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Abstract
Traditional Named Entity Recognition (NER) mod-
els are typically designed for domain-specific
datasets and limited to fixed predefined types, re-
sulting in difficulty generalizing to new domains.
Recently, prompt-based generative methods at-
tempt to mitigate this constraint by training mod-
els jointly on diverse datasets and extract specified
entities via prompt instructions. However, due to
autoregressive structure, these methods cannot di-
rectly model entity span and suffer from slow se-
quential decoding. To address these issues, we
propose a novel Span-based Unified NER frame-
work via contrastive learning (SUNER), which
aligns text span and entity type representations in a
shared semantic space to extract entities in parallel.
Specifically, we first extract mention spans without
considering entity types to better generalize across
datasets. Then, by leveraging the power of con-
trastive learning and well-designed entity marker
structure, we map candidate spans and their tex-
tual type descriptions into the same vector repre-
sentation space to differentiate entities across do-
mains. Extensive experiments on both supervised
and zero/few-shot settings demonstrate that pro-
posed SUNER model achieves better performance
and higher efficiency than previous state-of-the-art
unified NER models.

1 Introduction
Named Entity Recognition (NER) is a foundational task for
Natural Language Processing (NLP), which aims to extract
named entities in the given text and classify them into pre-
defined entity types such as persons, organizations and loca-
tions. As a subtask of information extraction, NER serves
as a crucial building block in many NLP applications, in-
cluding entity linking [Ganea and Hofmann, 2017; Le and
Titov, 2018], relation extraction [Zhong and Chen, 2021;
Rathore et al., 2022] and knowledge graph construction
[Sarhan and Spruit, 2021].
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Figure 1: Illustration of 3 NER approaches. (a) Dataset-specific
models train individually per corpus. (b) Prompt-based generative
models enable joint training but decode entities sequentially. (c) Our
unified SUNER method directly models spans for parallel extraction
across datasets.

The current approaches for NER typically employ pre-
trained transformer architectures, like BERT [Devlin et al.,
2019] or RoBERTa [Liu et al., 2019], as a base encod-
ing component to perform in-domain supervised learning
on individual datasets [Yu et al., 2020; Yan et al., 2023;
Zhang et al., 2023], as shown in Figure 1(a). Although
they demonstrate strong performance on each dataset, these
dataset-specific methods struggle to generalize across new
domains or transfer to unfamiliar entity types without costly
full retraining. For instance, a NER model trained to identify
person and location entities in news text struggles to iden-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6406



tify disease names in medical documents. To enable learned
knowledge transfer across domains, recent prompt-based
generative methods propose jointly training across diverse
datasets with a unified model [Lu et al., 2022; Lu et al., 2023;
Wang et al., 2023], as shown in Figure 1(b). To this end,
they take prompt instructions and text as input, leveraging a
sequence-to-sequence (seq2seq) generative framework to se-
quentially output entities in an autoregressive manner.

However, due to inherent limitations of autoregressive lan-
guage models for entity extraction tasks, these prompt-based
generative approaches have two major weaknesses. First,
compared with span-based methods directly encoding entities
at span-level, the sequential entity generation of approaches
can only implicitly captures associations between spans and
labels, as well as inter-span relationships, making it difficult
to accurately predict span boundaries. Second, due to the
token-by-token decoding in seq2seq frameworks, these mod-
els cannot generate multiple entity predictions in parallel and
thus suffer from slower inference speed.

To address the above-mentioned challenges, we draw in-
spiration from CLIP [Radford et al., 2021] utilizing con-
trastive learning to enhance model generalizability, and pro-
pose a novel Span-based Unified NER approach via con-
trastive learning (SUNER), which can jointly handle multiple
NER datasets, as shown in Figure 1(c). The key idea of our
method is to directly align text spans and entity type repre-
sentations within a shared semantic space, enabling parallel
extraction across domains. In this manner, we break through
limitations of entity categories by introducing textual descrip-
tions of entity types. Furthermore, by utilizing pretrained
language models that have learned general linguistic patterns
from large unlabeled corpora, our model achieves enhanced
semantic matching and superior generalization capabilities to
new domains.

Specifically, the proposed SUNER comprises two mod-
ules: span detection and span classification. First, to adapt
variations across different domains, detection module focuses
solely on extracting mention spans of entities without con-
sidering entity types. This approach, separating the iden-
tification process from later domain-specific categorization,
is more generalized compared to directly classifying entities
across diverse datasets. Second, detection module introduces
an ingenious entity marker framework that highlight candi-
date entity spans in the input sentence, effectively capturing
entity relationships while retaining the original textual struc-
ture to achieve better span representations. Following this,
leveraging a BERT-based contrastive learning approach, the
module maps candidate spans and textual type descriptions
into the same semantic space. This allows flexible extraction
per specified category by relying on learned semantic similar-
ities. In experiments, we jointly train SUNER on seven differ-
ent datasets, supporting a total of 47 entity types. Extensive
assessments under supervised conditions as well as zero/few-
shot settings validate the effectiveness of our proposed model
in achieving better performance and higher efficiency than
previous state-of-the-art (SOTA) unified NER models.

In summary, our main contributions are as follows:

• Instead of relying on autoregressive generated models,

we introduce a span-based unified NER approach via
contrastive learning that can extract entities across do-
mains based on semantic similarities.

• To produce enhanced span representations, we propose
a well-designed entity marker that highlights candidate
spans, capturing inter-entity relationships while retain-
ing original textual structure.

• In experiments across various settings, our model
achieves a 1.9% average improvement under super-
vised conditions and a 5.9%-6.4% absolute increase
for zero/few-shot learning over previous SOTA unified
models, while also maintaining higher efficiency.

2 Related Work
2.1 Named Entity Recognition
Dataset-Specific NER Transformer-based pretrained lan-
guage models [Devlin et al., 2019; Liu et al., 2019; Lee et
al., 2020] have made significant achievements in current NER
tasks with their strong representational capabilities. For flat
NER, classic sequence labeling methods [Souza et al., 2019;
Li et al., 2020] combine BERT with Conditional Random
Fields (CRF) [Ma and Hovy, 2016] to assign the BIO tag for
each token. In a different approach, span-based methods di-
rectly model candidate spans and employ BERT to generate
span representations for classification, achieving the best per-
formance for both flat and nested NER task [Yu et al., 2020;
Li et al., 2022; Zhu and Li, 2022; Yan et al., 2023; Zhang
et al., 2023]. However, these methods typically perform in-
domain supervised learning on specific datasets and are lim-
ited to a set of fixed predefined entity categories. This leads
to challenges in adapting to unfamiliar entity types without
extensive retraining.
Unified NER To enable cross-domain knowledge trans-
fer, recent prompt-based generative methods propose jointly
training on diverse NER datasets and integrating label infor-
mation into a unified model. Among these, T5-based ap-
proaches [Raffel et al., 2020] like PUnifiedNER [Lu et al.,
2023] and UIE [Lu et al., 2022] employ a unified struc-
tural model using a seq2seq generative framework to sequen-
tially output specified entity types. Meanwhile, InstructUIE
[Wang et al., 2023] and UniNER [Zhou et al., 2023] based
on Large Language Models (LLM) converts various NER
datasets into instruction-following format, subsequently fine-
tuning encoder-decoder generative models. However, these
generative NER methods struggle with precise entity bound-
ary detection and slow decoding, especially for LLM-based
models, whose size and cost limit their use in resource-
limited settings. Although USM [Lou et al., 2023] proposes
a token-based unified method, it cannot deal with overlapped
datasets, and also suffer from inefficient decoding due to se-
mantic linking for each word. In our setting, to improve gen-
eralization and time efficiency, we apply a contrastive learn-
ing framework for semantic matching between spans and tex-
tual type descriptions, enabling parallel entity extraction.

2.2 Contrastive Learning
Self-supervised contrastive learning has been widely utilized
in diverse tasks to generate representations [Chuang et al.,
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2020; Gao et al., 2021; Radford et al., 2021; Han et al., 2022;
Tan et al., 2022]. The core concept of contrastive learning
aims to pull positive pairs closer while pushing negative pairs
apart. SimCSE [Gao et al., 2021] applies twice dropout in the
forward process to refine the better sentence representation.
The CLIP [Radford et al., 2021] employs a contrastive learn-
ing framework for pretraining on semantic matching between
image and caption text. This approach aims to transcend the
limitations of fixed object categories and improve model gen-
eralizability to new categories. In this paper, inspired by the
CLIP model, we propose a span-based contrastive learning
unified NER approach. Different from some contrastive NER
[Das et al., 2022; Huang et al., 2022] methods that focus on
token-level contrasts, our approach aligns spans with textual
entity types in a shared semantic space. By learning seman-
tic similarities between spans and entity types, our model can
better generalize to unseen entity categories.

3 The Proposed Method
The architecture of our proposed SUNER model is shown in
Figure 2. It consists of two main modules. First, the span
detection module focuses on identifying all mention spans ir-
respective of entity type. It leverages a BERT-based biaffine
model to generate contextual span representations and then
applies a sigmoid layer to extract candidate entity spans. Sec-
ond, the span classification module inserts special marks to
highlight these extracted spans in the input text . This marked
text, along with entity type descriptions, is then fed into a
BERT-based contrastive framework to obtain vector represen-
tations of the spans and type texts separately. By maximizing
similarity between the span and type text vectors, our model
classifies each span into an entity type. In the following, we
will first provide a task definition, then present components
of our method in detail.

3.1 Task Formulation
The input for our SUNER model includes a sentence S =
[w1, w2, . . . , wn] and entity types T (expressed in natural
language), where n denotes the total number of tokens in
the sentence. The goal of SUNER is to extract all entities
E = {(li, ri, ti)}eni=0 based on semantic similarity, where en
is the number of entities and li, ri, ti represent the left and
right boundary indices and type of the i-th entity.

3.2 Span Detection
As discussed in the introduction, we aim to train the model on
multiple datasets and learn shared features for domain gener-
alization. To this end, we initially extract entity spans without
specifying entity types, a more generalized approach than di-
rectly classifying entities across various domains.

Span Representation Encoder
To achieve contextualized span representation for detection,
we first augment the input S with the dataset name D dur-
ing supervised training to harmonize annotations discrepan-
cies, while omitting this field during zero-shot evaluation.
Then the augmented S′ = [wcls, D,wsep, w1, w2, . . . , wn]
is fed into BERT to get token-level representation H =

[h1,h2, . . . ,hn], where the special tokens wcls, wsep corre-
spond to the start and separator tokens in BERT.

H = BERTd(S
′) (1)

Next, we follow [Yu et al., 2020] and employ a biaffine
encoder to generate span representation. Given a sentence S
with token embeddings H, we process H through two sepa-
rate feed-forward networks (FFNs) to obtain the start-of-span
representations Hs ∈ Rn×dh and end-of-span representa-
tions He ∈ Rn×dh , then the span representation matrix R
is calculated as follows:

Hs = FFNs(H)

He = FFNe(H)

R = (Hs)TUHe +W(Hs ⊕He) + b

(2)

where U ∈ Rdh×dr×dh , W ∈ Rdr×2dh and b ∈ Rdr are
learnable parameters, dh and dr are the hidden size, ⊕ de-
notes element-wise concatenation, and R ∈ Rn×n×dr . Each
cell (i, j) in the matrix R represents the feature representa-
tion of span from the i−th token to the j−th token.

Utilizing the matrix parallel computation of the biaffine
model, our approach can efficiently generate representations
of all spans simultaneously.

Span Detection Objective
After getting spans representations from biaffine model, we
obtain the span prediction logits P through a sigmoid layer
as follows:

P = Sigmoid(WpR+ bp) (3)
And then, we use the binary cross entropy to calculate span-
based loss as:

Lspan = −
∑

0≤i≤j<n

yij log (Pij) (4)

A common issue in pipeline systems is error propagation,
where inaccurate mention boundaries will result in incorrect
entity type classification. To enhance the precision of span
detection in a more fine-grained level, we further introduce
an auxiliary boundary detection task to generate high-quality
candidate spans. Specifically, we feed the token representa-
tions hi into two separate multi-layer perceptron (MLP) clas-
sifiers, and apply a sigmoid function to obtain the probabili-
ties Ps

i and Pe
i of token wi being the start or end of an entity

span respectively:
Ps

i = Sigmoid(MLPstart(hi))

Pe
i = Sigmoid(MLPend(hi))

(5)

Then, the boundary-based loss can be calculated as:

Ls
bdr = −

∑
0≤i<n

ysi log (P
s
i )

Le
bdr = −

∑
0≤i<n

yei log (P
e
i )

Lbdr = Ls
bdr + Le

bdr

(6)

Finally, we combine span-based loss Lspan with the auxiliary
boundary-based loss Lbdr using a weight λ to produce the
overall training objective for the span detection module:

Ldection = (1− λ)Lspan + λLbdr (7)
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Figure 2: The overall architecture of our proposed model.

3.3 Span Classification
To further improve generalization across domains, the span
classification module employs an entity marker structure for
representing entity spans and utilizes contrastive semantic
matching with textual type descriptions for effective entity
categorization.

Entity Mark Structure
In order to effectively leverage boundary information for span
classification, we do not directly employ the biaffine encoder
representations. This method simply concatenates the start
and end tokens, only capturing contextual information around
each individual entity. It fails to capture inter-dependencies
between the spans, which are crucial for entity type confir-
mation, especially for nested entities.

Instead of processing each span at token level, we insert
specialized entity markers at the input layer to highlight spans
in the original text. This marker representation allows us
to capture dependencies between entities at full span level.
Specifically, given an input sentence S and candidate entity
spans C = {c1, c2, . . . , cm}, we insert text markers [ei] and
[/ei] before and after each span ci to construct a hierarchi-
cally marked sentence Ŝ:

Ŝ = . . . , [e1] , wstart(1), . . . , wend(1), [/e1] ,

. . . , [em] , wstart(m), . . . , wend(m), [/em] , . . .
(8)

where wstart(i) and wend(i) denote the start and end tokens of
span ci respectively.

In addition, to preserve original textual structure of the in-
put for the pretrained language encoder, we tie the positional
embeddings of the markers with the start and end tokens of
the corresponding span. For instance, the marker [ek] and the
start token wstart(k), as well as the closing marker [/ek] and
the end token wend(k) share the same position embedding. In

this manner, we keep the position id of original text tokens
unchanged. Furthermore, we impose a constrained attention
mask to the attention layers. Text tokens only attend to text to-
kens and are isolated from entity marker tokens. Meanwhile,
entity marker tokens can attend to all text tokens to aggregate
information for their associated spans, as well as other marker
tokens to capture inter-span dependencies.

Contrastive Learning Framework
Our contrastive learning framework comprises two modules:
an entity type encoder and a span representation encoder. To
conserve memory and enable more efficient training, both en-
coders utilize a shared BERT base model. In this task, we
process two types of inputs: entity type descriptions and the
modified sentence Ŝ with marked candidate entities.

Entity Type Encoder First, we leverage the entity type en-
coder to generate representations for each targeted entity. In
this study, we describe each entity type with a sequence of
natural language tokens. Specifically, for a given textual en-
tity type Ek, we feed Ek into BERT and pass the resulting
[CLS] representation through a MLP layer to obtain the pro-
jected type embedding ek:

hEk

[CLS] = BERTc(Ek) (9)

ek = MLPety(h
Ek

[CLS]) (10)

By leveraging descriptive entity text rather than discrete la-
bels, our model can fully utilize the robust representational
power of pre-trained language models which are trained on
vast unlabeled corpora. This approach significantly boosts the
model’s ability to generalize across new domains. Even for
previously unseen entities, the use of explanatory type texts
with BERT embeddings allows model to better understand
and categorize these entities.
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Span Representation Encoder Similar to the span repre-
sentation encoder used in the span detection module, we feed
the marked sentence Ŝ containing candidate entity spans into
a BERT-based biaffine model to produce vector representa-
tions r̂i for each span ci, formulated as:

Ĥ = BERTc(Ŝ) (11)

r̂i = Biaffine
(
ĥŝtart(i); ĥênd(i)

)
(12)

where ŝtart(i) and ênd(i) are the indices of [ei] and [/ei] in
Ŝ. With this entity marker framework, we effectively cap-
ture entity relationships while preserving the original textual
structure, thereby achieving better span representations.

Contrastive Object Based on the entity type embeddings
and entity span embeddings discussed above, we calculate
the supervised contrastive loss via the InfoNCE [Oord et al.,
2018] formulation as follows:

Lclass = − log
exp (cos (r̂i, eti) /τ)∑en

k=1 1[k ̸=ti] exp (cos (r̂i, ek) /τ)
(13)

where ti denotes the target type for span ci, 1[k ̸=ti] indi-
cates whether category k matches this label, cos calculates
cosine similarity and τ refers to a tuned temperature param-
eter. Through this objective, we pull span representations
closer to their corresponding type vector (positive pair) while
pushing farther from unrelated categories (negative pairs) to
distinguish entities across domains.

3.4 Training and Inference
Training For the span detection and classification mod-
ules, we fine-tune two separate pretrained BERT models,
BERTd and BERTc, using the task-specific losses Ldection

and Lclass respectively. When training the classification
module, we only consider gold entity spans in each sentence
as supervision signals rather than predicted entities with po-
tential noise.

Inference During inference, for span detection, we first
prune out non-entity spans by setting a threshold θ1, then
greedily select the highest probability span proposals while
ignoring conflicting proposals to produce candidate entity
spans. For span classification, we categorize each span ci by
selecting the type embedding ek with maximum cosine sim-
ilarity cos (r̂i, ek) /τ to its span representation r̂i, and only
retain entities with matching scores higher than threshold θ2.

4 Experiments
4.1 Experimental Setting
Datasets
We train and evaluate our model on seven existing public
NER benchmarks including diverse domains such as news,
biomedicine, movie, and restaurant, etc. The used datasets in-
clude three nested NER datasets: ACE 20041, ACE 20052 and

1https://catalog.ldc.upenn.edu/LDC2005T09
2https://catalog.ldc.upenn.edu/LDC2006T06

GENIA [Kim et al., 2003]; along with four flat NER datasets:
CoNLL 2003 [Sang and De Meulder, 2003], OntoNotes 53,
MIT Restaurant and MIT Movie [Liu and Lane, 2017]. We
use MIT Restaurant and MIT Movie datasets with standard
train, dev, and test splits, while adopting the splits of Yu et
al. [2020] for the remaining datasets. After unifying the la-
bels with identical semantics across different datasets, we ul-
timately construct a unified corpus encompassing 47 entity
categories.

Implementation Detail
To ensure a fair comparison with previous SOTA works [Zhu
and Li, 2022; Yan et al., 2023], we utilize RoBERTa-base
[Liu et al., 2019] as the pretrained transformer encoder for
both the span detection and classification modules, resulting
in a total parameter size of 220M for our SUNER model. In
the span detection module, we set the auxiliary loss weight λ
as 0.7, the biaffine encoder hidden size is 300. The filtering
thresholds θ1 and θ2 are set to 0.5 and 0.4, respectively. Dur-
ing training, all parameters are optimized using Adam with a
peak learning rate of 1.5e− 5, while Hyper-parameter tuning
is performed based on validation set.

Evaluation
We use span-level precision, recall and F1 score to evaluate
the performance. A predicted entity is confirmed correct only
when its label and boundaries exactly match the ground truth.
The reported results are averaged over three runs with differ-
ent random seeds.

4.2 Results on Supervised Settings
Compared with Unified Methods
For supervised experiments, we first compare SUNER against
three unified NER approaches:

• USM [Lou et al., 2023] decouples NER into two token-
linking tasks using RoBERTa-Large encoder. However,
it cannot jointly train on overlapped datasets.

• PUnifiedNER [Lu et al., 2023], utilizing a T5-based
model, employs a prompt-based generative framework
to sequentially output entities. We reproduce PUnified-
NER under the same setting.

• One-stage SUNER directly employs the span-based con-
trastive approach for classification without a separate
span detection step.

The results are presented in Table 1, the following observa-
tions can be found: (1) SUNER significantly outperforms
the generative PUnifiedNER method, achieving an average
F1 score improvement of +1.90% across all datasets. Due
to token-by-token decoding limitations, the generative ap-
proach struggles for direct span modeling and interaction.
This limitation is particularly evident on datasets with intri-
cate nested structures, such as Genia, where PUnifiedNER
underperforms SUNER by a substantial margin of 4.14%. (2)
When separating span detection from domain-specific entity
categorization, SUNER on average surpasses the one-stage
method by +0.56%. It illustrates that span detection is a more

3https://catalog.ldc.upenn.edu/LDC2013T19
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Method ACE 04 ACE 05 GENIA CoNLL 03 OntoNotes 5 Restaurant Movie Avg.

USM 87.34 - - 92.97 - - - -
PUnifiedNER 84.75 85.34 74.61 91.82 87.85 82.17 88.54 85.01
One-stage SUNER 87.04 86.76 77.32 92.83 89.82 81.75 88.95 86.35

SUNER(Ours) 87.75 87.21 78.75 93.34 90.54 82.41 88.39 86.91

Table 1: The supervised results on unified methods. Avg. indicates the average F1 score across all datasets. The best F1 scores are in Bold.

Method ACE 04 ACE 05 GENIA CoNLL 03 OntoNotes 5 # P

Biaffine [Yu et al., 2020] 86.70 85.40 80.50 93.50 91.30 N*330M
Seq2Seq [Yan et al., 2021] 86.84 84.74 79.23 93.24 90.28 N*140M
W2NER [Li et al., 2022] 87.52 86.79 81.39 93.07 90.50 N*110M
BS [Zhu and Li, 2022] 87.98 87.15 - 93.65 91.74 N*110M
Biaffine-CNN[Yan et al., 2023] 87.31 87.42 80.33 - - N*110M
DiffusionNER[Shen et al., 2023] 88.39 86.93 81.53 92.78 90.66 N*330M

SUNER(Ours) 87.75 87.21 78.75 93.34 90.54 1*220M

Table 2: The supervised results on dataset-specific methods. # P refers to the estimated number of parameters required for real-world
deployment across N datasets.

general task, enabling the model to capture shared features
across domains and consequently enhance its performance.

Compared with Dataset-Specific Methods
We further compare the performance of the proposed model
against recent dataset-specific SOTA methods, as shown in
Table 2. Different from other models that train separate mod-
els for each dataset, SUNER adopts a more challenging strat-
egy by using a single model for joint training across diverse
datasets. This unified strategy not only improves the model’s
ability to generalize but also optimizes storage efficiency. Ad-
ditionally, our model achieves competitive performance to
SOTA dataset-specific methods. Notably, due to benefit from
handling of similar entity types in ACE, our model lags be-
hind the SOTA by only 0.64% on ACE 2004 and 0.21% on
ACE 2005. While there is a 2.78% performance gap on Ge-
nia, this can be attributed to their use of BioBERT [Lee et al.,
2020], a specialized model for biomedical texts.

4.3 Results on Zero-shot/Few-shot Settings
Zero-shot Settings
For zero-shot experiments, we focus on in-domain CoNLL
2003 dataset and out-of-domain Restaurant and Movie
datasets. In this setting, we first pretrain SUNER on six other
corpora before applying model to the new target datasets.

As shown in Table 3, SUNER substantially exceeds the
prompt-based PUnifiedNER across all datasets, achieving an
impressive average F1 increase of +6.37%. Especially for
out-of-domain generalization, SUNER demonstrates consid-
erable gains of +8.13% and +7.09% F1 on Restaurant and
Movie datasets respectively. Our approach even averages
higher than the UniNER, which is built on a costly 7B pa-
rameter LLM that may be impractical in resource-limited set-
tings. By aligning unseen entities to explanatory type texts
under our span-based contrastive framework, SUNER better
recognizes these unfamiliar categories.

Method CoNLL Restaurant Movie Avg.

Zero-shot
ChatGPT - 37.76 41.00 -
USM - 23.51 42.11 -
UniNER - 36.20 48.70 -
PUnifiedNER 66.53 35.62 39.27 47.14

SUNER(Ours) 70.43 43.75 46.36 53.51
Few-shot
Biaffine 71.94 48.53 53.30 57.92
PUnifiedNER 74.85 54.75 55.96 61.86

SUNER(Ours) 79.74 62.67 60.89 67.77

Table 3: The zero-shot / few-shot results on three datasets. Results
of ChatGPT and UniNER are reported from [Wang et al., 2023] and
[Zhou et al., 2023], respectively.

Few-shot Settings
To further analyze model generalization with limited super-
vision, we conduct additional few-shot experiments based on
the pretrained zero-shot model. Specifically, we sample just
20 training sentences per target dataset and repeat each exper-
iment three times to avoid the effect of random sampling.

The results of few-shot learning are shown in Table 3.
Again, our proposed SUNER model outperforms PUnified-
NER with +5.91% higher average F1, demonstrating the ben-
efits of modeling entities at the span level. Although span-
based Biaffine approaches achieve high supervised perfor-
mance in dataset-specific setting, directly classifying enti-
ties via MLP layer struggles to transfer across unfamiliar do-
mains. In contrast, SUNER exhibits strong adaptation capa-
bilities, improving average zero-shot scores by 14.26% using
just 20 examples per dataset.
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Method GENIA
# P F1 Sent/s SpeedUP

PUnifiedNER 220M 74.61 26.82 1.00×
One-stage SUNER 110M 77.32 374.21 13.95×
SUNER(Ours) 220M 78.75 159.65 5.96×

Table 4: Comparison in terms of parameters, performance, and in-
ference speed on the test set of GENIA. # P means the number of pa-
rameters. All experiments are conducted on a single GeForce RTX
3090 with the same setting.

5 Analysis
5.1 Analysis of Inference Efficiency
In this section, we conduct experiments to compare the in-
ference efficiency between SUNER and other baseline mod-
els. As illustrated in Table 4, compared to the generative
PUnifiedNER, SUNER not only obtains higher accuracy un-
der similar parameter settings but also achieves a notable
5.96× speed increase. Due to seq2seq decoding limita-
tions, PUnifiedNER can only output entities step by step in
an autoregressive manner. In contrast, our span-based con-
trastive framework enables parallel extraction, significantly
boosting processing speed. When compared to the One-stage
SUNER, our model exhibits the stronger generalization, im-
proving performance on the GENIA dataset by 1.43%. Over-
all, SUNER achieves satisfactory accuracy at affordable com-
putational cost, proving its effectiveness for unified NER task
in practice applications.

GENIA CoNLL 03

Default 78.75 93.34
Mark w/o attention mask 78.14 93.01
Mark w/o position tie 78.42 93.13
w/o Mark 77.93 92.89

Table 5: A comparison of different entity mark structure. (1) Mark
w/o attention mask: Remove the constrained attention mask and all
tokens can attend to each other. (2) Mark w/o position tie: Detach
marker position embeddings from span boundary embeddings. (3)
w/o Mark : Remove mark structure entirely, using the raw text as
input.

5.2 Analysis of Entity Mark Structure
To analysis the effect of entity mark structure, we compare
our approach with three other variant methods. The results
are shown in Table 5. All marker-augmented configurations
outperform the raw text input setting, validating the impor-
tance of modeling span interactions in NER Task. Especially
for nested task like GENIA, nested dependency relationships
are crucial for entity type confirmation. In addition, removing
either the constrained attention mask or position embedding
tying leads to varying degrees of performance drops, indi-
cating both are critical for effectively incorporating markers
while preserving original textual structure.

Figure 3: Comparisons of performance with varying number of
training example on out-of-domain Restaurant and Movie datasets.

We achieve this balance by isolating text tokens from entity
marker tokens through the attention mask, and ensuring po-
sition embedding tying to preserve the position embeddings
of the original tokens. As a result, the BERT context vec-
tors of the text tokens remain unchanged. Yet, by integrating
span vectors using entity markers, we facilitate interactions
between spans, leading to superior performance.

5.3 Analysis of Generalization Capability

As previously highlighted, our proposed SUNER aims to im-
prove model generalization to new domains through joint
training across different datasets. To validate this point, we
evaluate SUNER’s performance against the baseline models
with different training sizes, particularly focusing on out-of-
domain Restaurant and Movie datasets. As shown in Figure
3, even with just 50 training examples, SUNER achieves ap-
proximately 80% of the optimal performance, which demon-
strates its quick adaptation ability to new domains. When
increasing the dataset size to 200 examples, SUNER’s per-
formance continues to improve, lagging behind the SOTA by
reasonable margins of 9.76% on Restaurant and 8.28% on
Movie. By incorporating a semantic matching-based con-
trastive framework, SUNER can perform well with limited
labeled data, highlighting its potential in practical applica-
tions where annotation scarcity hinders model development.

6 Conclusion

In this paper, we present a novel method SUNER that lever-
ages span-based contrastive framework to extract entities in
parallel for unified NER. To improve model generalization,
we divide SUNER into two stages, separating span detection
from domain-specific span classification. In the span classifi-
cation stage, we utilize descriptive entity text instead of dis-
crete labels to help model better understand and categorize
entities. We conduct extensive experiments in various set-
tings, including supervised and zero/few-shot conditions. The
results demonstrate that our approach achieves better perfor-
mance and higher efficiency compared to previous state-of-
the-art methods.
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