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Abstract
Designing natural language interfaces has histori-
cally required collecting supervised data to translate
user requests into carefully designed intent repre-
sentations. This requires enumerating and labeling
a long tail of user requests, which is challenging.
At the same time, large language models (LLMs)
encode knowledge about goals and plans that can
help conversational assistants interpret user requests
requiring numerous steps to complete. We introduce
an approach to handle complex-intent-bearing utter-
ances from a user via a process of hierarchical natu-
ral language decomposition and interpretation. Our
approach uses a pre-trained language model to de-
compose a complex utterance into a sequence of sim-
pler natural language steps and interprets each step
using the language-to-program model designed for
the interface. To test our approach, we collect and
release DeCU—a new NL-to-program benchmark
to evaluate Decomposition of Complex Utterances.
Experiments show that the proposed approach en-
ables the interpretation of complex utterances with
almost no complex training data, while outperform-
ing standard few-shot prompting approaches.

1 Introduction
Neural sequence models, pre-trained on large datasets of lan-
guage and code, are extremely effective at parsing natural com-
mands into programs, database queries, and other structured
representations of user intent [Chen et al., 2021; Li et al., 2021;
Shin et al., 2021; Roy et al., 2022]. However, developing an
interface that enables a user to interact with a new API or
software system still requires substantial system-specific data
collection. Users, meanwhile, may not be aware of the scope
of this data collection, and pursue an open-ended set of goals
more complicated than those anticipated by system designers.

In this paper, we present DECINT1, an approach to
decompose complex utterances into a sequence of simpler
NL steps, each resembling a simpler elementary utterance
that an existing language-to-program interpreter for the NL

1Code and DeCU dataset will be available at https://github.com/
microsoft/decomposition-of-complex-utterances

interface can parse to a sub-program. Consider the utterance
“Exchange the timing of my meetings with Jane and Smith” (Fig-
ure 1). DECINT breaks the utterance down into four NL steps,
using a pre-trained LLM and just a few annotated decompo-
sitions. The generated NL steps are parsed into programs,
relying primarily on a relevant (to the step being parsed) sub-
set of a larger set of existing elementary utterances associated
with simpler programs in the target representation. DECINT
thus enables an NL interface system to handle user requests
representing complex goals (never seen by a semantic parser)
by breaking them into a series of NL steps that are interpreted
into APIs (never seen by an LLM). Our work is related to
recent work which demonstrates that large language mod-
els (LLMs) encode knowledge that can be used to interpret
complex user goals requiring numerous steps to complete,
in setups such as question answering [Wolfson et al., 2020;
Khot et al., 2022] and embodied agents [Ahn et al., 2022;
Huang et al., 2022]. Compared to such past work, we are con-
cerned with generating programs in a carefully designed intent
representation. Starting with labeled elementary utterances,
we wish to be able to parse complex utterances that are broader
in scope compared to the abundant elementary utterances.

To study utterance decomposition in the NL-to-program
space, we collect and release DeCU—a new benchmark
dataset to evaluate models for Decomposition of Complex
Utterance. DeCU consists of (1) a set of elementary utter-
ances and corresponding programs for managing calendar
events and emails and (2) a diverse set of complex user ut-
terances annotated with decompositions into sequences of
elementary utterances and their corresponding program frag-
ments. Experiments on DeCU show that DECINT outperforms
direct few-shot prompting approaches, making it possible to
build NL interfaces that accomplish complex goals without
large amounts of complex labeled data.

2 Task Overview
We study the problem of parsing a user utterance x into a pro-
gram y that correctly reflects user intent (Figure 1). We focus
on a version of the problem with the following characteristics:

• A domain developer has already collected a dataset of
elementary utterances annotated with corresponding
programs. These utterances represent narrow user goals
associated with simple and short programs.
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Change the end times for all my meetings in 
this week to end earlier by 5 minutes

Rename all meetings that I have with a PM  
this month to be called project sync.

I need to swap the calls that are on Monday 
and Tuesday.

If I don’t have an email about ship room, then 
set up a 1:1 with Smith for this.

Complex Utterance: Exchange the timing of my meetings with  
                                     Jane and Smith

Program (with step-by-step decomposition): 

Step 1: Find the meeting with Jane 
val s1 = theEvent(with_(“Jane”)) 
 
Step 2: Find the meeting with Smith 
val s2 = theEvent(with_(“Smith”)) 
 
Step 3: Update the event s1 to use start and end time of event s2 
val s3 = modifyEvent(s1, startsAt(s2.start) and endsAt(s2.end)) 
 
Step 4: Update the event s2 to use start and end time of event s1 
val s4 = modifyEvent(s2, startsAt(s1.start) and endsAt(s1.end))

Elementary Utterances and Programs

Utterance:  Find my event with Jesse and Kelly? 
Program:    val s1 = theEvent(with_(“Jesse”) and with_(“Kelly”))

Utterance:  Rename the title of this morning's meeting to “Q&A” 
Program:    val s1 = modifyEvent(theEvent(queryAt(morning on `this`[Date])), called(“Q&A”)) 

Utterance:  Schedule a meeting that ends at 3pm tomorrow 
Program:    val s1 = createEvent(endsAt(3.pm) on tomorrow) 

Utterance:  Find my shiproom emails 
Program:    val s1 = findEmails(messageTitleIs(“shiproom”))

…

Complex Utterances

…

Figure 1: Parsing NL user utterances into programs. We study a scenario in which a large number of elementary utterances have been annotated
with programs (top block), and we wish to build a model that can generalize to complex utterances (bottom blocks) requiring more elaborate
programs. We introduce a method called DECINT that uses an LLM to decompose a complex utterance by predicting simpler NL steps, each of
which is parsed to a program according to the annotated elementary utterances.

• At test time, the system must interpret complex utter-
ances. Such utterances require longer programs repre-
senting much broader user goals.

• For a small number of complex utterances, we have ac-
cess to annotations consisting of both natural language
decompositions into elementary utterances, and program
annotations for elementary utterances.

Annotated complex utterances will in general cover only a
small part of the space of possible user requests, and our goal
is to build a language-to-program model that can generalize to
requests of very different kinds (Figure 1).

3 Data
Many existing relevant decomposition datasets focus on open-
ended QA [Wolfson et al., 2020; Khot et al., 2021; Khot et
al., 2022; Yang et al., 2018] or robotics domains with a rela-
tively small number of fixed allowed actions [Puig et al., 2018;
Shridhar et al., 2020]. By contrast, we are interested in the
task of parsing a user utterance to a program that represents
the actions to be taken by the interface, grounded on a large
number of fixed APIs. Moreover, we want to study how com-
plex user utterances can be supported by the NL interface,
without collecting a large amount of additional labeled data,
by using decomposition in NL space. To study such multi-step
complex intent decomposition, we introduce a new dataset we
call DeCU (Decomposition of Complex Utterances).

The utterances in DeCU focus on calendar events and
emails. The dataset contains both elementary utterances and
complex utterances. Elementary utterances (§3.2) are paired
with declarative Scala3 programs based on a domain library
(§3.1) that admits a fixed set of APIs and specified types.
Complex utterances (§3.3) are annotated with a corresponding
sequence of elementary utterances, each paired with a pro-
gram. Only a few of these complex utterances are included in
the training set; they are mainly used to form a test set.

Figure 1 illustrates an example: “Exchange the timing of my
meetings with Jane and Smith”. How such an utterance should
be decomposed is domain-dependent: here, the calendar API
does not provide a single endpoint that can swap pairs of
meetings; instead, the system must search for the two meetings
individually, then update each of their times. Figure 1 shows
a possible decomposition into four steps. The first generated
NL step, “Find the meeting with Jane”, is translated to a
program fragment: val s1 = theEvent(with (“Jane”)).
Individual steps typically represent easier-to-solve inputs for
the NL-to-program parser that primarily relies on the annotated
elementary utterances.

In addition to domain-specific knowledge of APIs, decom-
position of complex utterances often relies on domain-general
reasoning and common sense knowledge – for example, to
avoid double-counting meetings that match two search results
(Figure 2, utterance 1), or to recognize that meetings cannot
conflict with themselves (utterance 2).
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Utterance 1: Change my meetings with Abby and those with Dan this week to start 5 minutes later.

Decomposition:

S t e p 1 : Find e v e n t s w i t h Abby t h i s week
val s1 = findEvents(with_("Abby") and queryAt(‘this ‘[ Interval[Date]] and isWeek))
S t e p 2 : Find e v e n t s w i t h Dan and w i t h o u t Abby t h i s week
val s2 = findEvents(with_("Dan") and not(with_("Abby")) and queryAt(‘this ‘[ Interval[Date]] and

isWeek))
S t e p 3 : S e t a l l m e e t i n g s from t h e l i s t o f e v e n t s s1 t o s t a r t 5 m i n u t e s l a t e r
val s3 = s1.map((x: Event) => modifyEvent(x, startsAt(x.start.local.time + 5. minutes)))
S t e p 4 : S e t a l l m e e t i n g s from t h e l i s t o f e v e n t s s2 t o s t a r t 5 m i n u t e s l a t e r
val s4 = s2.map((x: Event) => modifyEvent(x, startsAt(x.start.local.time + 5. minutes)))

Utterance 2: Decline any meeting invitations that are scheduled during my weekly team meeting.

Decomposition:

S t e p 1 : Find t h e e v e n t c a l l e d ”team m e e t i n g ” t h a t r e c u r s w e ek l y .
val s1 = theEvent(called("team meeting") and recurringWeekly)
S t e p 2 : Find a l l e v e n t s .
val s2 = findEvents0
S t e p 3 : F i l t e r e v e n t s from l i s t s2 t o o n l y i n c l u d e ones t h a t i n t e r s e c t w i t h e v e n t s1 t h a t are

n o t s1 .
val s3 = s2.filter ((x: Event) => x.interval.intersects(s1.interval) && x.id != s1.id)
S t e p 4 : D e c l i n e e v e n t s i n t h e l i s t s3 .
val s4 = s3.map((x: Event) => respond(x, ResponseStatusType.declined))

Figure 2: Examples of complex utterances in DeCU . Each utterance is accompanied by decompositions consisting of a sequence of NL steps
and associated program fragments, annotated by domain experts.

3.1 Domain Library
The domain library defines the set of types and functions
available for program annotations. Types model objects such
as Person and Event, whereas functions represent actions
that can be taken by the agent, including high-level APIs (e.g.,
createEvent, findEmails), low-level operations (e.g., min,
+), predicate constructors (e.g., called, startsAt), etc. The
domain library for DeCU is packaged as standard Scala source
code, consisting of 33 types and over 200 functions.2

3.2 Elementary Utterances
DeCU contains 841 elementary utterances paired with pro-
grams. A few examples are shown in the top box in Figure 1.
These utterances are elementary in that they represent narrow
user goals such as creating or deleting a single meeting, which
can typically be achieved using a single API. As such, they
have relatively short programs, generally less than 5 tokens.3
Examples are written and reviewed by domain experts who
are familiar with the domain library (on account of their expe-
rience from working with a deployed system leveraging such
a library) and annotation guidelines.

3.3 Complex Utterances
To study how complex utterances can be supported by an
NL interface, we collect a diverse set of more involved user
requests, and annotate these with decompositions into elemen-
tary steps, along with programs for each step. As the name
suggests, compared to elementary utterances, these utterances
represent more complex and broader user goals, with the corre-
sponding programs typically being much longer (an average of

2Some built-in types (e.g., String, Boolean), functions (e.g.,
map), and control flow statements (e.g., if) are not explicitly defined
and counted. Appendix B provides more details.

3To compute this statistic, programs are split into tokens based
on heuristics, treating API names, argument names, and values as
individual tokens.

14.5 tokens per program). To collect complex utterances, we
employ a mix of manual authoring and automated utterance
generation. Manual authoring is performed by domain experts
with a focus on diversity and goals that require the compo-
sition of multiple calls to the domain APIs. For automated
collection techniques, we generate utterances using GPT-3
[Brown et al., 2020] prompted with a few random examples
of manually-authored utterances. About 60% of all the col-
lected utterances were generated automatically. Appendix A4

provides more details on utterance collection. Examples are
shown in Figure 1.

Decomposition Annotations: Six annotators familiar with
the domain (annotators had past experience working with the
domain library) decompose complex utterances into elemen-
tary ones. When results from earlier steps must be reused,
these NL decompositions may include explicit reference to
earlier step outputs (Figure 2). More information about anno-
tator instruction is provided in Appendix A. Each annotation
was additionally reviewed by two additional domain experts,
separate from the set of 6 annotators.

Data Statistics: We collected a total of 210 unique complex
utterances. The dataset is a mix of 126 utterances paired
with annotated programs and 84 that are unannotated. As
discussed later, in addition to reference-based metrics, we
also provide various reference-less metrics that do not require
annotations. While it is a relatively small count, note that most
of the data (200 out of 210) is used to construct an evaluation
set, as we are interested in learning to generalize from very
small numbers of training examples. Additionally, we would
like to note that our dataset is of similar scale as some other
recent datasets: SayCan [Ahn et al., 2022] was evaluated only
on 101 examples, and each of the Big-Bench [Suzgun et al.,
2022] hard task used less than 250 examples for evaluation.
Annotated complex utterances in our full dataset exhibit a

4Appendix available at https://github.com/microsoft/
decomposition-of-complex-utterances
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…

Step by Step Decomposition

Complex Utterance: Exchange the timing of my meetings with Jane and Smith


Step 4: Update event s2 to start and end time of 
the event s1

val s4 = modifyEvent(s2,  
  startsAt(s1.start) and endsAt(s1.end))

Next NL Step 
Generation

Parsing the Last 
Generated Step

Step 1: Find the meeting with Jane 
val s1 = theEvent(with_(“Jane”))  
 
Step 2: Find the meeting with Smith 
val s2 = theEvent(with_(“Smith”))  
 
Step 3: Update event s1 to start and end time of 
event s2 
val s3 = modifyEvent(s1,  
  startsAt(s2.start) and endsAt(s2.end))

A. K (=10) number of Complex Utterance Decomposition examples.

B. M (<=25) number of Elementary Utterances similar to “Change event s2 to start 
and end time of event s1”, chosen from a larger set.

Complex Utterance: Check if John has accepted our meeting tomorrow and if not 
then add John's manager to the call 
 
Step 1: Find my meeting with John tomorrow 
val s1 = theEvent(with_(“John”) and queryAt(tomorrow)) 
 
Step 2: If John has not accepted the event s1 then update the event s1 to add his 
manager 
val s2 = Option.when(!s1.attendees.isAttending(thePerson(“John”))) { 
  modifyEvent(s1, with_(thePerson(“John”).manager)) }

Utterance:  Change the title of this morning's meeting to "Q&A"  
Program:    val s1 = modifyEvent(theEvent( 
             queryAt(morning on `this`[Date])), called(“Q&A”)) 

Utterance:  If list of events s2 is empty then update event s1 to end at 2:30 pm. 
Program:    val s3 = Option.when(s2.isEmpty) { 
             modifyEvent(s1, endsAt((2 :: 30).pm)) }         

Figure 3: DECINT maps complex utterances into elementary steps, each of which is parsed in sequence to arrive at a final program. NL
decomposition and program generation steps are interleaved. While parsing a step, up to M similar examples of elementary utterances are
retrieved.

diverse range of properties (an utterance can have multiple):
55% use a map operation (for-loop), 36% contain actions
based on a condition, 31% use a filter operation, 24% query
about calendar/email, 37% contain a create meeting action,
9% contain a delete meeting action, and 31% contain a modify
meeting action. The average number of decomposition steps
in our data is 3, with a maximum of 7 steps. The average
number of tokens in each program is 14.55, while the average
number of tokens in the program fragment corresponding to
a single step is 4.8. For comparison, the average number of
tokens in the programs for elementary utterances is 4.5.

4 Approach
The DECINT approach, illustrated in Figure 3, maps a complex
utterance x to a sequence of interpretable lower-level NL steps
(z1, z2, ..) that resemble elementary utterances. Each step or
low-level utterance zj is parsed into a program fragment yj .
In particular, DECINT maps from commands to programs
according to the following iterative generative process:

1. Natural Language Decomposition:
zj ∼ p(· | x, z<j , y<j).

2. Program Generation:
yj ∼ p(· | x, z≤j , y<j).

NL Decomposition (§4.1) and program generation (§4.2) steps
are interleaved, with later portions of the language decomposi-
tion conditioned on earlier program fragments. In principle,
one could also condition on the return values of the earlier
program fragments (see Limitations section). We do not do

so in this paper, as running the programs would require API
implementations and input data.

4.1 Natural Language Decomposition
The NL decomposition stage generates the next NL step
zj conditioned on the user utterance x and any previously
generated steps and program fragments. We obtain zj by
greedy decoding from a pre-trained LLM in a few-shot in-
context learning setup [Brown et al., 2020]. The model is
prompted with K = 10 example decompositions, each of
which consists of an utterance x followed by any previous
steps and their program fragments, all concatenated together
(x, z1, y1, z2, , ..., zN , yN ). We additionally found it useful to
include a list of up to M elementary NL utterances at the
start of the prompt (before the K decomposition examples),
selecting the ones with highest BM25 similarity to the input
utterance. This is intended to inform the model about the
kind of elementary steps the NL-to-program parser can handle.
(An example constructed prompt is shown in Appendix C.)
Example decompositions are taken from the set of 10 complex
utterances in the training split of DeCU .

DECINT’s ability to perform NL decomposition thus re-
sults from a combination of parametric knowledge about the
structure of programs in general (the result of pretraining)
and non-parametric knowledge about the domain of interest
(obtained via in-context learning). Together, these enable gen-
eralization to structurally novel user requests. For example,
there are no training examples that involve exchanging the
timing of two meetings (the test example in Figure 3), but
DECINT nonetheless synthesizes a correct program.
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4.2 Program Generation
The program generation step synthesizes a program fragment
yj for a given NL step zj , conditioned on any preceding steps
and incomplete program. This is a well-studied semantic
parsing problem, and we design the NL-to-program parser
largely following past work that applies pre-trained LLMs.
We use in-context learning with dynamically selected prompt
examples from the set of elementary examples data [Brown
et al., 2020]. As before, we use greedy decoding. Gener-
ated program fragments may refer to previously generated
fragments using named step variables. For a given NL utter-
ance or step, we identify up to M examples from the set of
elementary utterances, where each example is an (utterance,
program) pair (as shown in box B in Figure 3). The selection
of the examples is based on the similarity of the utterance to
the intermediate NL step being parsed. To compute similar-
ity, we again use BM25, as in past work [Rubin et al., 2022;
Roy et al., 2022]. In pilot experiments on training data, we
discovered it was useful to also include the K decomposi-
tion examples at the bottom of the prompt (detailed prompt
example shown in Appendix C). This may be because the
decomposition examples provide a demonstration of how to
generate program fragments for a step conditioned on pre-
vious steps and help bridge any possible domain shift from
elementary to complex utterances.

4.3 Baselines
The DECINT method decomposes a complex utterance into NL
steps, separately parsing each step, and using internal variable
references to assemble a larger program. The standard few-
shot prompting approach for tasks like this one instead directly
predicts the parse without generating the intermediate NL steps
[Roy et al., 2022]. We compare to this approach, which we
denote DIRECT-PRED, in our experiments. There are a few
key differences compared to the DECINT method. Complex
utterance examples are presented without the intermediate NL
steps (i.e., each utterance is paired with a multi-line program).
The output generation is a single-step process since there are
no intermediate NL steps that need to be generated. As with
DECINT, examples of elementary utterances are also included
in the prompt. We also consider a COT [Wei et al., 2022]
baseline, wherein the model first predicts all intermediate NL
steps and then predicts the program. Accordingly, the complex
utterance examples in the prompt are annotated with inter-
mediate steps. This baseline resembles the method proposed
in Jiang et al [2023]. Note that compared to COT, DECINT
interleaves step generation and parsing, and dynamically up-
dates the subset of exemplars from elementary utterances to
be relevant to the step being parsed.

We also report results using a variant of DECINT that relies
only on K decomposition exemplars but without access to
elementary utterances (M=0 instead of 25). We refer to such
a baseline as FEW-SHOT. We also consider a variant of
DECINT that uses only a single decomposition exemplar (K=1
instead of 10), and thus relies almost entirely on the elementary
utterances from the underlying domain. We refer to the variant
as ELEMENTARY-ONLY. Finally, we also report results on a
variant of DECINT that employs a fixed set (randomly selected)
of elementary utterance exemplars. We refer to this variant

as REACT, as similar to ReAct [Yao et al., 2023], it does not
employ any dynamic exemplar selection. This is in contrast
to DECINT that dynamically identifies elementary utterances
most similar to the generated step being parsed.

5 Experiments
5.1 Evaluation
Overlap with Reference Programs: We report Exact Match
(EM) and character-based edit distance (CER) metrics6

against the gold program. Before computing these metrics,
we normalize the programs by lowercasing the entire program
and removing extra spaces. Since there can be multiple pos-
sible ways to express the target multi-line program, Exact
Match can only be viewed as a lower-bound metric for this
task. These metrics are reported only for the subset of the data
that consists of annotated reference programs.

Well-formed Evaluation: Additionally, we report the frac-
tion of predictions that are valid (WellForm) under the domain
library, i.e., the full program follows correct syntax and only
uses functions available in the library. Note that WellForm
does not necessarily represent correctness with respect to the
user goal. We report the metric for the entire test set.

Program Correctness: Finally, we report the overall cor-
rectness of the generated programs. We define a program to be
correct overall if: it is well-formed, and correctly represents
the user request. We use GPT-4 (gpt-4-32k) [OpenAI, 2023] to
rate the correctness of the generated programs (Correct). The
prompt consists of an instruction and four manually labeled
exemplars (two “correct” and two “incorrect”) followed by the
test example. Each example is a user utterance followed by the
associated program. The label is a natural language caption/ex-
planation of the generated program, followed by a final verdict
on whether the generated program is “correct” or “incorrect”
for the given user utterance – following a chain-of-thought
style prediction7. Since we have an automatic static analysis
to infer exactly which programs are well-formed (WellForm),
outputs that are not well-formed are automatically considered
to be incorrect as per the definition above (but are included in
the denominator for all evaluations). Note that the Correct met-
ric is reference-less, is easier to scale than human evaluations,
and correlates well with human ratings (Section 5.3).

5.2 Setup
We consider the task of parsing complex utterances in DeCU
given only ten complex utterances (annotated with decompo-
sitions) to be used as training data (exemplars for in-context
learning). We report results on the test set consisting of the
remaining 200 complex utterances. We use a maximum of
M ≤ 25 additional elementary utterances (as many as per-
mitted by the LM’s context window) selected according to
BM25 similarity with the step being parsed. We use OpenAI’s
text-davinci-003 model as the LLM for generating each NL
step as well as for parsing it into a program.

6https://huggingface.co/spaces/evaluate-metric/cer
7The exact prompts used in Correct are presented in Appendix D
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Utterance 1: Make me a meeting at 3 PM mountain time and refuse any meetings that happen at the same time.

DECINT

S t e p 1 : Find e v e n t s a t 3 pm mounta in t i m e
val s1 = findEvents(queryAt (3.pm inZone TimeZone("MST")))
S t e p 2 : R e f u s e any e v e n t s i n t h e l i s t s1
val s2 = s1.map(x => respond(x, withResponse(ResponseStatusType.declined)))
S t e p 3 : C r ea t e a m e e t i n g a t 3 pm mounta in t i m e
val s3 = createEvent(createAt (3.pm inZone TimeZone("MST")))

DIRECT-
PRED

val s1 = createEvent(createAt (3.pm inZone TimeZone("MST")))
val s2 = findEvents(queryAt (3.pm inZone TimeZone("MST")))
val s3 = s2.map(x => refuseEvent(x))

COT
S t e p 1 : C r ea t e a m e e t i n g a t 3 pm mounta in t i m e
S t e p 2 : R e f u s e any m e e t i n g s t h a t happen a t t h e same t i m e ”}
val s1 = createEvent(createAt (3.pm inZone TimeZone (\"MST\")))
val s2 = findEvents(queryAt (3.pm inZone TimeZone (\" MST\"))).map(x => refuseEvent(x))

Comment We observe that hallucination of functions is much more prominent in the baselines DIRECT-PRED and COT,
as can be seen in the use of the non-existing function refuseEvent

Utterance 2: I’d like to divide the meeting at noon in two, so split off the last fifteen minutes as a separate event.

DECINT

S t e p 1 : Find t h e e v e n t a t noon
val s1 = theEvent(createAt(noon))
S t e p 2 : S u b t r a c t 15 m i n u t e s from t h e end t i m e o f t h e e v e n t s1
val s2 = s1.end - 15. minutes
S t e p 3 : Update t h e e v e n t s1 t o end a t t h e t i m e i n s t a n t s2
val s3 = modifyEvent(s1 , endsAt(s2))
S t e p 4 : C r ea t e a new e v e n t s t a r t i n g a t t h e t i m e i n s t a n t s2
val s4 = createEvent(startsAt(s2))

Comment Output program from DECINT was judged as incorrect since it doesn’t specify the duration of the second event.

Figure 4: Outputs from DECINT and baselines on sample complex utterances in DeCU .

System Correct↑ WellForm↑ EM↑ CER↓
DIRECT-PRED 0.34 0.36 0.04 0.44
COT 0.25 0.29 0.05 0.46
FEW-SHOT 0.13 0.19 0.00 0.50
REACT 0.21 0.23 0.02 0.49
ELEMENTARY-ONLY 0.23 0.31 0.04 0.54
DECINT 0.41 0.46 0.05 0.40

Table 1: Quality of the generated program for complex utterances
under various automated metrics.

5.3 Evaluation of Generated Program
Table 1 reports various automated metrics. DECINT outper-
forms all the baselines, sometimes by a wide margin. As
can be seen in the table, DECINT outputs receive an overall
correctness score (Correct) of 41% for complex utterances
compared to 34% and 25% for the baselines DIRECT-PRED
and COT respectively.8 We posit that DECINT is able to
make more effective use of pretraining by breaking down a
complex command into NL steps and retrieving relevant ex-
emplars for each step. Further, FEW-SHOT, that is equivalent
to DECINT with M=0, fares badly, suggesting that DECINT
relies on information from elementary utterances in addition
to supervised decompositions. Finally, ELEMENTARY-ONLY,
which is equivalent to DECINT with K=1, also does worse
than DECINT, suggesting the usefulness of a handful of su-
pervised decompositions. Note, however, that a 54% of the
predictions from DECINT are not well-formed, indicating that

8Differences are significant (p < 5%) using bootstrap resampling.

even structural generalization in DeCU remains a major chal-
lenge. Nonetheless, DECINT fares better compared to other
methods on WellForm metric.

Human Evaluation for Program Correctness: We also
obtained the overall program correctness rating (“correct” vs
“incorrect” for a user utterance) from human evaluators fa-
miliar with the domain library. Just as was the case with
Correct metric, outputs that are not well-formed are automati-
cally considered incorrect. The aggregate scores for DECINT,
DIRECT-PRED and COT (our method and the two top perform-
ing baselines as per automated Correct metric) under human
evaluation are 41%, 33% and 26% respectively, which are
very close to the scores for these methods under the automated
Correct metric. Additionally, we observe a high correlation
between human annotator-provided judgment and Correct
judgments (a more detailed correlation analysis is provided in
the Appendix D).

Results with other LLMs: We also report results using
GPT-4 (gpt-4-32k) and LLAMA-2-70B [Touvron et al., 2023]
as the underlying LLM. Due to cost considerations, we report
results only for the top three methods from Table 1. We ob-
serve that DECINT outperforms the baselines, demonstrating
our approach is effective across underlying LLMs (Table 2).

5.4 Evaluation of NL Decomposition
We measure whether the NL decomposition steps altogether
are sufficient and correct to complete the user request.9 For

9Unless stated otherwise, all analysis uses outputs with text-
davinci-003 as the underlying LLM
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System Correct↑/ WellForm↑
GPT-4 LLAMA2-70B

DIRECT-PRED 0.35 / 0.39 0.25 / 0.41
COT 0.37 / 0.40 0.23 / 0.32
DECINT 0.49 / 0.56 0.35 / 0.50

Table 2: Results using GPT-4/LLAMA-2-70B as the LLM.

example, the output from DECINT for the second utterance in
Figure 4 is not sufficient and correct because the fourth step
fails to specify the duration of the meeting, which is supposed
to be 15 minutes as per user request. A random subset of 40 of
DECINT NL predictions and corresponding expert annotations
were manually labeled by one of the authors as correct or
incorrect. The expert annotations and DECINT predictions
were rated as 98% and 85% correct, respectively. Future
work can explore ways to further improve the accuracy of the
predicted NL steps. We also conducted a step-level evaluation,
which we discuss in Appendix D.

5.5 Qualitative Analysis
We provide example predictions in Figure 4, with additional
examples provided in the Appendix. Additionally, we perform
an error analysis of the NL-to-program step of DECINT. We
restrict the study to the predictions that were labeled as incor-
rect in Table 1. The most common issues are those that make
the program not well-formed, as summarized in Table 1. Many
errors are due to nonexistent APIs / API arguments (21% of
the incorrect programs have at least this problem) and nonexis-
tent type attribute (43%). A smaller number result from even
more basic syntax errors and type mismatches (17%). Future
work could constrain the outputs of the parser [Shin et al.,
2021] to only use allowed functions and follow correct syntax,
though such approaches can substantially increase the cost of
decoding.

A few errors result from predictions that capture only partial
user intent (6%). For example, for utterance 2 in Figure 4,
the prediction does not capture the user intent of creating the
second event for 15 minutes. Many of the remaining errors
involve more fundamental semantic mismatches between user
intents and model outputs. For example, for “Loop around
all my 1/1 meetings this week so that they also happen next
week”, the prediction updates the meetings this week instead
of creating another set of meetings next week.

6 Related Work
Past work has explored using command decomposition to
break down complex tasks or requests into smaller subtasks
that are easier to manage. The LaMDA model [Thoppilan et
al., 2022], for example, is capable of breaking down “How to”
type queries into steps. However, generated steps are not tied
to any actions or APIs, and are more in the form of a narrative
rather than executable steps.

Khot et al. [2021] decompose a question into sub-questions
that can be answered by a neural factoid single-span QA model
and a symbolic calculator. Drozdov et al. [2022] decompose
an utterance using a syntactic parse. However, not all utter-
ances in our dataset would lend to such a style of decompo-

sition, since all required actions might not align to a part of
the parse. Recent work [Jiang et al., 2023] has also explored
first generating an entire plan in NL and then generating a
program. Paranjape et al. [2023] focus on using tools and
python scripts to complete a given task such ‘Translate into
Pig Latin’. Compared to such past work, the complex utter-
ances in our case are decomposed into intermediate steps that
are parsed into a sub-program in the target representation as
opposed to generating Python programs. Additionally, these
sub-programs are a part of the final program output and thus
we care about the accuracy of intermediate steps as well.

A related area of research involves grounding high-level
tasks, expressed in natural language, to a chosen set of ac-
tionable steps that a robot could take [Sharma et al., 2022;
Singh et al., 2022; Ahn et al., 2022; Huang et al., 2022].
Huang et al [2022] propose a method to ground high-level
tasks such as ‘make breakfast’ to a set of actionable steps such
as ‘open fridge’. Such work typically assumes a fixed inven-
tory of low-level actions. For example, ‘Semantic Translation’
discussed in Huang et al [2022] translates the predicted step
into an admissible action by calculating the semantic distance
of the predicted action phrase against all possible actions. The
APIs in our case can be composed and chained together, and
have optional arguments. So identifying an exhaustive set of
allowed actions under the DSL (domain-specific-language) in
question is intractable.

7 Conclusion
We have presented DECINT, an approach for interpreting com-
plex user utterances by decomposing them into elementary
natural language steps. To evaluate methods for generating
programs from user requests, we have introduced the DeCU
dataset, featuring a diverse set of utterances requiring substan-
tial generalization from a small training set. Experiments on
DeCU show that DECINT outperforms a standard few-shot
prompting approach to program generation, with additional
analysis revealing opportunities for improvement in both natu-
ral language decomposition and program generation phases.

Ethical Statement
We leverage pre-trained neural language models such as GPT-
3, and systems built using our approach might inherit some
biases present in these pre-trained models. We build a sys-
tem for NL-to-program, that users can leverage to command
various NL interfaces. Such systems are not perfectly accu-
rate and should be carefully deployed since they may lead to
unintended side effects.
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