
ScreenAgent: A Vision Language Model-driven Computer Control Agent

Runliang Niu1 , Jindong Li1 , Shiqi Wang1 , Yali Fu1 , Xiyu Hu1 ,
Xueyuan Leng1 , He Kong1 , Yi Chang1,2 , Qi Wang1,2⇤

1 School of Artificial Intelligence, Jilin University
2 Engineering Research Center of Knowledge-Driven Human-Machine Intelligence,

Ministry of Education, China
niurl19@mails.jlu.edu.cn, qiwang@jlu.edu.cn

Abstract
Large Language Models (LLM) can invoke a vari-
ety of tools and APIs to complete complex tasks.
The computer, as the most powerful and universal
tool, could potentially be controlled by a trained
LLM agent. Powered by the computer, we can
hopefully build a more generalized agent to assist
humans in various daily digital works. In this paper,
we construct an environment for a Vision Language
Model (VLM) agent to interact with a real com-
puter screen. Within this environment, the agent
can observe screenshots and manipulate the Graph-
ical User Interface (GUI) by outputting mouse and
keyboard actions. We also design an automated
control pipeline that includes planning, acting, and
reflecting phases, guiding the agent to continuously
interact with the environment and complete multi-
step tasks. Additionally, we construct the ScreenA-
gent Dataset, which collects screenshots and ac-
tion sequences when completing daily computer
tasks. Finally, we train a model, ScreenAgent,
which achieves comparable computer control capa-
bilities to GPT-4V and demonstrated more precise
UI positioning capabilities. Our attempts could in-
spire further research on building a generalist LLM
agent. The code and more detailed information are
at https://github.com/niuzaisheng/ScreenAgent.

1 Introduction
Large Language Models (LLM), such as ChatGPT and GPT-
4, have recently demonstrated exceptional performance in
natural language processing tasks like generation, under-
standing, and dialogue. They have also significantly revo-
lutionized research in other artificial intelligence fields. In
particular, the development of these technologies paves the
way for the study of intelligent LLM agents [Wang et al.,
2023b]. An LLM agent is an AI entity with a large language
model as its core computational engine. It possesses capa-
bilities like Perception, Cognition, Memory, and Action, en-
abling the agent to perform highly proactive autonomous be-
haviors [Wang et al., 2023c]. In LLM agent-related research,

⇤corresponding author

Environment Internal Control Pipeline
Planning：Now, your current task is
"Start the presentation from the third
slide", give the disassembly steps of

is "Start the presentation from
the third slide", please describe whether
this image meets the goal in json format?
And whether our mission can continue.

Acting ： Based on the
provided screen image. You
can use the mouse and
keyboard. Please make
output execution actions...

Task Prompt:
Start the presentation
from the third slide

click(114,360)

Before

After

VLM
Agent

the task based on the state of
the existing screen image.

Reflecting：The current goal

Figure 1: We construct a realistic computer-controlling environment
and design a control pipeline for the agent. The VLM agent retrieves
instruction prompts and real computer states from the environment,
then runs its internal control pipeline, going through the planning,
acting, and reflecting phases. It outputs the next action operation,
utilizes function calls to perform actions, induces changes in the
computer environment, and achieves genuine real-time interaction
between the agent and the environment.

how to enable agents to learn to effectively use tools for ex-
panding their action space has drawn extensive attention.
With the growing prevalence of electronic devices, such

as personal computers, smartphones, and smart electronic in-
struments, our lives are becoming more intertwined with the
digital world. Daily activities often require frequent interac-
tion with the screens of electronic devices. If an agent can
seamlessly navigate these devices by controlling screens ac-
cording to user needs, it would mark a significant step to-
wards more general intelligence [Yin et al., 2023]. Indeed,
a screen interaction agent must possess powerful visual in-
formation processing capabilities, and the ability to execute
computer control instructions as shown in Fig. 1. Therefore,
to achieve such a goal, it is necessary to create a real interac-
tive environment for the VLM agent, then guide the model
and environment to form a continuous interactive pipeline
and train the agent to improve its performance. However, it’s
highly challenging to implement these functions within a uni-
fied framework and achieve satisfactory results from both the
project engineering and theoretical research perspectives.
Despite recent progress, some aspects still need to be fur-

ther explored. For instance, CogAgent [Hong et al., 2023]

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6433

https://github.com/niuzaisheng/ScreenAgent

specializes in GUI understanding and planning, showcasing
remarkable proficiency in addressing diverse vision-modal
challenges. However, CogAgent lacks the ability to invoke
tools in visual scenarios. Subsequently, AppAgent [Yang et
al., 2023a] concentrates on smartphone operations, enabling
navigation and acquiring new application usage skills through
autonomous exploration or by observing human demonstra-
tions. While AppAgent uses auxiliary positioning tags to help
the model select UI elements, it lacks an end-to-end interac-
tion method. As a result, current Vision Language Models
(VLM) agents are typically unable to interact with real com-
puter or mobile environments to generate and execute contin-
uous manipulative commands.
To address these issues, we propose ScreenAgent, an au-

tomated agent to handle continuous screen operations. We
drive the agent to continuously interact with the environment
through three phases: planning, acting, and reflecting phases.
In particular, the reflecting phase enables the agent to per-
form reflective behaviors, making the entire pipeline more
comprehensive and aligned with human action and thought
processes. It autonomously assesses the execution status of
the current action, providing feedback based on the ongoing
state. This capability enhances its performance for subse-
quent actions, enabling our agent to possess the capability
of a continuous thinking chain. Consequently, our agent can
understand the next steps and engage in complete tool invo-
cation to execute a series of continuous manipulative com-
mands. The major contributions are summarized as follows:

• We present a Reinforcement Learning (RL) environment
that enables the VLM agent to directly interact with a
real computer screen via VNC protocol. By observ-
ing the screenshots, our agent can interact with the GUI
through basic mouse and keyboard operations.

• We develop an automated pipeline that encompasses the
Planning phase, Acting phase, and Reflecting phase.
This integrated pipeline facilitates the agent’s continu-
ous interaction with the environment, distinguishing our
agent from others.

• We propose the ScreenAgent dataset, which includes ac-
tion sequences for completing generic tasks on Linux
and Windows desktops. Moreover, we provide a fine-
grained scoring metric to comprehensively evaluate the
various capabilities that are necessary for a VLM agent
in computer-controlling tasks.

• We test GPT-4V and two state-of-the-art open-source
VLMs on our test-set. The results demonstrate that GPT-
4V is capable of controlling computers but lacks precise
positioning capabilities. Thus, we train ScreenAgent to
enable precise positioning and achieve comparable re-
sults to GPT-4V in all aspects. Our work can facilitate
further research into developing a generalist agent.

2 Related Work
2.1 Multimodal Large Language Models
The LLMs have demonstrated powerful contextual under-
standing and text generation capabilities, enabling the im-
plementation of complex multi-turn question-answering sys-

tems. LLaMA [Touvron et al., 2023] is a series of founda-
tional language models spanning from 7 billion to 65 billion
parameters, with Vicuna-13B [Chiang et al., 2023], an open-
source chatbot, being refined through fine-tuning the LLaMA
architecture. GPT-4 is an advancement by OpenAI following
the success of GPT-3 which introduces several noteworthy
improvements. GPT-4V(ision) [Yang et al., 2023b], building
upon GPT-4, has added multimodal capabilities. LLaVA [Liu
et al., 2023b] and LLaVA-1.5 [Liu et al., 2023a] connect
the pre-trained CLIP [Radford et al., 2021] visual encoder
with Vicuna, achieving multimodal capabilities. Fuyu-8B1

does not use an image encoder but opts for a pure decoder
Transformer architecture. CogVLM [Wang et al., 2023e]
is a powerful open-source Visual Language Model that sup-
ports image understanding and multi-turn dialogues. In addi-
tion, Monkey [Li et al., 2023] introduces an efficient training
method that enhances input resolution capability.

2.2 Computer Control Environment & Dataset
In simulated environments, agents can be trained to emulate
clicking and typing. WebNav [Nogueira and Cho, 2016] cre-
ates a navigation environment with links, testing the agent’s
sequential decision-making ability. MiniWoB++ [Liu et al.,
2018] provides a lot of simplified ATARI-like web-browser-
based tasks as a RL environment. WebShop [Yao et al.,
2023] offers tasks for controlling the browser to complete
the purchase process. SWDE [Hao et al., 2011] preserves
webpage HTML files to train information extraction models.
WebSRC [Chen et al., 2021] is a QA-style dataset that con-
tains a large number of questions and answers about web-
page screenshots. Mind2Web [Deng et al., 2023] introduces
a dataset for developing generalist web agents. Seq2act [Li
et al., 2020a] integrates three datasets for Android, Android-
HowTo, Rico-SCA, and PixelHelp. Screen2Words [Wang
et al., 2021] is a large-scale screen summarization dataset
for Android UI screens. META-GUI [Sun et al., 2022] is
a dataset for training a multi-modal conversational agent on
mobile GUI. [Burns et al., 2022] provides a dataset of un-
known command feasibility on Android.

2.3 Large Language Model-driven Agents
With the advancement of LLMs, the capabilities of intelli-
gent agents have also been enhanced. WebGPT [Nakano
et al., 2021] conducts fine-tuning on GPT-3 to address ex-
tended questions within a text-based web-browsing environ-
ment, enabling the model to explore and navigate the web for
answers. ToolFormer [Schick et al., 2023] integrates an as-
sortment of utilities, featuring a calculator, Q&A system, and
search engine, among others. Voyager [Wang et al., 2023a]
stands as the inaugural embodiment of a Large Language
Model-powered, lifelong learning agent within the Minecraft
environment. RecAgent [Wang et al., 2023d] proposes that
agents can generate high-level thoughts through the opera-
tion of memory reflection. ProAgent [Ye et al., 2023] in-
troduces a novel paradigm in process automation that seam-
lessly integrates agents powered by LLM. CogAgent [Hong
et al., 2023], an 18-billion-parameter visual language model,

1https://www.adept.ai/blog/fuyu-8b

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6434

https://www.adept.ai/blog/fuyu-8b

Planning:
subtask 1.Open Browser
subtask 2.Search for “How to
make orange juice” in the browser.
subtask 3.Browsing web pages
and opening the first search
result link.
subtask 4.Browsing web content
to learn how to make orange juice.

text “How to make
orange juice”
press “Enter”

Reflecting:
Based on the provided image, I
believe that the current subtask has
been completed. We can proceed
to the next subtask, which is to
search for "How to make orange
juice" in the browser.

Thoughts: Based on the status of
the existing screen, we can see the
Firefox browser icon on the screen,
so we need to open the browser
first. My plan is to use the mouse to
open the browser.

Task Prompt：
I want to drink orange
juice, but I don't know
how to make it. Can
you help me check out
any tutorials online?

Reflecting:
According to the provided
information, the current subtask
has been completed as you have
searched for "How to make orange
juice" in your browser. Now we can
proceed to the next subtask, which
is to browse the webpage of search
results.

Thoughts: Based on the status of
the screen image, we can see a
search box. In order to perform the
target task, we need to enter the
keyword "How to make orange
juice" in the search box, and then
press the enter key to search.

Thoughts:
Enter the browser to
search for how to make
orange juice and
browse.

Subtask 1 Subtask 2

double click(64,40)

•••

continue

retry

replanSituation

!

!′

Execute

After

Reflecting

Acting

Planning

Before

subtask

Response:

Prompt: screen !

Prompt:

plans

Response:

Response:

Prompt:

task

(a) (b)

task

plansinfor

actions

screen !

screen !′

subtask

task subtask

Figure 2: The overview of our computer control pipeline, which includes planning, acting, and reflecting phases. Sub-figure (a) presents
the flowchart of our pipeline, while sub-figure (b) provides an illustrative example. Based on the user’s task prompt, the agent initially
decomposes the task into sub-tasks. In each sub-task, the agent first describes the screen and generates mouse and keyboard operations in a
function-call style. In the reflecting phase, the agent decides whether to proceed to the next sub-task, retry the current sub-task, or reformulate
the entire plan.

is meticulously designed for GUI comprehension and navi-
gation. AppAgent [Yang et al., 2023a] proposes a framework
that allows a multimodal agent to interact with smartphone
applications.

3 Framework
In this section, we introduce our Reinforcement Learn-
ing (RL) environment and the autonomous control pipeline
within the agent. Through this environment, a VLM agent can
interact with a real computer screen, observe screen images,
select actions, and autonomously complete specific tasks.

3.1 Computer Control Environment
We created a computer control environment to evaluate the
capabilities of VLM agents. This environment connects to
a desktop operating system using an implementation of the
remote desktop protocol (VNC) and allows the sending of
mouse and keyboard events to the controlled desktop. The
formal definitions of this environment are outlined as follows:

• A-Action Space. We define an action as a form of a
function call. If the agent outputs an action in the re-
quired JSON-style format, the action will be parsed and
executed by the environment. All action types and cor-
responding action attributes are defined in Table 1.

• S-State Space. The screenshot image is utilized as the
state space of the environment. The environment will
collect screenshots s and s0, denoting the state before
and after each action, respectively.

• R-Reward Function. Due to the highly open-ended na-
ture of the task, the reward function is flexibly opened to

Action Type Attributes

Mouse

Move Mouse Position(width:int, height:int)

Click Mouse Button(left/middle/right),
Mouse Position(width:int, height:int)

Double Click Mouse Button(left/middle/right),
Mouse Position(width:int, height:int)

Scroll Up Scroll Repeat(int)
Scroll Down Scroll Repeat(int)
Drag Drag End Position(width:int, height:int)

Keyboard
Press Keyboard Key or Combined-keys (string)
Text Keyboard Text(string)

Wait Action Wait Time(float)
Plan Action Element(string)

Evaluate Action Situation(success/retry/reformulate)
Advice(string)

Table 1: All supported action types and action attributes.

different interfaces, which can integrate different exist-
ing or future reward models.

Through remote control, the agent can perform arbitrary
tasks on the screen, which creates a highly challenging open
environment having a large state and action space.

3.2 Control Pipeline
To guide the agent to continually interact with the environ-
ment and complete multi-step complex tasks, we designed a
control pipeline including the planning, acting, and reflect-
ing phases. The whole pipeline is depicted in Fig. 2. This
pipeline will ask the agent to disassemble the complex task,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6435

Action
Parsing

RLHF
Response

Pair

Reject Response

Chosen Response

Human
Correction

Response

Run
Action

Task

Before Screen !

Actions

After Screen !′

Prompt
Templates

!

Figure 3: Data annotation process. We invoke GPT-4V to gener-
ate an original response, and annotators correct this response as the
golden labeled response. The environment parses executable actions
from the text and sends them for real computer execution. The origi-
nal response and the golden labeled response form a pair, which can
be utilized for training in future Reinforcement Learning from Hu-
man Feedback (RLHF) processes.

execute sub-tasks, and evaluate execution results. The agent
will have the opportunity to retry some sub-tasks or adjust
previously established plans to accommodate the current oc-
currences. The details are depicted as follows:
Planning Phase. In the planning phase, based on the current
screenshot, the agent needs to decompose the complex task
relying on its own common-sense knowledge and computer
knowledge.
Acting Phase. In the acting phase, based on the current
screenshot, the agent generates low-level mouse or keyboard
actions in JSON-style function calls. The environment will
attempt to parse the function calls from the agent’s response,
and convert them to device actions defined in the VNC pro-
tocol. Then our environment will send actions to the con-
trolled computer. The environment will capture the after-
action screen as input for the next phase.
Reflecting Phase. The reflecting stage requires the agent to
assess the current situation based on the after-action screen.
The agent determines whether needs to retry the current sub-
task, go on to the next sub-task, or make some adjustments to
the plan list. This phase is crucial within the control pipeline,
providing some flexibility to handle a variety of unpredictable
circumstances.

4 ScreenAgent Dataset & CC-Score
ScreenAgent Dataset. Existing computer-controlling
datasets typically have a narrow range of applicability sce-
narios. For instance, building upon the foundational premise
that it is easy to obtain UI element metadata through HTML
or developer modes, WebNav [Nogueira and Cho, 2016],
Mind2Web [Deng et al., 2023], and SWDE [Hao et al., 2011]
mainly focused on web browsing, while Seq2act [Li et al.,
2020a] and Screen2Words [Wang et al., 2021] are tailored for
Android. However, the mouse and keyboard are also common
and universal interfaces to control a computer. To fill the gap
in this type of control method, we build an interactive anno-
tation process (shown in Fig. 3) to construct the ScreenAgent
Dataset which is collected from Linux and Windows operat-
ing systems for completing specific tasks. This dataset en-
deavors to cover a wide range of daily computer usage sce-

Office

Entertain

OS Operation

Search

Download Program

Document
19.21%

Table
11.82%

Photoshop
4.43%

Powerpoint
3.94%

…
0.99%

Video
4.93%

…
3.45%

Electronics
2.46%

Clothing
1.97%

Reading
1.97%

Game
1.97%

Travel
1.48%

Systemtools
4.93%

Browser
4.43%

Terminal
3.45%

Files
1.97%

Disk
0.99%

Install
0.99%

…
0.99%

Education
4.43%

Popularscience
2.96%

News
2.46%

Cooking
1.97%

…
1.48%
Health
1.48%

Car
0.99%

Finance
0.99%

Pictures
1.97%

Papers
1.48%

…
0.49%

…
2.96%

Figure 4: Task type statistics in ScreenAgent training-set.

Evaluate
29.24%

Plan
28.68%

Mouse
24.67%

Keyboard
15.29%

Wait
2.12%

(a) (b)

Figure 5: The statistical information of ScreenAgent training-set:
(a) Distribution of action types; (b) Chosen response token number
distribution.

narios, including daily office, booking, information retrieval,
card games, entertainment, programming, system operations,
and so on. As illustrated in Fig. 4, the ScreenAgent Dataset
encompasses 39 sub-task categories across 6 themes. The
dataset has 273 complete task sessions, with 203 sessions
(3005 screenshots) for training and 70 sessions (898 screen-
shots) for testing. Fig. 5 shows important statistical informa-
tion about the dataset.
CC-Score. To assess an agent’s capability in the computer
control task, we design a fine-grained evaluation metric VLM
Agent Computer Control Score (CC-Score) for assessing the
similarity of control action sequences. This metric takes into
account both the sequential order and actions’ attribution. We
develop specific similarity metrics for every action type. For
mouse actions, the metrics include four aspects of consis-
tency: action type, mouse operation type, mouse button, and
whether the click coordinates are within the annotated feasi-
ble bounding box. For text and keyboard actions, the metrics

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6436

Model Plan
total 284

Action
Type

total 650

Mouse
Action
Type

total 232

Mouse
Button
total 209

Mouse
Position
total 218

Keyboard
Keys
or Text
total 134

Reflecting
Situation
Assessment
total 546

LLaVA-1.5 0.78 0.75 0.71 0.74 0.72 0.45 0.98
CogAgent-VQA 0.00 0.03 0.06 0.06 0.05 0.01 0.39

CogAgent-Chat (original output) 0.00 0.00 0.00 0.00 0.00 0.00 0.30
CogAgent-Chat (helped by GPT-3.5) 0.29 0.38 0.44 0.45 0.42 0.17 0.76

GPT-4V(ision) 0.87 0.86 0.85 0.85 0.83 0.77 1.00

ScreenAgent 0.72 0.83 0.91 0.92 0.91 0.82 1.00

Table 2: Proportion of successful function calls on ScreenAgent test-set.

Model CC-Score Plan
(BLEU)

Action
Type
(F1)

Mouse
Action
Type
(F1)

Mouse
Button
(F1)

Mouse
Position

(Accuracy)

Keyboard
Keys
or Text
(BLEU)

Reflecting
Situation
Assessment

(F1)

LLaVA-1.5 0.51 0.29 0.91 0.90 0.96 0.03 0.70 0.52
CogAgent-Chat (helped by GPT-3.5) 0.33 0.32 0.83 0.86 0.02 0.07 0.74 0.51

GPT-4V(ision) 0.63 0.47 0.98 0.96 0.99 0.12 0.92 0.60

ScreenAgent 0.61 0.31 0.98 0.94 0.97 0.51 0.87 0.52

Table 3: Comparison of VLM fine-grained score in all successful matched action on ScreenAgent test-set.

involve two aspects: action type consistency and the BLEU
score of the input text, single key, or keyboard shortcut com-
bination. For the entire action sequence, we employ an align-
ment algorithm that identifies the maximum matching pairs
of predicted action and labeled action, while maintaining the
sequence order. This approach maximizes the overall score,
which is used as the measure of sequence similarity. Ulti-
mately, the CC-Score encompasses the normalized scores of
predicted and labeled sequences, the F1 values for each ac-
tion attribute classification, and the unigram similarity values
for text types.

Consider two action sequences: a label action sequence
L = {l1, l2, ..., ln} and a predict action sequence P =
{p1, p2, ..., pm}. Define a score matrix S as an n ⇥ m ma-
trix, where Sij represents the similarity score between ac-
tion li and pj . A possible alignment is a sequence C =
{(c1, d1), (c2, d2), ..., (ck, dk)}, where each element (ci, di)
is a pair of action such that ci 2 L [{?} and di 2 P [{?}.
Each (ci, di) pair consists either of corresponding actions
from L and P , or a combination of an action from either L or
P with an empty (?) value. Importantly, this sequence must
adhere to the constraint that the order of non-null actions in
L and P within the alignment is preserved as in their origi-
nal sequences. This means that if (ci, di) and (cj , dj) are two
pairs inC where ci, cj 6= ? and di, dj 6= ?, and if i < j, then
ci must precede cj in L and di must precede dj in P . This
constraint ensures that the alignment respects the sequential
nature and integrity of the original action sequences.

For a given alignment C, its score is the sum of the simi-
larity scores for all matched pairs of actions in the alignment,
that is,

P
(i,j)2C Sij . We choose the alignment with the high-

est score as the best matching alignment C⇤. Finally, the CC-
Score for the prediction and label action sequence is calcu-
lated as:

CC-Score(L,P) =
1

|L|
X

(i,j)2C⇤

Sij .

5 Experiment
5.1 Evaluation Results on ScreenAgent Test-set
Apart from GPT-4V, we select several recently released SoTA
VLMs for testing, including LLaVA-1.5 [Liu et al., 2023a]
and CogAgent [Hong et al., 2023]. LLaVA-1.5 is a VLM
with 13 billion parameters; however, it only supports image
inputs up to 336 × 336 pixels. CogAgent is an 18-billion-
parameter visual language model designed for GUI compre-
hension and navigation. It demonstrates proficiency at a res-
olution of 1120 × 1120 pixels, enabling it to detect small ele-
ments and text.
We test these models’ capabilities from two aspects: The

ability to follow instructions to output the correct function
call format, shown in Table 2. And the ability to complete
specific tasks assigned by the user, shown in Table 3.
Following instructions and executing correct function calls

is the most fundamental skill for an LLM agent when learn-
ing to use external tools. Table 2 presents the success rate
of these function calls for each attribute key. This assess-
ment focuses on whether the model can accurately execute
various functions encompassing the attribute items expected
by manual action annotations. Note that, this evaluation does
not consider the consistency of the attribute values with the
golden labeling; it only examines whether the model’s out-
put includes the necessary attribute keys. From the table,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6437

CC-Score

Plan

Action Type

Mouse Action Type

Mouse Button

Mouse Position

Keyboard Keys or Text

Situation Assessment

Figure 6: ScreenAgent can complete computer control tasks most
excellently compared with other VLMs/Agents.

GPT-4V and LLaVA-1.5 achieve higher scores, while Co-
gAgent and its upstream model CogAgent-VQA underper-
formed. CogAgent-VQA and CogAgent-Chat almost entirely
disregarded the JSON format action definitions in prompts,
resulting in a very low score on successful function calls.
Therefore, rendering them completely incapable of interact-
ing with our environment. To ensure fairness in comparison,
we utilize OpenAI GPT-3.5 to extract action into JSON-style
function calls from the original CogAgent-Chat responses, in-
dicated as "CogAgent-Chat (helped by GPT-3.5)". Even so,
its scores are significantly lower than those of LLaVA-1.5 and
GPT-4V, although CogAgent has been trained on Mind2Web
web browsing simulation datasets.
Table 3 displays the fine-grained scores of predicted at-

tribute values for each action within the successfully parsed
function calls. As can be seen, GPT-4V remains the best
performer, with an action-type prediction F1 score of 0.98.
This implies that it can accurately select appropriate mouse
or keyboard actions. Additionally, it can precisely choose the
mouse action type, typing text, or pressing keys consistent
with the golden label actions.
The ability for precise positioning is crucial in computer-

controlling tasks. As indicated by the "Mouse Position" col-
umn in Table 3, current VLMs have yet to develop the pre-
cise positioning capabilities necessary for computer manipu-
lation. GPT-4V refuses to give precise coordinate results in
its answers, and two open-source models also fail to output
the correct coordinates with our prompts.
Another significant challenge for all models is the reflec-

tion phase. In this phase, the agent is required to determine
whether the sub-task has been completed in the current state,
and decide whether to go further or make some adjustments.
This is crucial for constructing a continuous interactive pro-
cess. Regrettably, all models show insufficient accuracy in
this determination, with GPT-4V achieving only a 0.60 F1
score. This implies that human intervention is still necessary
during task execution.

5.2 Fine-tuning Training
To demonstrate the potential for ongoing research on the task,
we continue to fine-tune the CogAgent-Chat model on our

Dataset Samples 1 2 3 4
COCO 42404 20% 10% - -

Widget Captions 41221 20% 10% - -
Mind2Web 12846 30% 40% 50% 30%

ScreenAgent Dataset 3005 30% 40% 50% 70%

Table 4: Training data proportions and division of four training
phases. Percentages indicate the proportion of samples from this
data set at each phase.

ScreenAgent training-set to enhance its function call ability.
Similar to the approach adopted in recent VLM works [Chen
et al., 2023], we mix data from multiple datasets and con-
struct four distinct training phases, which is illustrated in
Table 4. We reformulate two objective detection datasets,
COCO [Lin et al., 2015] and Widget Captions [Li et al.,
2020b], into mouse-click tasks to enhance the model’s po-
sitioning ability. For Mind2Web, we implement a series of
complex data augmentations to align with our task objectives.
After fine-tuning, ScreenAgent achieves the same level of

following instructions and making function calls as GPT-4V,
as shown in Table 2. In Table 3, our ScreenAgent model
achieves a performance level comparable to GPT-4V, and far
exceeds existing models in the precision of mouse clicks.
This indicates that the process of fine-tuning effectively en-
hances the model’s precise positioning capabilities. Addi-
tionally, we observe that ScreenAgent has a significant gap
compared to GPT-4V in terms of task planning, highlighting
GPT-4V’s common-sense knowledge and task-planning abil-
ities.

5.3 Case Study
To evaluate our ScreenAgent on computer control tasks, we
provide two cases. In Fig. 7, we present the workflow of
ScreenAgent that executes a chain of actions. In Fig. 8, we
compare different agents in executing the details of the three
phases in the pipeline. Fig. 8 (a) shows the planning process
of all the agents, where we find that our ScreenAgent pro-
duces the most concise and effective plan. Fig. 8 (b) presents
four different click action tasks, each representing a step in a
specific task. Results show that LLaVA clicks on the bottom-
left corner on all screens, CogAgent fails to generate click
positions, and in the fourth task, only our agent can correctly
click on the position. Fig. 8 (c) shows that our agent can rec-
ognize whether an action needs to be re-tried after reflection
and successfully execute the action following a failure.

6 Conclusion
In this paper, we build a new environment for the screen con-
trol task. VLM agents can manipulate a real computer by gen-
erating mouse and keyboard control commands. To encour-
age the agent to continuously interact with the environment
and accomplish complex multi-step tasks, we design a control
pipeline that includes planning, acting, and reflecting phases.
Furthermore, we unveil a new dataset that covers a wide range
of everyday digital works. We propose a fine-grained metric
to assess the agent’s computer-controlling capabilities with

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6438

1 2

3

54

click (525,120)
 text “chocolate”

press “Return”

1 Search for 'chocolate' in the search box.

2
click (950,215)

Click the filter button.

click (930,250)

3
Sort the search results by price from low to high
by selecting the 'Sort' dropdown or filter option.

click (600,600)

4
Identify the cheapest chocolate item from
the list of sorted search results.

click (897,727)

5 Click on the 'Add to Cart' button to add the
cheapest chocolate to the cart.

Figure 7: An example of the action task, where we assign ScreenAgent the following task: "Find and add the cheapest chocolate to the cart on
Amazon". The diagram delineates the actions that the agent needs to perform, along with the alterations in the computer environment before
and after the execution of these actions.

User GPT-4V CogAgentLLaVA

Verify whether the current subtask ‘Type “Notre-Dame de Paris” into the
search bar.’ has been completed.

Success

Success

Need retry. You have not finished
the subtask

Success

Before Action After Action

Success

Success

Success

&#@.......

(1) Click on the video to watch (2) Click the title text box

(3) Choose 'Brightness-Contrast' (4) Click ‘Reserve’

View a paper
about databases

(a) Planning Phase

(b) Acting Phase (c) Reflecting Phase

ScreenAgent

1.Open browser.
2.Enter the URL of bing.
3.Search for “Papers

about databases in bing”
4.Open the first search

result.
5.Browse the paper for

reading

1.Open the document
about databases.

2.Read the paper to
understand the content
about databases.

3.Take notes or highlight
important points from the
paper.

4.Close the document and
save any notes or
highlights for future
reference.

1.Double-click on the 'Data’
folder on the desktop.

2.Look for a file related to
databases, like a PDF or
Word document.

3.Double-click on the
paper about databases
to open it.

4. Maximize the window to
have a better view, if
necessary.

1.Locate and click on the
web browser icon (e.g.,
Chrome) on the desktop
to open it.

2.Once the browser is
open, click on the
address bar at the top of
the screen.

3.Enter the search term ‘
papers about databases’
into the address bar.

4. Press the enter key…
5. …

?

?
no (x , y)

no (x , y)

Figure 8: An example to show the execution results of multiple VLM agents among the planning, acting, and reflecting phases.

both action-level and task-level evaluation. We test OpenAI
GPT-4V and two state-of-the-art VLM models on the test-
set. The results indicate that GPT-4V has the potential to act
as a computer-controlling agent, but it lacks precise position-
ing capabilities. Finally, we train the ScreenAgent model,
inherited from CogAgent, to achieve scores comparable to
GPT-4V but with greater accuracy in UI element position-

ing. We hope that our work could inspire further research
in the construction of more powerful and generalized agents.
In terms of technical limitations, due to the input restrictions
of VLM, our model can only process single-frame images,
not videos or multi-frame images. In addition, the VLM’s
language capability is limited by the abilities of foundation
language model.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6439

Ethical Statement
The rational use of automated agents with autonomous
decision-making capabilities brings significant societal ben-
efits, including improving the accessibility of computers, re-
ducing duplication of human effort on digital work, and aid-
ing in computer education. However, the potential negative
impacts of these agents, such as employment impact, fraud
and abuse, privacy issues, and the risk of misoperation, can-
not be overlooked. The method could potentially be used to
bypass the CAPTCHA test for automatic account registra-
tion, spreading misinformation, or conducting illegal activi-
ties. We are focused on and committed to the responsible use
of AI technology.

Acknowledgments
This work is supported by the National Natural Science Foun-
dation of China (No. 62206107), National Science and Tech-
nology Major Project under Grant (No. 2023YFF0905400)
and New H3C Technologies Co., Ltd.

References
[Burns et al., 2022] Andrea Burns, Deniz Arsan, Sanjna

Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A.
Plummer. A dataset for interactive vision language nav-
igation with unknown command feasibility. In European
Conference on Computer Vision (ECCV), 2022.

[Chen et al., 2021] Xingyu Chen, Zihan Zhao, Lu Chen,
Danyang Zhang, Jiabao Ji, Ao Luo, Yuxuan Xiong, and
Kai Yu. Websrc: A dataset for web-based structural read-
ing comprehension, 2021.

[Chen et al., 2023] Jun Chen, Deyao Zhu, Xiaoqian Shen,
Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mo-
hamed Elhoseiny. Minigpt-v2: large language model as a
unified interface for vision-language multi-task learning,
2023.

[Chiang et al., 2023] Wei-Lin Chiang, Zhuohan Li, Zi Lin,
Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez,
et al. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality. See https://vicuna. lmsys. org
(accessed 14 April 2023), 2023.

[Deng et al., 2023] Xiang Deng, Yu Gu, Boyuan Zheng, Shi-
jie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web,
2023.

[Hao et al., 2011] Qiang Hao, Rui Cai, Yanwei Pang, and
Lei Zhang. From one tree to a forest: a unified solu-
tion for structured web data extraction. In Proceedings
of the 34th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR
’11, page 775–784, New York, NY, USA, 2011. Associa-
tion for Computing Machinery.

[Hong et al., 2023] Wenyi Hong, Weihan Wang, Qingsong
Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zi-
han Wang, Yuxiao Dong, Ming Ding, et al. Cogagent:

A visual language model for gui agents. arXiv preprint
arXiv:2312.08914, 2023.

[Li et al., 2020a] Yang Li, Jiacong He, Xin Zhou, Yuan
Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. In Annual Con-
ference of the Association for Computational Linguistics
(ACL 2020), 2020.

[Li et al., 2020b] Yang Li, Gang Li, Luheng He, Jingjie
Zheng, Hong Li, and Zhiwei Guan. Widget captioning:
Generating natural language description for mobile user
interface elements, 2020.

[Li et al., 2023] Zhang Li, Biao Yang, Qiang Liu, Zhiyin
Ma, Shuo Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu,
and Xiang Bai. Monkey: Image resolution and text label
are important things for large multi-modal models. arXiv
preprint arXiv:2311.06607, 2023.

[Lin et al., 2015] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and
Piotr Dollár. Microsoft coco: Common objects in context,
2015.

[Liu et al., 2018] Evan Zheran Liu, Kelvin Guu, Panupong
Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided explo-
ration. In International Conference on Learning Represen-
tations (ICLR), 2018.

[Liu et al., 2023a] Haotian Liu, Chunyuan Li, Yuheng Li,
and Yong Jae Lee. Improved baselines with visual instruc-
tion tuning, 2023.

[Liu et al., 2023b] Haotian Liu, Chunyuan Li, Qingyang
Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

[Nakano et al., 2021] Reiichiro Nakano, Jacob Hilton,
Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim,
Christopher Hesse, Shantanu Jain, Vineet Kosaraju,
William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint
arXiv:2112.09332, 2021.

[Nogueira and Cho, 2016] Rodrigo Nogueira and
Kyunghyun Cho. End-to-end goal-driven web navi-
gation. In Advances In Neural Information Processing
Systems, pages 1903–1911, 2016.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, pages 8748–8763. PMLR, 2021.

[Schick et al., 2023] Timo Schick, Jane Dwivedi-Yu,
Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom.
Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

[Sun et al., 2022] Liangtai Sun, Xingyu Chen, Lu Chen,
Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6440

multi-modal conversational agents on mobile gui. arXiv
preprint arXiv:2205.11029, 2022.

[Touvron et al., 2023] Hugo Touvron, Thibaut Lavril, Gau-
tier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Ham-
bro, Faisal Azhar, et al. Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023.

[Wang et al., 2021] Bryan Wang, Gang Li, Xin Zhou,
Zhourong Chen, Tovi Grossman, and Yang Li.
Screen2words: Automatic mobile ui summarization
with multimodal learning. In The 34th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’21, page 498–510, New York, NY, USA, 2021.
Association for Computing Machinery.

[Wang et al., 2023a] Guanzhi Wang, Yuqi Xie, Yunfan
Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

[Wang et al., 2023b] Lei Wang, Chen Ma, Xueyang Feng,
Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large
language model based autonomous agents. arXiv preprint
arXiv:2308.11432, 2023.

[Wang et al., 2023c] Lei Wang, Chen Ma, Xueyang Feng,
Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei
Wei, and Ji-Rong Wen. A survey on large language model
based autonomous agents, 2023.

[Wang et al., 2023d] Lei Wang, Jingsen Zhang, Hao Yang,
Zhiyuan Chen, Jiakai Tang, Zeyu Zhang, Xu Chen, Yankai
Lin, Ruihua Song, Wayne Xin Zhao, Jun Xu, Zhicheng
Dou, Jun Wang, and Ji-Rong Wen. When large lan-
guage model based agent meets user behavior analy-
sis: A novel user simulation paradigm. arXiv preprint
arXiv:2306.02552, 2023.

[Wang et al., 2023e] Weihan Wang, Qingsong Lv, Wenmeng
Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi
Yang, Lei Zhao, Xixuan Song, et al. Cogvlm: Visual
expert for pretrained language models. arXiv preprint
arXiv:2311.03079, 2023.

[Yang et al., 2023a] Zhao Yang, Jiaxuan Liu, Yucheng Han,
Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appa-
gent: Multimodal agents as smartphone users. 2023.

[Yang et al., 2023b] Zhengyuan Yang, Linjie Li, Kevin Lin,
Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
juan Wang. The dawn of lmms: Preliminary explorations
with gpt-4v (ision). arXiv preprint arXiv:2309.17421,
9(1), 2023.

[Yao et al., 2023] Shunyu Yao, Howard Chen, John Yang,
and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents,
2023.

[Ye et al., 2023] Yining Ye, Xin Cong, Shizuo Tian, Jiannan
Cao, HaoWang, Yujia Qin, Yaxi Lu, Heyang Yu, Huadong
Wang, Yankai Lin, et al. Proagent: From robotic process
automation to agentic process automation. arXiv preprint
arXiv:2311.10751, 2023.

[Yin et al., 2023] Shukang Yin, Chaoyou Fu, Sirui Zhao,
Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A sur-
vey on multimodal large language models. arXiv preprint
arXiv:2306.13549, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6441

	Introduction
	Related Work
	Multimodal Large Language Models
	Computer Control Environment & Dataset
	Large Language Model-driven Agents

	Framework
	Computer Control Environment
	Control Pipeline

	ScreenAgent Dataset & CC-Score
	Experiment
	Evaluation Results on ScreenAgent Test-set
	Fine-tuning Training
	Case Study

	Conclusion
	Agent Prompt Details
	Construction and Processing for the COCO, Widget Captions, and Mind2Web Datasets
	COCO & Widget Captions Dataset
	Mind2Web Dataset

	Details of ScreenAgent Dataset
	CC-Score
	More Generated Samples of ScreenAgent
	ScreenAgent Training Configurations

