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Abstract

Large Language Models have shown tremendous
performance on a large variety of natural language
processing tasks, ranging from text comprehension
to common sense reasoning. However, the mech-
anisms responsible for this success remain opaque,
and it is unclear whether LLMs can achieve human-
like cognitive capabilities or whether these mod-
els are still fundamentally circumscribed. Abstract
reasoning is a fundamental task for cognition, con-
sisting of finding and applying a general pattern
from few data. Evaluating deep neural architec-
tures on this task could give insight into their po-
tential limitations regarding reasoning and their
broad generalisation abilities, yet this is currently
an under-explored area. In this paper, we introduce
a new benchmark for evaluating language models
beyond memorisation on abstract reasoning tasks.
We perform extensive evaluations of state-of-the-
art LLMs, showing that they currently achieve very
limited performance in contrast with other natural
language tasks, even when applying techniques that
have been shown to improve performance on other
NLP tasks. We argue that guiding LLM generation
to follow causal paths could help improve the gen-
eralisation and reasoning abilities of LLMs.

1 Introduction
Large Language Models (LLMs) have achieved impressive
performance on a large variety of Natural Language Pro-
cessing (NLP) tasks, including text comprehension [Devlin
et al., 2019; Radford et al., 2019], commonsense reason-
ing [Talmor et al., 2020], and code generation [Bubeck et
al., 2023], and have shown promising results for out-of-
distribution generalisation [Brown et al., 2020; Bubeck et al.,
2023]. The most recent and larger language models also per-
form well on mathematical problems, which had been out of
reach for transformers for a long time [Chen et al., 2022;
Stolfo et al., 2022]. While empirical testing of LLMs trained
on large corpora of data yields signs of high comprehension
of presented problems, there is little theoretical evidence re-
garding how this performance has been achieved and whether

these models are simply memorising the training data, ex-
trapolating it, or some combination [Tirumala et al., 2022;
Goyal and Bengio, 2020]. A notable limitation of these mod-
els is a lack of control mechanisms, or possible misalignment
[Ouyang et al., 2022], for which the absence of a world model
or causal representation have been advanced as explanations
[Bender et al., 2021; Zecevic et al., 2023]. Experiments on
GPT-4 showed signs of limitations on reasoning tasks requir-
ing planning and backtracking or with an uncommon distri-
bution [Bubeck et al., 2023; Wu et al., 2023]. Despite these
limitations, the question of whether or not LLMs can perform
human-like reasoning remains open, as measuring the intel-
ligence, or more broadly, the competence, of a system is a
challenging task [Chollet, 2019].

Abstract reasoning is a potential task for effective measure-
ment of the cognitive abilities of neural models [Santoro et
al., 2018; Chollet, 2019]. Abstract reasoning problems con-
sist of identifying generic structures over a small set of exam-
ples and applying them to unseen cases. They aim to evalu-
ate the ability of a system to integrate a new skill or process
from limited data. The abstract nature of these problems helps
avoid spurious correlations that could lie in the data and may
create potential bias in the results. In particular, this task is
well-suited for evaluating the broad or strong generalisation
capacity of a system, i.e. its ability to handle a large category
of tasks and environments without human intervention, in-
cluding situations that may not have been foreseen when the
system was created [Chollet, 2019]. This is a well-studied
class of task in the field of program induction [Ellis et al.,
2020; Lake et al., 2015]. However, the problem of abstract
reasoning has long remained outside the scope of evaluation
of language models, and there currently exist no extensive
evaluations of the performance of LLMs in this domain.

In this paper, we seek to bridge this gap by investigat-
ing the abstract reasoning abilities of LLMs and by pro-
viding insight into the following question: Do LLMs con-
tain sufficient building blocks for broad generalisation, or do
they lack fundamental capabities? We evaluate state-of-the-
art LLMs on abstract reasoning tasks, applying recent fine-
tuning and prompt design techniques that have been shown
to improve performance on other NLP tasks. To this end,
we create a benchmark based on existing datasets and novel
datasets transposed from vision tasks and adapted to text-
based models. We then perform extensive experiments on
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this benchmark. We also build and fine-tune LLMs for ab-
stract reasoning and compare their performances with the
general models. Our results indicate that Large Language
Models do not yet have the ability to perform sound ab-
stract reasoning. All of the tested models exhibit poor per-
formance, and the tuning techniques that improved LLM
reasoning abilities do not provide significant help for ab-
stract reasoning. We investigate potential reasons for this set-
back. We release our code and data at: https://github.com/
Strong-AI-Lab/Logical-and-abstract-reasoning. Our contri-
butions can be summarised as follows:

• We perform an extensive evaluation of pre-trained and
fine-tuned LLMs on abstract reasoning tasks.

• We show that existing training and tuning techniques do
not help increase the performance of LLMs in abstract
reasoning, and investigate the reasons and leads for im-
provement. In particular, we show that LLMs fail to
grasp abstract patterns and learn causal mechanisms.

• We create a benchmark for the evaluation of language
models for abstract reasoning.

2 Related Work
The abilities of Language Models have been thoroughly stud-
ied on a wide range of problems. Their reasoning capacities
are the focus of a great deal of recent work. Some of this
[Wei et al., 2022; Li et al., 2022; Chen et al., 2022] has ex-
plored prompt techniques to improve mathematical reasoning
in LLMs; [Stolfo et al., 2022] propose a framework based
on causality theory to evaluate language models on this kind
of task. Recently, GPT-4 has been shown to perform well
on mathematical problems although it still produces calcula-
tion mistakes [Bubeck et al., 2023]. In the domain of logi-
cal reasoning, evaluations showed that the logical reasoning
abilities of LLMs are tied to the semantics of the input and
can hallucinate in uncommon situations [Tang et al., 2023;
Xu et al., 2023]. Causal structure discovery and causal in-
ference are other domains where LLMs have shown mixed
results [Zecevic et al., 2023; Kiciman et al., 2023; Jin et al.,
2023]. These tasks are distinct from commonsense causal
reasoning, where LLMs perform well [Kiciman et al., 2023]
. Experiments with GPT-4 [Bubeck et al., 2023] showed that,
despite presenting systematically better performance than its
previous versions, it still has some innate limitations. The
authors introduce several examples indicating that the autore-
gressive nature of LLMs may prevent them from planning and
backtracking, two abilities necessary for complex reasoning
[Bubeck et al., 2023]. GPT-4 also does not always reason
in a consistent manner. Although it produces consistent re-
sults more often than GPT-3, there are no guarantees that the
process leading to the result is always correct. GPT-4’s per-
formance also drops on counterfactual tasks, i.e. common
problems in unfamiliar settings (e.g. arithmetic in base nine)
[Wu et al., 2023]. These experiments highlight a lack of ab-
straction when solving a task but the reason for these short-
comings remain unknown. The scope of cognitive abilities of
the system remain incompletely characterised, especially for
precise reasoning [Bubeck et al., 2023].

The evaluations described above do not, of course, pro-
vide a measure of the intelligence or global cognitive abili-
ties of those models; measuring the level of intelligence of
LLMs and other AI systems is challenging as there is no
clear widely accepted definition [Booch et al., 2021; Goyal
and Bengio, 2020]. [Chollet, 2019] defines the intelligence
of a system as ”a measure of its skill-acquisition efficiency
over a scope of tasks, with respect to priors, experience, and
generalization difficulty”. Following this definition, abstract
reasoning is a well-suited domain over which to measure as-
pects of the learning and generalisation abilities of a system.
To this end, the Abstract Reasoning Challenge (ARC) has
been proposed as a benchmark for artificial systems [Chol-
let, 2019]. A handful of works have proposed to measure
abstract reasoning abilities in neural networks, but they fo-
cus on visual tasks [Santoro et al., 2018; Zhang et al., 2019;
Zhang et al., 2021a]. To the best of our knowledge, this pa-
per is the first to present an extensive evaluation of abstract
reasoning for Large Language Models. Other domains of
study focus on problems similar to abstract reasoning. No-
tably, in program induction, DreamCoder is a system that
learns to solve problems described by a small set of input-
output pairs by writing programs [Ellis et al., 2020]. Abstract
reasoning can also be related to causal representation learn-
ing, as finding abstract relations amounts to recovering the
causal structure of a task and the Independent Causal Mech-
anisms (ICMs) linking the variables [Schölkopf et al., 2021;
Gendron et al., 2023].

3 Evaluation Method
3.1 Evaluation Data
Large Language Models are challenging to evaluate due to
the lack of information on their training set. It is often hard to
distinguish memorisation from in-context reasoning. In par-
ticular, evaluation datasets can have leaked to the LLM train-
ing sets [Li and Flanigan, 2024]. Visual tests are less likely
to be part of LLM training sets and their decomposition into
text allows multiple groundings. Symbolic tasks have a spe-
cific grammar and cannot be solved using information from
other domains (e.g. knowledge of syntactic rules). Therefore,
we build a new framework that adapts symbolic and vision
datasets for abstract reasoning. Each dataset contains a task
consisting of recovering an abstract pattern from a small set
of context examples. We consider the pattern abstract as they
depend solely on very few axiomatic priors and not on mem-
orised knowledge (e.g. innate human priors [Chollet, 2019]).
We select the tasks based on their capacity to evaluate the
ability of a system to find a general abstract rule from lim-
ited examples. The visual datasets are converted into text and
symbolic versions to be used with language models. After
formatting, the datasets can be divided into two categories:
Open-Ended Question Answering (Open QA) and Multiple-
Choice Question Answering (MCQA). Open QA datasets re-
quire the model to generate the correct answer, while MCQA
requires it to choose the answer from a set of possible an-
swers. We note that most of the evaluated models are built
for general-purpose text generation. Therefore, even when
choosing between several options, they must generate the
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correct choice and may fail to do so (e.g. answering D when
only options A, B, or C are available). For comparison, we
also evaluate models built for question answering. We give
more details in Section 3.2. The datasets obtained are sum-
marised in Table 1.

Example Cases

[9, 4] → [9, 4]
[8, 2, 9, 4, 1, 7] → [9, 4, 8, 2, 1, 7]
[5, 7, 3, 4, 9, 2, 0] → [3, 4, 5, 7, 9, 2, 0]
[1, 5, 6, 4, 0, 3, 7] → [6, 4, 1, 5, 0, 3, 7]

Test Case

[4, 3, 2, 8, 9, 6, 7, 1] → [2, 8, 4, 3, 9, 6, 7, 1]

Figure 1: Example task in the BIG-Bench-F dataset. The system
must return the input list with the first two elements switched with
the following two if they exist. Pre-prompts are omitted from the
input. In the test case, the target answer is indicated in italics.

Dataset Type Versions
Text Symb

ARCT Open QA ✓
BIG-Bench-F ✓
Evals-S ✓
PVR ✓
ACRET MCQA ✓ ✓
Evals-P ✓
RAVENT ✓ ✓

Table 1: Datasets considered. When not written, type is similar to
the one above. Datasets can exist in text or symbolic versions. Text
datasets built from an image dataset are indicated with T .

Models
v LLaMA-7B vGPT-2
v LLaMA2-7B v Text-Davinci-3
v Alpaca v GPT-3.5-Turbo
v Alpaca-LoRA v GPT-4
v LLaMA-7B-AR-LoRA∗

v Zephyr-7B-β
v LLaMA2-7B-AR-LoRA∗

� RoBERTa-AR∗

� MERIt-AR∗

Table 2: Models considered. When not written, type is similar to
the one above. Models with ∗ are introduced in this paper. ”-AR”
indicates that the model has been fine-tuned for abstract reasoning.
The v and � icons indicate text completion and QA engines.

Datasets We build a text-based version of the Abstract
Causal Reasoning (ACRE) dataset [Zhang et al., 2021a] that
we name ACRET . ACRE is a Visual Question-Answering
(VQA) dataset. Each sample in the data comprises six context
images and four test cases. Each context image comprises a
set of objects with various shapes, colours and textures caus-
ing the activation of a light. The goal of a system is to de-

termine from the context examples if the light is on, off, or if
its state cannot be determined in the test cases. To solve this
task, the model has to determine for each sample what objects
are causally responsible for the activation of the light. We
generate two versions of the dataset: in ACRET -Text, each
image is replaced by a high-level textual description, and in
ACRET -Symbolic, each image is replaced with a numerical
vector representation.

The second dataset is the Abstract Reasoning Challenge
(ARC) dataset [Chollet, 2019]. The dataset is composed of
tasks comprising three input and output grids. The goal of the
system is to determine the algorithm that converts the input to
the output and apply it to a test case. The grids have a variable
size comprised between 8×8 and 30×30, and contain visual
patterns (e.g. recognisable shapes, symmetries). We provide
the raw grid to the model as a two-dimensional array of inte-
gers. We name this version ARCT . The high dimensionality
of the input makes it a challenging task for LLMs. The tasks
themselves are also challenging as their transcription in natu-
ral language is often complex and supposedly impossible for
12% of them [Acquaviva et al., 2021].

We select a subset of the BIG-Bench dataset [Rule, 2020;
Srivastava et al., 2022] that we name BIG-Bench-F for Func-
tions. The subset comprises tasks corresponding to a function
taking a list as input and returning a new transformed list. For
each task, several input-output samples are given. In BIG-
Bench-F, we give four samples per task by default. The func-
tions include typical list processing like replacing the value
of one element, selecting a subset, or counting elements. An
example is given in Figure 1. The challenge in this task is to
accurately recognise the function from a few samples.

We select a subset of the Evals dataset [OpenAI, 2023] rep-
resenting logic puzzles. Evals-P is a set of tasks where a tuple
containing a character and a list of characters is given as an
input, and a single word from the set {”foo”, ”bar”} is gen-
erated from the input according to a logic hidden from the
evaluated system. The task consists of finding the logic from
a few samples and applying it to a test case. Evals-S is an-
other set of tasks where a list of integers is given as an input,
and an output list of words is generated with a hidden logic.

Pointer-Value Retrieval (PVR) tasks [Zhang et al., 2021b]
involve selecting one or several values in a list and applying a
function on this subset. For each task, the system must recog-
nise the retrieval and application functions and apply them to
a test case. Samples are composed of a pointer-values pair
and a label. The values are stored in an array, and the pointer
is an integer pointing to an index in the array. The pointer
indicates the subset of values to consider for the task. We
generate a new PVR dataset following this methodology.

RAVEN [Zhang et al., 2019] is a VQA dataset composed of
sequences of images to complete. The images contain Raven
matrices [Raven, 1938], i.e. geometric shapes (e.g. square,
circle, pentagon) assembled together. RAVEN is a dataset
similar to Procedurally Generated Matrices (PGM) [Santoro
et al., 2018] but also provides a tree structure describing the
semantics of each image. We focus on a subset where a single
shape appears in the image. The task is, given a sequence of
eight images and eight possible choices, to pick the correct
image that follows in the sequence. As RAVEN is a visual
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dataset like ACRE, we use the given semantic tree structure to
generate a text description of each image we will feed to the
evaluated models. We create two sets: RAVENT -Text con-
tains natural language descriptions, and RAVENT -Symbolic
contains symbolic descriptions. We also build another ver-
sion of the dataset where choices are hidden. We name the
former RAVENT -mcqa and the latter RAVENT -opqa.

3.2 Models Evaluated
We perform evaluations on the most recent and popular ar-
chitectures for NLP tasks. Table 2 provides the list of mod-
els used in the experiments. More details are provided in
the appendix. We restrict our experiments to Large Lan-
guage models . We conduct experiments on the popular
family of GPT architectures. We include three generations
of GPT models: GPT-2 [Radford et al., 2019], a 1.5B pa-
rameter model; aligned GPT-3 models with Text-Davinci-
3, optimised for text completion, and GPT-3.5-Turbo, op-
timised for chat, two 175B models [Brown et al., 2020;
Ouyang et al., 2022]; and GPT-4, with unknown training and
architectural details [OpenAI, 2023]. We also perform ex-
periments on the popular open models LLaMA [Touvron et
al., 2023a] and LLaMA2 [Touvron et al., 2023b]. Alpaca
is a fine-tuned version of LLaMA to respond to instructions
[Wang et al., 2022; Taori et al., 2023], and Alpaca-LoRA is
a LLaMA model instruction-tuned using Low-Rank Adapta-
tion [Hu et al., 2022]. We also fine-tune our own LLaMA and
LLaMA2 models for abstract reasoning. For all models, we
evaluate the 7B parameters versions by default. Finally, we
evaluate the more recent Zephyr-7B-β [Tunstall et al., 2023a;
Tunstall et al., 2023b], a 7B parameters model fine-tuned
from Mistral-7B [Jiang et al., 2023]. We also compare
these generic models on architecture fine-tuned for Multiple-
Choice Question Answering. They discriminate the solu-
tion from a small set of options, unlike text completion en-
gines that produce an output text. We fine-tune two models:
RoBERTa-large [Liu et al., 2019], a language model used for
text comprehension, and MERIt [Jiao et al., 2022], a model
using contrastive pre-training on rules-based data to perform
logical reasoning.

4 Experiments
4.1 Open-Ended Question Answering
In this section, we detail our experiments on open-ended ab-
stract reasoning. Depending on the dataset, the answer can be
in natural language or a symbolic format. The model is asked
to provide the answer directly. The accuracy for each model
on every dataset is summarised in Table 3a.

Our results indicate poor performance of language mod-
els on all the presented datasets, although the performance
varies between datasets and models. In particular, Text-
Davinci-3 and GPT-4 consistently achieve the best perfor-
mance across the datasets. Zephyr-7B-β has almost system-
atically the best accuracy among open models. On the other
hand, LLaMA-7B has the worst performance of all models.
LLaMA2-7B gets a similar accuracy except on BIG-Bench.
Alpaca and Alpaca-LoRA present slight improvements on

BIG-Bench-F, PVR and RAVENT . This improvement is ex-
plained by the instruction-tuning used to build Alpaca and
Alpaca-LoRA. We provide several examples in the appendix
that illustrate this difference. LLaMA-7B often does not at-
tempt to solve the problem but completes the text by giving
more examples. These examples do no match the abstract
rule for the task. Alpaca and Alpaca-LoRA follow the in-
structions more faithfully but also fail to grasp the abstract
patterns. Instruction-tuning seems to help the model under-
stand the format of the answer and what it is asked to do
but provides little help on how to solve the tasks. More-
over, the performance difference between Text-Davinci-3 and
GPT-3.5-Turbo indicates that the type of instruction-tuning
matters as Text-Davinci-3 performs systematically better than
GPT-3.5-Turbo despite being based on the same model. Over-
all, GPT-4 performs noticeably better than all the other mod-
els. As the details of its architecture and training set are
unavailable, we cannot provide satisfactory explanations for
this difference. However, the increase in performance is
highest on the RAVENT dataset. Given that Raven ma-
trices are a standard and long-existing test [Raven, 1938;
Carpenter et al., 1990], we can hypothesize that the training
data of GPT-4 included some versions of the test. The same
remark can be made for BIG-Bench-F as it includes tradi-
tional list processing algorithms. Text-Davinci-3 and GPT-4
also achieve good performance on the ARCT dataset relative
to other existing architectures challenged on the task, making
them 11th and 14th on the Kaggle leaderboard1. However,
they still fail to answer a vast majority of the tasks correctly.
All LLMs generally fail to answer most of the tasks in each
dataset. Despite a performance increase compared to previ-
ous versions, the most recent language models do not perform
open-ended abstract reasoning well.

4.2 Multiple-Choice Question Answering
As seen in Section 4.1, open-ended abstract reasoning is a
challenging problem for language models. We also perform a
series of experiments on Multiple-Choice Question Answer-
ing tasks where the models are given a set of possible answers
and must pick a single one from the set. This task is more ac-
cessible than Open-Ended QA, as the valid response is given
as part of the input. Results are given in Table 4.

We first compare the results of RAVENT -mcqa and
RAVENT -opqa from Table 3a. RAVENT -opqa contains the
same questions as RAVENT -mcqa, but the answer choices
have been removed. Following intuition, giving multiple
choices to LLMs helps systematically improve their perfor-
mance. Only the performance of LLaMA remains the same,
and the performance of Alpaca and Zephyr-7B-β are slightly
reduced. Given the low accuracy in both cases, it can be
interpreted as noise. MCQA models achieve slightly above
random performance (see details in appendix), performing
better than most LLMs. However, they have an advantage
compared to completion engines as they have to select one
answer among a list of possible choices, whereas completion
models must generate the correct answer. Therefore, the lat-

1https://www.kaggle.com/competitions/
abstraction-and-reasoning-challenge/leaderboard
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ARCT BBF Evals-S PVR RAVENT -opqa
Text Symb

Text-Davinci-3 0.105 0.404 0.314 0.228 0.343 0.234
GPT-3.5-Turbo 0.033 0.153 0.186 0.124 0.226 0.161
GPT-4 0.119 0.514 0.304 0.177 0.410 0.330
LLaMA-7B 0.010 0.012 0.014 0.060 0.000 0.000
LLaMA2-7B 0.005 0.108 0.000 0.000 0.000 0.001
Alpaca 0.010 0.188 0.014 0.184 0.075 0.030
Alpaca-LoRA 0.012 0.144 0.000 0.152 0.000 0.067
Zephyr-7B-β 0.015 0.292 0.043 0.209 0.009 0.145

(a) Accuracy of Large Language Models on Open QA datasets.

BBF PVR RAVENT -opqa
Text Symb

GPT-3.5-Turbo-cot 0.097 0.210 0.302 0.211
GPT-4-cot 0.476 0.174 0.385 0.354
Alpaca-LoRA-cot 0.084 0.152 0.000 0.069

ACRET RAVENT -mcqa
Text Symb Text Symb

GPT-3.5-Turbo-cot 0.255 0.345 0.257 0.144
GPT-4-cot 0.214 0.394 0.596 0.517
Alpaca-LoRA-cot 0.059 0.114 0.000 0.114

(b) Accuracy with Chain-of-Thought prompting.

Table 3: Main results on Open QA and MCQA datasets. Datasets are represented in columns, and models in rows. The best result for each
dataset is indicated in bold, and the second best is indicated in italics. BBF stands for BIG-Bench-F.

ACRET

Evals-P RAVENT -mcqa
Text Symb Text Symb

GPT-2 0.371 0.00 0.496 0.00 0.126
Text-Davinci-3 0.098 0.427 0.560 0.461 0.452
GPT-3.5-Turbo 0.184 0.445 0.481 0.276 0.315
GPT-4 0.272 0.512 0.625 0.697 0.535
LLaMA-7B 0.000 0.257 0.544 0.004 0.000
LLaMA2-7B 0.014 0.003 0.500 0.026 0.149
Alpaca 0.036 0.238 0.544 0.015 0.058
Alpaca-LoRA 0.015 0.123 0.552 0.082 0.124
Zephyr-7B-β 0.106 0.516 0.504 0.000 0.022
random 0.33 0.33 0.5 0.125 0.125

Table 4: Accuracy of Large Language Models for Multiple-Choice
QA on the ACRET , Evals-P and RAVENT datasets. The last line
indicates random performance. Completion models can perform
worse than random if they do not reply with a valid answer. The
best result for each dataset is indicated in bold, and the second best
is indicated in italics.

ter may not return any valuable output (e.g. a nonsensical
or empty answer), explaining how they can achieve worse
than random performance. By constrast, the smaller GPT-
2 obtains random performance by returning a plausible an-
swer keyword instead of attempting to comprehend the task.
The main takeaway from these experiments is that the per-
formance of LLMs remains low even in discriminative set-
tings. When given a set of possible answers, the models can-
not recognise the proper solution among the other choices.
This finding indicates that using LLMs as evaluators (as done
in self-refinement techniques [Madaan et al., 2023]) is not
suited for tasks requiring abstract reasoning. We confirm this
with additional experiments in Section 4.7 using different re-
finement strategies. Additionally, when comparing the results
between natural language and symbolic tasks on ACRET , we
observe that the results are better across all models when the
input is symbolic. Inputs that use symbolic data are smaller
and may convey only relevant information, while natural lan-
guage could contain distracting information or biases harm-
ful to task performance. The same observation can be made
concerning RAVENT -mcqa, except for GPT-4. In the open-
ended version of RAVENT , models perform better with the
natural language representation. Without the answer set avail-
able, inductive biases caused by language help performance.

4.3 Chain-of-Thought Prompting
We perform experiments on a subset of our framework using
Chain-of-Thought prompting [Wei et al., 2022]. The com-
plete experiments are provided in the appendix (and include
a side-by-side comparison for better readability). We per-
form experiments with GPT-3.5-turbo, GPT-4, and Alpaca-
LoRA. Our experiments with Chain-of-Thought have the suf-
fix model-cot. Our results are presented in Table 3b. Overall,
the results obtained using Chain-of-Thought prompting are
not higher than those obtained with the base models. On The
BIG-Bench-F dataset, the Chain-of-Thought versions achieve
systematically lower performance than their base counter-
parts, although no no significant performance drop is ob-
served. On PVR and RAVENT -opqa, while the accuracy for
GPT-4 and Alpaca-LoRA remain unchanged or slightly re-
duced, the performance of GPT-3.5-Turbo is increased. On
RAVENT -mcqa, the performance of all the models decreases.
These experiments show that the quality of the prompt has lit-
tle impact on the answer quality. It hints that the models can
understand the instructions but that their failures are due to
their unability to provide faithful reasoning. This limitation
is further illustrated with examples in the appendix.

4.4 Fine-tuning LLaMA2
We now study the performance of LLaMA2 models after fine-
tuning on RAVENT -mcqa. Experiments on more datasets are
provided in the appendix. The training and test sets may share
distribution-specific patterns that the model may learn during
the fine-tuning phase. It may overfit on these patterns instead
of learning the correct abstract patterns. To alleviate this pit-
fall, we generate out-of-distribution (o.o.d) splits. The -Four
split contains samples with four figures instead of one. The
-In-Center splits contains samples with two figures instead of
one, a big and a small located within the former. The shape
and colours of the figures all are observed in the training set.
The two splits can be considered as compositional splits. The
results on RAVENT -mcqa are shown in Table 5. We observe
a significant increase in the accuracy on the test set. LLaMA2
achieves close to perfect accuracy. The performance partially
transfers to the alternative syntax task. We now observe the
performance on the o.o.d splits. The performance of the fine-
tuned LLaMA2 significantly drops on the new tasks, show-
ing a lack of generalisation. We can deduce that fine-tuning
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(a) BIG-Bench-F dataset.
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(b) PVR dataset.

Figure 2: Evolution of the model accuracy as a function of the num-
ber of context examples seen. The legend is shared by both figures.
Models with straight lines are used with default prompting, while
models with dashed lines are prompted to produce code.

yields representations that are highly invariant to the syntax
but does not transfer other abstract reasoning abilities. The
rules required to solve the -Four and -In-Center splits ma-
nipulate several figures, they are compositions of rules used
for single figures. LLMs can compose with unseen quantities
(e.g. new syntax) but have more difficulty composing new
abstract rules.

4.5 Varying the Example Set Size
We perform further experiments on the BIG-Bench-F and
PVR datasets. For these two datasets, we alter the number
of examples given to the system before the test case. By de-
fault, we give four examples to the model before asking it to
answer. The results are shown in Figures 2a and 2b. In this
section, we focus on the results of the base models (without
the ”-code” suffix). We first observe that, for both datasets,
there is no linear relationship linking performance and num-
ber of examples. For all but the Text-Davinci-3 and GPT-
4 models, adding more examples has little or no effect on
the accuracy. Text-Davinci-3 and GPT-4 perform similarly
across all cases, and their performances consistently increase
with the number of examples, achieving up to an accuracy
of 0.6 when given 16 examples on the BIG-Bench-F dataset.
However, on PVR, Text-Davinci-3 achieves only 0.26 when
given 12 examples. GPT-4 follows a similar trend but per-
forms slightly worse than its predecessor. In the absence of
technical details for GPT-4, we can only speculate on the rea-
sons. As this effect is observed only on BIG-Bench-F and not
PVR, we can assume that the models perform better because
their training sets contain the list processing algorithms used
by BIG-Bench-F. We perform additional experiments in the
appendix, where we provide solved instances into the prompt
(input and solution program) to propel the model to reason
correctly. No real improvements are observed.

4.6 Enabling Structure Discovery with Code
In the next experiments, we follow an idea similar to Progam-
of-Thought prompting [Chen et al., 2022] and ask the model
to generate the code of the function responsible for generat-
ing the output from the input. Then, we execute the produced
code on the test case and evaluate the result. This method
differs from a base prompt as we do not ask the model to
produce the answer directly. This part is delegated to a code

interpreter in Python. This method aims to verify the ability
of LLMs to extract the correct structure behind each abstract
reasoning task under code format. We test this method on the
BIG-Bench-F and PVR datasets. The results of these models
(with the ”-code” suffix) can be compared with their original
counterparts in Figures 2a and 2b. In general, we observe
that the models prompted to produce code perform worse
than those tasked to produce the answer directly. The only
exception is GPT-3.5-Turbo. On the BIG-Bench-F dataset,
the performance of GPT-3.5-Turbo-code increases steadily
while that of GPT-3.5-Turbo stagnates, and on PVR, GPT-
3.5-Turbo-code outperforms GPT-3.5-Turbo by a significant
margin. Producing code solving the abstract problem is a
more complicated task for an LLM as it requires the model to
produce a rigorous code explanation for its answer. It is con-
sistent with the results for most models, but we also observe
in the case of GPT-3.5-Turbo-code that it can help the model
better understand the task. On BIG-Bench-F, the code ver-
sions of Text-Davinci-3 and GPT-4 perform better than both
base and code versions of the other models. As this behaviour
is not observed with PVR, we infer that this performance is
due to the functions being part of the training sets of the mod-
els. The models can almost always generate code able to com-
pile and produce an answer (details are in the appendix). We
deduce that producing a program with a valid syntax is not a
bottleneck for performance. The issue lies in the recovery of
the correct reasoning process.

4.7 Refinement
In this section, we investigate prompt-tuning strategies based
on refinement and filtering that have been successful in im-
proving LLM reasoning abilities and see if they can be used
to improve abstract reasoning performance. We study two
types of strategies: code-based and self-based. Code-filtering
is a code-based strategy that consists of generating multi-
ple code responses and filtering out the programs that cannot
solve the example cases. Code-refinement [Wang et al., 2023;
Qiu et al., 2023] is an iterative process where the model gen-
erates a first program. The program is run on the context
examples and, if not all answers are correct, the model is
prompted to correct its answer based on the output of the in-
terpreter. Self-filtering and self-refinement [Qiu et al., 2023;
Madaan et al., 2023] are similar self-based techniques. They
ask the LLM to assess whether the given answer is correct
rather than relying on an interpreter. We conduct experi-
ments on BIG-Bench-F and PVR using GPT-4-Turbo (gpt-
4-1106-preview). Additional experiments are provided in the
appendix.

Table 6 shows the main results. Overall, the improvements
brought by the refinement strategies are limited. The bottle-
neck in the reasoning is the recognition of the abstract rule
linking the context examples. Therefore, the LLM cannot be
a good evaluator. This is consistent with the MCQA results
observed in Section 4.2 where the LLMs fail to discriminate
the good answers. Unlike self-refinement, self-filtering gen-
erates multiple answers independently, not conditioned on the
previous iterations. As the LLM performance as a discrimina-
tor is above chance, the filtering process can help improving
the performance. Code-refinement provides slight improve-
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Model RAVENT -Eval -Four -In-Center
Text Symb Text Symb Text Symb

LLaMA2-7B 0.135 0.114 0.073 0.121 0.000 0.001
LLaMA2-7B-AR-LoRA-Text∗ 0.977 0.694 0.557 0.522 0.536 0.085
LLaMA2-7B-AR-LoRA-Symb∗ 0.965 0.938 0.498 0.442 0.767 0.064

Table 5: Accuracy of base and fine-tuned LLaMA2 on the RAVENT -mcqa dataset i.i.d and o.o.d splits. The base LLaMA2 is compared
against counterparts fine-tuned on RAVENT -mcqa i.i.d text and symbolic training sets. The best result for each dataset in indicated in bold.

BIG-Bench-F PVR
GPT-4-Turbo-code 0.280 0.152
GPT-4-Turbo-code-filtering 0.400 0.152
GPT-4-Turbo-code-refinement 0.296 0.144
GPT-4-Turbo 0.268 0.000
GPT-4-Turbo-self-filtering 0.284 0.004
GPT-4-Turbo-self-refinement 0.252 0.000

Table 6: Accuracy of refined Large Language Models on BIG-
Bench-F and PVR datasets. The best result for each dataset is in-
dicated in bold. Experiments are performed with the latest version
of GPT-4 (gpt-4-1106-preview).

ments in the accuracy for BIG-Bench but decreases it for
PVR. The LLMs struggle to accurately exploit the feedback
from the interpreter. On BIG-Bench, code-filtering improves
the performance the most. The reasons are similar to the self-
filtering strategy although the code interpreter is a more rig-
orous discriminator.

4.8 A Perspective from Causal Induction
We perform further analysis on ACRET . The dataset can be
divided into four causal paths: Direct, Indirect, Backward-
blocking, Screening-off [Zhang et al., 2021a]. Direct path
queries can be established using direct evidence. Indirect
paths require the combination of multiple pieces of evidence.
Backward-blocking paths cannot be determined because the
true mechanisms cannot be discriminated from other possibil-
ities based solely on the data. Screening-off paths are causal
paths affected by spurious correlations. Figure 3 shows the
results for each type of query. We restrict our analysis to the
Chain-of-Thought models (see the appendix for the full anal-
ysis). Although accuracy scores are similar, the distribution
of the results among the causal paths differs between models
and input types. GPT models overfit to backward-blocking
cases on the text ACRET but not on the symbolic version. We
can deduce that natural language contains distracting infor-
mation or biases harmful to abstract reasoning performance.
It is consistent with the higher score of the models on the
symbolic tasks.

5 Conclusion
Understanding the potential reasoning capabilities of LLMs
is crucial as they are starting to be widely adopted. Mea-
suring the level of intelligence of a system is hard, but ab-
stract reasoning provides a valuable framework for this task.
In this paper, we present what is, to the best of our knowl-
edge, the first extensive evaluation of Large Language Mod-
els for abstract reasoning. We show that LLMs do not per-
form well on all types of tasks, although not all models are
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(a) Text ACRET .
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Figure 3: Accuracy of chain-of-thought models on ACRET divided
by causal paths.

equally poor. Prompting and refinement techniques that im-
prove performance on NLP tasks do not work for abstract rea-
soning. From our experiments, we argue that the bottleneck
in the performance lies in the recognition of new unseen ab-
stract patterns and not in a lack of understanding of the task or
the prompt. For instance, the experiments with Program-of-
Thought show that almost all the generated programs compile
and return an answer with the expected format, even if the
answer is incorrect. The presented solutions are extremely
grounded to the context examples, even when increasing the
number of examples. These results hold in discriminative set-
tings, where the models must find the correct answer within a
small set of propositions. A qualitative study of selected fail-
ure cases in the appendix further reveals that models tend to
reason inconsistently and in a shallow way. Models also tend
to produce convoluted reasonings that can match the input
but hardly generalise to new instances. We hypothesise that
current self-supervised autoregressive LLMs lack fundamen-
tal properties for strong abstract reasoning tasks and human-
like cognition. In particular, we posit that methods based on
causal reasoning and program induction could help improve
the reasoning abilities of LLMs.
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