
CoNLL [Sang and De Meulder, 2003] 15K 3K 4K
FIGER [Ling and Weld, 2012] 1.2M 10k 0.3K
GUM [Zeldes, 2017] 2K - 1K
SLURP [Bastianelli et al., 2020] 12K 2K 3K
MITMovieCorpus [Liu et al., 2013] 8K - 2K
MITRestaurantCorpus [Liu et al., 2013] 8K - 2K
MultiCoNER† [Fetahu et al., 2021] 15K 0.8K 218K
MultiNERD† [Tedeschi and Navigli, 2022] 164K - -
OntoNotes 5.0† [Pradhan et al., 2013] 60K 9K 8K
Polyglot-NER† [Al-Rfou et al., 2015] 424K - -
Ritter [Ritter et al., 2011] 2K - -
WikiANN† [Pan et al., 2017] 20K 10K 10K
WikiNEuRal† [Tedeschi et al., 2021] 93K 12K 12K
WNUT17 [Derczynski et al., 2017] 3K 1K 1K
XGLUE [Liang et al., 2020] 14K 3K 3K

Table 1: Statistics of all datasets used in TAAP stage, where †

denotes that we only use the English split in those multi-lingual
datasets.

entities is determined to be “3” (i.e., “John [B-X]”, “Google
[B-X]”, and “California [B-X]”). Formally, the sentence rep-
resentation h[CLS] is used to predict the number m of entities
in an utterance, which is denoted as:

m = softmax(Wh[CLS] + b). (4)

The training objective can be defined as follows:

LSL=− 1

|m|

|m|∑
i=0

m̂ logm+ (1− m̂) log(1−m), (5)

where |m| is the maximum number of entities and m̂ denotes
the golden entity number.

Joint Pretraining
We adopt a joint training method for token-level entity span
prediction pretraining task and sentence-level entity number
prediction pre-training task simultaneously, denoting as:

LTAAP = α1LTL + α2LSL, (6)

where α1 and α2 are hyper-parameters.

Pre-training Data Collection
The task-agnostic ability pretraining stage does not re-
quire the task-specific annotation about slot and intent,
which allows us to leverage large amounts of NER data.
Therefore, we collect various NER datasets, including
BBN [Weischedel and Brunstein, 2005], CoNLL [Sang
and De Meulder, 2003], FIGER [Ling and Weld, 2012],
GUM [Zeldes, 2017], SLURP [Bastianelli et al., 2020], MIT-
MovieCorpus [Liu et al., 2013], MITRestaurantCorpus [Liu
et al., 2013], MultiCoNER [Fetahu et al., 2021], MultiN-
ERD [Tedeschi and Navigli, 2022], OntoNotes 5.0 [Prad-
han et al., 2013], Polyglot-NER [Al-Rfou et al., 2015],
Ritter [Ritter et al., 2011], WikiANN [Pan et al., 2017],
WikiNEuRal [Tedeschi et al., 2021], WNUT17 [Derczynski
et al., 2017], XGLUE [Liang et al., 2020].

Overall, we collect 2.4 million training data for the task-
agnostic ability pre-training procedure. The detailed data
statistics are shown in Table 1.
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Dataset Train Dev Test
ATIS [Hemphill et al., 1990] 4K 0.5K -
Facebook† [Schuster et al., 2019] 23K 4K 7K
HWU64 [Liu et al., 2021] 26K - -
Leyzer† [Sowański and Janicki, 2020] 2K 0.4K 1K
MMNLU2022† [FitzGerald et al., 2023] 17K - -
SNIPS [Coucke et al., 2018] 13K 0.7K -
xSID† [van der Goot et al., 2021] 37K 0.3K 0.5K

Table 2: Statistics of all datasets used in TSAP stage, where †

denotes that we only use the English split in those multi-lingual
datasets.

2.2 Stage 2: Task-Specific Ability Pretraining
The core challenge of multi-intent SLU lies in effectively
modeling interaction across intents and slots. Unfortunately,
there is no sufficient annotated data to capture the interaction
relationship in multi-intent SLU. Therefore, we introduce the
task-specific ability pretraining (TSAP) stage to leverage rel-
atively abundant single-intent SLU data to enhance the task
interaction ability.

Specifically, we adopt an interaction module from the
strong single-intent SLU model (DCA-Net) [Qin et al.,
2021a] as our pretraining interaction module, which is used
to learn task-specific interaction knowledge across slot fill-
ing and intent detection. Formally, given the hidden states
H, TSAP considers the interaction between slot filling and
intent detection to get the interaction representations I =
{I[CLS], I1, I2, . . . , In}:

I = Interaction-Module(H). (7)
Furthermore, the interaction representations I are used to

perform slot filling and single intent detection in TSAP, which
are denoted as:

S = softmax(WI + b), (8)
I = softmax(WI[CLS] + b). (9)

The training loss of the model is similar to Equation 6, which
is the weighted sum of slot and intent loss. Finally, the pre-
trained interaction module can be strengthened by the task-
specific ability pretraining stage and is directly used in the
downstream task fine-tuning process.

Pre-training Data Collection
For task-specific ability pre-training, we collect several
single-intent SLU benchmarks that are easier to obtain com-
pared to multi-intent SLU data, including ATIS [Hemphill et
al., 1990], Facebook [Schuster et al., 2019], HWU64 [Liu
et al., 2021], Leyzer [Sowański and Janicki, 2020],
MMNLU2022 [FitzGerald et al., 2023], SNIPS [Coucke et
al., 2018] and xSID [van der Goot et al., 2021].

Finally, we collect 136K samples for TSAP stage. The de-
tailed statistics are shown in Table 2.

2.3 Down-Stream Task Finetuning
After completing the task-agnostic and task-aware ability pre-
training, we directly fine-tune the pretrained model for the
multi-intent SLU task. During the downstream task finetun-
ing (DSTF) stage, multiple intent detection and slot filling
can be simultaneously optimized by multi-task learning.

3 Experiments
3.1 Implementation Settings
We evaluate DPF using two standard benchmarks: MixATIS
and MixSNIPS [Qin et al., 2020]. The batch sizes for all
experiments are selected from {8, 16, 32}, and the learning
rates are set within the range [1 × 10−6, 7 × 10−5]. We em-
ploy AdamW [Loshchilov and Hutter, 2019] for training our
model with a weight decay parameter set to 1 × 10−8. All
experiments are conducted on V100 16G and V100 32G. All
models are selected from the development set and evaluated
on the test set.

3.2 Baselines
We compare our approach with the following non-pretrained
models and pretrained models. Non-pretrained baselines in-
clude: AGIF [Qin et al., 2020] implements an adaptive
graph network to facilitate detailed multi-intent informa-
tion interactions; GL-GIN [Qin et al., 2021b] employs a
non-autoregressive architecture to accelerate decoding in si-
multaneous multiple intent detection and slot filling tasks;
SDJN [Chen et al., 2022a] presents three interconnected de-
coders and a self-distillation technique to establish coher-
ence between multiple intents and slots; GIS-Co [Song et
al., 2022b] utilizes statistical co-occurrence frequencies of
intents and slots as prior knowledge, significantly improv-
ing the performance; Co-Guiding [Xing and Tsang, 2022]
introduces a framework based on heterogeneous semantics-
label graphs, gradually establishing and modeling mutual
guidance between intent detection and slot filling.

The pretrained models containing DCA-Net [Qin et al.,
2021a] effectively utilize bidirectional, task-specific inter-
action for simultaneous slot filling and intent detection;
TFMN [Chen et al., 2022b] utilizes an encoder for multi-
grain representations, enhancing the utterance understand-
ing; DeBERTav3 [He et al., 2023] incorporates a disentan-
gled attention mechanism in pre-training to improve repre-
sentation quality; MISCA [Pham et al., 2023] introduces a
dual mechanism of intent-slot co-attention and label atten-
tion, boosting multi-task interaction; DGIF [Zhu et al., 2023]
uses label semantic information as enriched priors and con-
structs a multi-grain interactive graph to map intent-slot cor-
relations; MTLN-GP [Wan et al., 2023] presents a multi-
dimensional type-slot label interaction network coupled with
a global pointer network for efficient handling of nested and
non-nested slots and slot incoherence, leading to quicker in-
ference. Besides, we replace the encoders of non-pretrained
models with DeBERTav3 for fair comparison. Baseline re-
sults are token from previous works [Chen et al., 2022a;
Chen et al., 2022b; Song et al., 2022b; Xing and Tsang, 2022;
Zhu et al., 2023; Wan et al., 2023]. The reproduced results
are based on OpenSLU [Qin et al., 2023] framework.

3.3 Main Results
Following the settings of Goo et al. [2018] and Qin et
al. [2020], we evaluate the performance of multi-intent SLU
with three metrics: F1 score for slot filling (Slot F1), accuracy
score for intent detection (Intent Acc.), and the exact match
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Model MixSNIPS MixATIS
EMA (%) Slot F1.(%) Intent Acc.(%) EMA %) Slot F1.(%) Intent Acc.(%)

Non-Pretrained Models
AGIF [Qin et al., 2020] 74.2 94.2 95.1 40.8 86.7 74.4
GL-GIN [Qin et al., 2021b] 75.4 94.9 95.6 43.5 88.3 76.3
SDJN [Chen et al., 2022a] 75.7 94.4 96.5 44.6 88.2 77.1
GIS-Co [Song et al., 2022b] 75.9 - - 48.2 - -
Co-Guiding [Xing and Tsang, 2022] 77.5 95.1 97.7 51.3 89.8 79.1

Pretrained Models
DeBERTav3‡ [He et al., 2023] 80.4 95.9 96.4 44.7 83.7 76.9
DeBERTav3+ AGIF‡ [Qin et al., 2020] 83.5 95.6 96.7 45.4 87.0 75.2
DeBERTav3+ DCA-Net‡ [Qin et al., 2021a] 83.1 95.6 96.2 47.0 81.8 76.7
DeBERTav3+ GL-GIN‡ [Qin et al., 2021b] 83.8 96.4 96.9 47.5 84.4 79.1
DeBERTav3+ Co-Guiding‡ [Xing and Tsang, 2022] 85.6 97.4 96.9 48.4 85.0 78.6
DeBERTav3+ GIS-Co‡ [Song et al., 2022b] 82.5 96.4 96.5 44.3 84.5 78.7
TFMN [Chen et al., 2022b] 84.7 96.4 97.7 50.2 88.0 79.8
DeBERTav3+ MISCA‡ [Pham et al., 2023] 83.0 96.4 96.7 45.1 84.0 78.0
MTLN-GP [Wan et al., 2023] 84.3 96.7 97.9 49.4 88.4 79.6
DGIF [Zhu et al., 2023] 84.3 95.9 97.8 50.7 88.5 83.3
DPF 93.1 98.7 98.0 55.4 90.4 80.9

Table 3: Main Results. ‡ denotes that we reproduce those models based on DeBERTav3 backbone.

Model EMA (%) Slot F1.(%) Intent Acc.(%)
MixATIS

Our 55.4 90.4 80.9
w/o TAAP 49.3 89.3 77.9
w/o TSAP 48.8 88.5 78.9
w/o TAAP & TSAP 47.0 81.8 76.7

MixSNIPS
Our 93.1 98.7 98.0
w/o TAAP 86.3 95.9 97.5
w/o TSAP 83.4 96.3 96.0
w/o TAAP & TSAP 83.1 95.6 96.2

Table 4: Ablation Experiments. TAAP and TSAP denote the task-
agnostic ability pretraining and task-specific ability pretraining, re-
spectively.

accuracy (EMA). The results are presented in Table 3. Our
observations are as follows:
(1) Pretrained models beat most of non-pretrained ap-
proaches. As illustrated in Table 3, we observe that after
replacing the encoders of the models with DeBERTav3, the
performance of most of the models improves substantially,
demonstrating that the knowledge learned by the pre-trained
models can be used to enhance the multi-intent SLU.
(2) DPF remarkably improves multi-intent SLU perfor-
mance. As illustrated in Table 3, DPF significantly out-
performs all baselines on two benchmarks, including both
pre-trained and non-pre-trained models. Specifically, on
MixATIS dataset, DPF outperforms the DGIF model by
4.7% on EMA, while on MixSNIPS dataset, it surpasses
Debertav3+Co-guiding by 7.5% on EMA, which verifies the
effectiveness of DPF.

3.4 Analysis
In this section, we conduct comprehensive analyses to answer
the following questions to better understand our approach:
(1) Does TAAP capture task-agnostic knowledge? (2) Does
TSAP capture task-specific knowledge? (3) Can TAAP and
TSAP help each other? (4) What are the impacts of the decou-

pled pre-training paradigm? (5) Can DPF generalize well on
few-shot setting? (6) What is the performance of ChatGPT?
(7) Why DPF works?

Answer1: TAAP can Capture both Sentence-level and
Token-level Task-agnostic Knowledge
To verify the effectiveness of task-agnostic ability pre-
training (TAAP), we remove the procedure of TAAP and only
keep the task-specific pre-training unchanged, which we refer
to as w/o TAAP.

As shown in Table 4, we observe that the removal of TAAP
leads to a decrease in Slot F1 drops by 1.1% for MixATIS and
2.8% for MixSNIPS. Additionally, Intent Acc. declines by
3.0% on MixATIS and drops by 0.5% on MixSNIPS, which
demonstrates the effectiveness of TAAP. We attribute it to the
fact that the incorporated sentence-level entity num predic-
tion and token-level entity span detection can inject more
task-general knowledge into pre-training procedure, which
the previous work can not achieve.

Answer2: TSAP can Boost Task-aware Interaction
across Intent Detection and Slot Filling
To demonstrate the effectiveness of task-specific ability pre-
training (TSAP), we only keep the task-agnostic ability pre-
training and directly use it for fine-tuning on downstream
tasks. We refer it to the w/o TSAP.

The results are shown in Table 4 (w/o TSAP). We find that
EMA drops significantly: 6.6% on MixATIS and 9.7% on
MixSNIPS. We suppose that the TSAP can improve the task-
aware interaction ability across the two related tasks, which
is crucial for the multi-intent SLU.

Answer3: Combination of TAAP and TSAP Brings
Further Improvement
To verify the effectiveness of the combination usage of TAAP
and TSAP, we remove the two-stage pretraining and directly
fine-tune the model with multi-intent SLU data.

Table 4 shows that when both TAAP and TSAP are re-
moved, the overall performance suffers a further decline.
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Specifically, the model only obtains 47.0% EMA on Mix-
ATIS and 83.1% EMA on MixSNIPS, which indicates that
the two pretraining stages are complementary to each other
and can better facilitate multi-intent SLU.

Answer4: Decoupled Pre-training Paradigm rather than
Pre-training Data Matters in DPF
It is natural to wonder whether the final performance is pri-
marily attributed to the collected pre-training data or the pro-
posed two-stage decoupled pre-training paradigm. To explore
the question, we conduct an experiment by collecting all pre-
training data from two stages and only employing one stage
pre-training approach (named as Hybrid Pre-training). The
loss is the sentence-level and token-level joint loss similar to
Equation 6.

The results are shown in Figure 3. We have the following
observations: (1) Hybrid Pre-training outperforms the base-
lines on two benchmarks, which indicates the pre-training
procedure can benefit the multi-intent SLU task. (2) DPF
beats hybrid Pre-training on the MixATIS and MixSNIPS,
with improvements of 2.7% and 3.4% respectively. This con-
firms that the improvement comes from the introduced two-
stage pre-training paradigm rather than the incorporated pre-
training data.
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(a) The intent and slot performance on MixATIS.

(b) The intent and slot performance on MixSNIPS.

Figure 5: ChatGPT vs. DPF.

Answer5: DPF Works Better on Few-Shot Settings
In order to demonstrate the effectiveness of our model on low-
resource settings, we only select 1% to 50% of the original
data for fine-tuning.

The results are illustrated in Figure 4. From the results,
we observe that DPF beats all baselines on few-shot set-
tings, which indicates that DPF can work in low-resource sce-
narios. We attribute it to the fact that knowledge captured
from the pre-training procedure can be transferred to the low-
resource setting, which is consistent with the previous obser-
vation [Gururangan et al., 2020].

Answer6: Investigation of ChatGPT
Recently, large language models (e.g., ChatGPT1) have dom-
inated the performance in the NLP literature. A natural ques-
tion arises: Can ChatGPT excellently address the multi-intent
SLU task? To answer this question, in this experiment, we
utilize the prompt from Pan et al. [2023] to investigate Chat-
GPT for multi-intent SLU.

The comparison results between ChatGPT and DPF are il-
lustrated in Figure 5. We observe that DPF outperforms Chat-
GPT on MixATIS and MixSNIPS across all metrics, which
demonstrates that simply relying on ChatGPT is not sufficient
to fully solve the complex multi-intent SLU problem.

Answer7: Qualitative Analysis
To provide a more intuitive understanding of the model, we
present a case study that includes the results of three different
scenarios: (1) solely using task-agnostic ability pretraining,
(2) solely using task-specific ability pretraining, and (3) si-
multaneously using both task-agnostic ability pretraining and
task-specific ability pretraining (DPF).

The case study is shown in Figure 6. Take the example as
shown in Figure 6 (a) and Figure 6 (b), it fails to yield ac-
curate predictions when either the task-agnostic ability pre-
training or task-specific ability pretraining stage is retained

1https://platform.openai.com

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6474



AddToPlaylist
SearchScreeningEvent

PlayMusicB-artist ···

··· play

O

me

O

Add

O B-artist

cinder

I-artist

block

B-music_item

movement

···

···

(a) Case study for TAAP stage

(b) Case study for TSAP stage

(c) Case study for combined usage in TAAP and TSAP stage

SearchCreativeWork

I-artist

a

O

Garry Shider

B-music_item

album

DPF

AddToPlaylist
SearchScreeningEvent

PlayMusicB-artist ···

··· play

O

me

O

Add

O B-track

cinder

I-track

block

B-music_item

movement

···

···

I-artist

a

O

Garry Shider

B-music_item

album

DPF

AddToPlaylist
SearchScreeningEvent

PlayMusic
B-artist ···

··· play

O

me

O

Add

O B-artist

cinder

I-artist

block

B-music_item

movement

···

···

I-artist

a

O

Garry Shider

B-music_item

album

DPF

✘ ✘

✘

Figure 6: Case study. Texts with blue boxes denote the correct prediction while texts with red boxes stand for the wrong prediction.

alone, and can only be predicted correctly with combined us-
age, as depicted in Figure 6 (c). We attribute it to the fact
that only employing TAAP ignores the interaction across slot
and intent, causing the intent prediction wrongly while solely
using TSAP stage cannot capture the token-level knowledge
for slot filling. In contrast, DPF can capture the interaction
between intent and slot, as well as token-level knowledge for
slot filling, which brings improvement.

4 Related Work
Multi-intent Spoken Language Understanding (Multi-intent
SLU) has gained growing interest due to its ability to discern
multiple intents from a given utterance [Qin et al., 2021c].
Motivated by this, researchers shift their focus from single-
intent SLU to multi-intent SLU. To this end, Gangadharaiah
& Narayanaswamy [2019] first investigate a joint modeling
technique for multi-intent SLU. Qin et al. [2020] introduce
an adaptive graph network that enhances the integration of
intent data for detailed slot filling. More importantly, they
release two benchmarks to facilitate the multi-intent SLU
community. Qin et al. [2021b] subsequently introduce a
non-autogressive framework to improve the decoding speed.
Chen et al. [2022b] develop a transformer-based model called
TFMN, which adds an auxiliary intent number detection task
to improve the model performance. Song et al. [2022b] in-
vestigate the utilization of statistical co-occurrence frequen-
cies between intents and slots for multi-intent SLU interac-
tion. Similarly, Xing & Tsanget al. [2022] propose a novel
framework based on heterogeneous semantics-label graphs
for multi-intent SLU. Wu et al. [2022] and Song et al. [2022a]
explore the method of prompt-based generative framework.
Pham et al. [2023] present MISCA, a joint model using
intent-slot and label attention mechanisms to capture corre-
lations without any additional graphs. Cheng et al. [2023a]
propose MRRL framework, which refines output based on
references with reinforcement learning. Cheng et al. [2023b]
introduce TKDF, improving student models via knowledge

distillation with evaluator and curriculum learning, which
achieves promising performance. Zhu et al. [2023] propose
DGIF model to leverage label semantics as enriched priors,
building a multi-layer interactive graph for intent-slot cor-
relation analysis. Concurrently, Wang et al. [2023] present
MTLN-GP framework to address both nested and non-nested
slot challenges, which can significantly improve the inference
speed and performance.

Though the above approaches achieve promising perfor-
mance, their models still heavily rely on a large amount of
annotated multi-intent SLU data. In contrast, our work in-
troduces a decoupled pre-training framework for multi-intent
SLU, which allows the model to leverage large amounts of
multi-intent-free data, such as NER and single-intent SLU
data. To the best of our knowledge, this study represents
the first investigation into the utilization of additional multi-
intent-free data to enhance multi-intent SLU.

5 Conclusion
In this paper, we introduce a decoupled pretraining frame-
work (DPF), achieving to leverage abundant multi-intent-free
data to enhance multi-intent SLU. Specifically, DPF first de-
couples multi-intent SLU into task-agnostic and task-aware
abilities. Furthermore, DPF introduces a two-stage pre-
training paradigm to enhance the two abilities, respectively.
Experimental results show that DPF achieves superior perfor-
mance on the MixSNIPS and MixATIS datasets and can also
successfully generalize to low-resource settings.
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