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Abstract
The core of the dialogue system is to generate rele-
vant, informative, and human-like responses based
on extensive dialogue history. Recently, dialogue
generation domain has seen mainstream adoption
of large language models (LLMs), due to its pow-
erful capability in generating utterances. How-
ever, there is a natural deficiency for such mod-
els, that is, inherent position bias, which may lead
them to pay more attention to the nearby utter-
ances instead of causally relevant ones, resulting
in generating irrelevant and generic responses in
long-term dialogue. To alleviate such problem,
in this paper, we propose a novel method, named
Causal Perception long-term Dialogue framework
(CPD), which employs perturbation-based causal
variable discovery method to extract casually rel-
evant utterances from the dialogue history and en-
hances model causal perception during fine-tuning.
Specifically, a local-position awareness method is
proposed in CPD for inter-sentence position cor-
relation elimination, which helps models extract
causally relevant utterances based on perturbations.
Then, a casual-perception fine-tuning strategy is
also proposed, to enhance the capability of discov-
ering the causal invariant factors, by differently per-
turbing causally relevant and non-casually relevant
ones for response generation. Experimental results
on two datasets prove that our proposed method can
effectively alleviate the position bias for multiple
LLMs and achieve significant progress compared
with existing baselines.

1 Introduction
The design of the dialogue systems aspires to generate con-
sistent, controllable, and diverse responses based on dia-
logue history [Liu et al., 2022b; Lu et al., 2023]. Ini-
tial researches on dialogue systems are often constrained by
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Turn 4: Hi, do have any issues that you would like to 
share with me today?

Turn 5: I am in disputed mod with my friends.

· · · · · ·

Turn 6: I am sorry to hear that. Do you mind telling 
me what the issue is that yo are not agreeing on?

Turn 21: What kind of people do I dispute with?

Response: People who are not open to hearing another 
persons point of view. 

Response: You dispute with your friend. In close 
relationships, conflict is normal. You can communicate 
with him the source of the conflict.

· · · · · ·

Figure 1: Position bias in large language models (Llama2-7B-chat).
Dotted boxes mark relevant utterances. The strip on the right shows
the average attention of each turn in the dialogue. Darker colors
represent higher attention values.

the length of the input window, with a common assump-
tion that responses are primarily influenced by the last one
or a few last turns of the dialogue history [Wei et al., 2021;
Liu et al., 2022a]. Recently, with the development of large
language models (LLMs), researchers propose long-term di-
alogue tasks and explore the use of rich information in dia-
logue history for response generation [Xu et al., 2022b].

Despite the impressive achievements of LLMs in open-
domain dialogues, capturing causal relationships within ex-
tensive dialogue history remains challenging [Feng et al.,
2023]. Some researchers identify that LLMs suffer from
severe position bias, focusing only on the final context
and disregarding historical information [Liu et al., 2023a;
Liu et al., 2023b]. This bias leads models to concentrate
on spurious position correlations instead of causally rele-
vant utterances, resulting in irrelevant and generic response
generation. As shown in Figure 1, Llama2’s attention in
the last turn is significantly higher than in other turns, ne-
glecting the relevance utterance in the 5-th turn and result-
ing in the generation of context-irrelevant and generic re-
sponses. To address the above problems, some studies aim
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to compress long-term dialogue history using retrieval-based
[Feng et al., 2023] or summary-based [Wang et al., 2023;
Lee et al., 2023] methods. Although these works achieve cer-
tain results, none substantially improve the ability of LLMs
to perceive genuinely causally relevant utterances.

To eliminate position bias and enhance the perception of
causal relationships in long-term dialogue, two significant
challenges must be addressed: (1) Lack of large-scale dia-
logue datasets with causally relevant utterance annotations.
Perturbation-based causal variable discovery methods assume
that models can effectively utilize all input variables. They
consider the difference in potential outcomes when binary in-
tervention (presence or exclusion) acts on the variable as the
treatment effect. However, the inherent position bias in LLMs
hinders their ability to fully leverage dialogue history, making
perturbation-based methods unable to be directly used to ex-
tract causally relevant utterances. (2) Traditional text genera-
tion loss is insufficient in guiding models to eliminate spuri-
ous correlations between relevant utterances and position dis-
tributions. Models tend to learn imbalances in the distribution
of relevant utterance positions in datasets. Existing position
debiasing methods primarily disrupt positions, posing chal-
lenges in maintaining the consistency of semantic structures
when applied to dialogue scenarios.

To address the aforementioned challenges, we propose
a model-free Causal Perception long-term Dialogue frame-
work, named CPD. Firstly, we extract relevant utterances for
two widely used long-term dialogue datasets using causal
perturbation. Analyzing the impact of position bias on
the model’s causal perception, we introduce a local-position
awareness method to mitigate this bias by eliminating inter-
sentence position information. Through sentence-level per-
turbations on dialogues, we regard the change in the per-
plexity [Horgan, 1995] before and after the perturbation as
the treatment effect of the perturbed utterance. Validation of
sentence-level conditional independence in sets of causally
relevant utterances, followed by the application of clustering
algorithms to categorize dialogue history into causally rel-
evant or irrelevant parts. Secondly, inspired by invariance
learning [Chang et al., 2020], the core of preventing mod-
els from fitting position bias is to direct models to concen-
trate on invariant causal variables. We argue that responses
and their corresponding causally relevant utterances should
exhibit consistency under perturbations. Specifically, we con-
duct sentence-level perturbations separately on causally rele-
vant and non-causally relevant parts, encouraging the model’s
generation to be either consistent or inconsistent with gold re-
sponses based on whether the causal variables are perturbed
or not. A positional difference sampling strategy, based on
the probability of relevant utterance positions, is employed to
address the imbalance of relevant utterance positions without
compromising the integrity of the dialogue structure.

The contributions of this paper are listed as follows:

• We propose a relevant utterance extraction method based
on causal perturbation, which can avoid the interfer-
ence caused by the position bias of LLMs through local-
position awareness.

• We propose a causal perception fine-tuning strategy that

effectively alleviates the model’s position bias and en-
hances its ability to perceive correlations in dialogues.

• Experimental results on two benchmark datasets demon-
strate that our proposed method can consistently outper-
form the state-of-the-art baselines in terms of objective
and subjective evaluation metrics.

2 Related Work
2.1 Position Bias and Long-Term Dialogue
Position bias in language models has undergone extensive ex-
amination. Ko et al.[2020] observed that language models
introduced position bias due to the imbalance position dis-
tribution of relevant sentences in datasets, relying on fixed-
position utterances instead of real causal correlation during
inference. Wang et al.[2021] and Liu et al.[2023a] respec-
tively confirmed the existence of position bias in a variety
of pre-trained models utilizing different position embeddings
and a variety of LLMs of different sizes.

Existing position debiasing methods primarily involved
disrupting the position information in datasets and constrain-
ing the consistency of the original model during the fine-
tuning process. Ko et al.[2020] and RPP [Amor et al., 2023]
applied random position perturbations at the document and
word level separately. Some other works divide context into
short segments [Ivgi et al., 2023; Li et al., 2023], or reorder
input context based on relevance [Peysakhovich and Lerer,
2023; He et al., 2023]. However, dialogues exhibit tempo-
ral structure, and position perturbation can destroy dialogue
structures, leading to a substantial decrease in comprehen-
sion. ZOE [Liu et al., 2024] required the model to fit both
task labels and original model output, alleviating the impact
of position imbalance by enforcing consistency between the
fine-tuned model and the original model. Unfortunately, in
dialogue scenarios, the inherent position bias of the model
aligns with the position imbalance in the data, causing the
method to fail to a certain extent.

To explore the model’s ability to comprehend rich seman-
tics in long-term dialogue history, Xu et al. [2022a] con-
structed a multi-turn long-term dialogue dataset. Existing
works primarily focused on enabling LLMs to acquire long-
term dialogue awareness by compressing dialogue history to
alleviate position bias. RSM [Wang et al., 2023] and Lee et
al.[2023] employed LLMs to summarize dialogue history as
an external memory pool, enhancing LLMs with long-term
memory capabilities. CONSTRAIN [Feng et al., 2023] as-
sumed that only two sentences in the dialogue history were
relevant to the response, utilizing a trained language model to
retrieve relevant utterances. However, these methods suffer
from dual challenges of information loss during compression
and a lack of substantial improvement in the model’s inherent
ability to comprehend extended contexts.

2.2 Causal Inference in NLP
Causal inference is a method used to determine whether cor-
relations in data truly reflect cause-and-effect relationships
[Pearl et al., 2016; Alaa and Van Der Schaar, 2019]. Works
on causal inference in NLP mainly focused on word granular
detoxification in pre-trained language models. For instance,
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Figure 2: Causal view of response generation, where the solid line
represents the causal relationship between two variables, and the
dotted line represents the probabilistic dependencies.

Abraham et al.[2022] and Madhavan et al.[2023] both en-
gaged in word-level language model detoxification, employ-
ing average treatment effect and counterfactual enhancement.
Wang et al.[2023] is similar to our work. They annotate a
small test set of causally relevant utterances, named CGDI-
ALOG, and discovered that the causal perception ability of
language models is deficient, meaning that language models
exhibit similar outcomes to perturbations of causally relevant
or non-causally relevant utterances. They simply attributed
this problem to overfitting. In our investigation, we delved
further and identified position bias as the root cause of this
phenomenon.

3 Methodology
3.1 Causal View for Response Generation
Structure Causal Model (SCM) [Shanmugam, 2001] is
a method of describing causal correlations among multiple
variables. In this paper, we describe the causal structure in
dialogue as a causal graph composed of four variables: input
dialogue D, response R, causal part C, and non-causal part
S. Figure 2 illustrates the SCM of dialogue.

Dialogue D consists of a causal part C and a non-causal
part S of the response (C → D ← S), where the causal part
C is the minimum set of corresponding endogenous cause ut-
terances leading to the response R (C → R). An outstanding
language model should exhibit sensitivity to causal part C
while maintaining robustness to non-causal part S. Unfortu-
nately, due to the probabilistic correlation between the causal
part C and the non-causal part S (C L9999K S), including
the imbalanced distribution of causal part utterances across
positions, often leads models to overfit position information,
fixate on utterances at nearby positions, and lose the ability to
perceive causality (S 99K R).

Treatment Effect (TE) [Austin, 2011] quantifies the im-
pact of a variable on the target outcome. In practice, TE is
often assessed through the conditional independence assump-
tion [Dawid, 1980] and counterfactual reasoning [Rafetseder
et al., 2013]. For treatment variable ui, a binary treatment
is employed to evaluate the treatment effect of the outcome.
The TE of utterance ui in dialogue D is defined as:

TE(ui) = f(D)− f(D \ ui), (1)

where D\ui represents the dialogue when utterance ui is dis-
turbed, f(·) is the perplexity [Horgan, 1995] of the language
model to generate correct responses. To eliminate the poten-
tial impact of changes in other co-variables after the utterance
absence, we use meaningless utterances of similar lengths,

(a) Raw (b) Finetune

(c) w/o position embedding (d) Ours

Figure 3: Llama2-7B-chat’s ability to identify causally relevant ut-
terances in the CGDIALOG dataset (ESConv part). The x-axis rep-
resents the turn distance from the utterance to response, while the
y-axis corresponds to TEreg . The solid blue line represents causal
utterances, the dashed red line indicates non-causal utterances, and
the shaded area represents variance.

such as ‘hello,’ ‘thank you,’ etc., to replace ui to construct
the counterfactual condition of the absence treatment.

3.2 Causal Identification and Position Bias
Outstanding language models should adeptly identify causal
correlations in dialogues. Specifically, the TE of causally rel-
evant utterances should be significantly higher than the TE of
non-causal utterances. Unfortunately, Abraham et al.[2022]
observe that language models lack this identification ability.
We further observe that the model’s causal identification abil-
ity is strongly tied to the position of causally relevant ut-
terances in the dialogue. The normalized treatment effect
TEreg(ui) is employed to measure the causal correlation be-
tween utterances and responses.

TEreg(ui) = [f(D)− f(D \ ui)]/f(D). (2)

As shown in Figure 3 (a) and (b), we find that: (1) The
LLMs can only identify the causal correlation in the last 1
and 2 turns of dialogue. (2) Irrespective of whether the utter-
ances are relevant or not, LLMs consistently exhibit greater
sensitivity to perturbations in the last few turns of dialogues.
(3) Despite fine-tuning on domain data enhancing the model’s
sensitivity to causally relevant utterances, the accurate dis-
tinction remains challenging in longer dialogue histories.

This indicates that LLMs have the potential to distinguish
between relevant and irrelevant utterances. One way to elim-
inate the influence of position information is to remove all
position embedding, as shown in Figure 3 (c). After remov-
ing position embeddings, the model no longer focuses on
position-specific utterances. Unfortunately, it also results in
the damage of semantic information, rendering the LLMs in-
capable of identifying relevant utterances.
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Figure 4: The Framework of our proposed method.

3.3 Causally Relevant Utterance Extraction
To achieve a balance between semantic information and po-
sition bias, we propose a sentence-level local-position aware-
ness method for each layer of LLMs. Specifically, we restrict
position information within sentences, and inter-sentence
attention only uses semantic correlations. To ensure the
method’s applicability to models employing different posi-
tional embeddings, we directly modify the attention matrix.
The model utilizes attention with position embeddings Ape

t,s
when the input words are in the same sentence. In contrast,
when the input words are not in the same sentence, the atten-
tion is without position embeddings Ãpe

t,s:

At,s =

{
Ape

t,s, if xt, xs in the same utterance,
Ãpe

t,s ×mpe
A /m̃pe

A , else ,
(3)

where xt and xs denote the t-th and s-th input word, mpe
A

and m̃pe
A are the average values of attention matrices Ape and

Ãpe respectively, used to balance the difference between two
attention matrices.

After fine-tuning, the model’s performance is shown in
Figure 3 (d). It can be observed that our method effec-
tively mitigates position bias, leading to improved identifi-
cation of causally relevant utterances. To extract the minimal
causally relevant utterance set in dialogues, we individually
measure the TE of each utterance in the dialogue, denoted
as [TE(u1),TE(u2), ...,TE(u|D|)], where |D| represents the
number of dialogue turns. Due to the difference in TE be-
tween causally relevant and non-causally relevant utterances,
we employ a simple clustering algorithm, K-means [Krishna
and Murty, 1999], to obtain the causally relevant C and the
non-causally relevant utterance set S. The initial clustering
centers of the two sets are initialized as the minimum and
median of the input data, respectively.

After verifying the effectiveness of our method with the
88.6% precision on the CGDIALOG test set, we extract rel-
evant utterances from two long-term dialogue datasets, ES-
Conv [Liu et al., 2021] and MSC [Xu et al., 2022a]. We
calculate the position distribution Q of causally relevant ut-
terances, where qi ∈ Q represents the frequency of causally
relevant utterances with the i-th turn distance to the response.
A severe imbalance is observed in the position distribution

of causally relevant utterances, which might be the cause of
model position bias.

3.4 Causal Perception Finetuning
The fine-tuning of LLMs follows the paradigm of instruction
fine-tuning, where instructions and dialogue D are concate-
nated and fed into the model for generating responses R.

p(R) = p(R | instruction,D)

=
∏
t

p (rt+1 | instruction,D, r1, r2, . . . , rt) ,
(4)

During the fine-tuning process, our objective is for the
model to acquire domain knowledge from the data while be-
ing sensitive to causal correlations. The loss during the fine-
tuning process is divided into two parts: prediction loss and
causal perception loss. The prediction loss ensures that the
model accurately generates the gold responses and captures
domain knowledge in the training data. The causal percep-
tion loss is employed to enhance the model’s sensitivity to
causal correlations.

L = LPred + αLIRM + βLMTE︸ ︷︷ ︸
causal perception

, (5)

where α and β are used to scale the three losses to similar
orders of magnitude. The prediction loss is to maximize the
cross-entropy between model predictions and gold responses.

LPred = −
∑
rt∈R

log(p(rt | instruction,D)). (6)

For the sake of brevity, the instruction in the formula is
omitted following. The causal perception loss is designed to
require the model to focus on the causally relevant utterances
while being sensitive to perturbations in environmental vari-
ables, such as non-relevant utterances. The causal perception
loss consists of two parts: invariant risk minimization LIRM
and maximizing treatment effect LMTE.
Invariant risk minimization (IRM) [Arjovsky et al.,
2019] drives the model to grasp causal invariance across en-
vironments, that is, the model’s outcomes should remain con-
sistent across various environments, which are constructed
by perturbing non-causally relevant utterances. For dialogue
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D = {u1, u2, . . . , u|D|} consisting of multiple utterances,
we construct counterfactual dialogue D \ ui in which non-
causally relevant utterances ui ∈ S are replaced. To ensure
that the replacements do not significantly alter the seman-
tic structure of dialogues, we randomly select utterances for
substitution from non-causally relevant utterances in other di-
alogues. Invariant risk minimization loss minimizes the KL
divergence of responses generated by counterfactual and orig-
inal dialogues.

LIRM =
∑
ri∈R

KL(psg(ri|D)||p(ri|D \ ui)), ui ∈ S, (7)

where sg means stopping gradient during backpropagation.
Maximizing treatment effect (MTE) [Marshall et al.,
2005] aims to help the model learn the consistency relation-
ship between responses and corresponding causal variables.
When causally relevant utterances are replaced with those
from other dialogues, the loss expects models to generate ut-
terances that exhibit maximum dissimilarity compared to the
original dialogue model output.

LMTE = −
∑
ri∈R

KL(psg(ri|D)||p(ri|D \ ui)), ui ∈ C. (8)

Sampling strategy. To overcome the imbalance position
distribution of relevant utterances, we employ a sampling
strategy that involves enforcing more perturbations at posi-
tions with the low likelihood of being a relevant utterance in
the dataset. At the dialogue level, multiple perturbations are
performed for each dialogue when calculating causal percep-
tion loss. The number of times n for both auxiliary tasks IRM
and MTE is determined through the following formula:

n = ⌊|C|/
∑
ui∈C

(q|D|−i)⌋, (9)

where ⌊·⌋ denotes rounding down, | · | represents the number
of elements in the set, and q|D|−i represents the frequency
of the i-th utterance in the dataset being a causally relevant
utterance.

At the utterance level, each time the auxiliary task is cal-
culated, the probability S(ui) of perturbing each sentence ui

is different. For IRM and MTE, the probability that utterance
ui is perturbed is,

SIRM(ui) =

{
0, if ui ∈ C,
q|D|−i, if ui ∈ S.

(10)

SMTE(ui) =

{
(1/q|D|−i)/

∑
uj∈C (1/q|D|−j), if ui ∈ C,

0, if ui ∈ S,
(11)

4 Experiments
4.1 Datasets
To evaluate the effectiveness of our proposed method, follow-
ing previous works [Wang et al., 2023; Feng et al., 2023], we
conduct experiments on two widely used benchmark datasets,
ESConv [Liu et al., 2021] and MSC [Xu et al., 2022a], for
long-term dialogue. We use the same data preprocessing and
train/valid/test splitting strategy as in [Feng et al., 2023].

4.2 Baselines
To demonstrate the effectiveness of our proposed method, we
compare it with three kinds of baselines: (1) Raw and fine-
tuned LLMs have outstanding performance in open-domain
dialogue tasks. The model can improve its performance in
the tasks during fine-tuning in the corresponding task domain.
(2) Long-term dialogue methods. RSM [Wang et al., 2023]
continuously summarizes long-term dialogues and uses the
summary as external memory to alleviate the memory forget-
ting of long-term dialogues in LLMs. CONSTRAIN [Feng
et al., 2023] assumes that except for the last sentence in the
dialogues, there is only one sentence relevant to the response.
Relevant utterances in dialogue history are retrieved through
a trained language model and concatenated with the last sen-
tence as input for response generation. (3) Position debi-
asing methods. RPP [Amor et al., 2023] is extended to
sentence-level position random perturbation to ensure that the
training data no longer has imbalances in position distribu-
tion. ZOE [Liu et al., 2024] fits both gold response and the
suboptimal response generated by the original model to en-
force consistency between the fine-tuned and original model.
For the fairness of the experiments, the backbones in all base-
lines are replaced by two widely used LLMs, Llama2-7B-chat
and Qwen-14B-chat.

4.3 Evaluation Metrics
Automatic Evaluation. (1) Word Overlap. We report
BLEU-n (n=1, 2) [Papineni et al., 2002] and ROUGE-L [Lin
and Och, 2004] to evaluate the coherence and word overlap
of generated utterances. (2) Diversity. We employ Distinct-
n (n=1, 2) [Li et al., 2016] to evaluate the diversity of the
generated response.
Human Evaluation. We adopt Relevance, Fluency, and
Informativeness of the generated utterances with the rating
range of [0, 2]. We recruit three experienced annotators to
evaluate 100 randomly selected dialogues with a length of
more than 20 turns. The Fleiss Kappa is 0.72, indicating con-
sistency in the estimates of annotators.

4.4 Implementation Details
Throughout the experiments, we use Adam optimizer
[Kingma and Ba, 2015] with 3e-4 initial learning rate and the
128 batch size. All methods are trained for up to 12 epochs.
To improve experimental efficiency, we use lora [Hu et al.,
2021] with rank 32 to fine-tune large language models. Both
training and inference use 4-bit weight quantization by bit-
sandbytes [Dettmers et al., 2022].

4.5 Main Result
The main evaluation results are shown in Tabel 1.
Automatic Evaluation. CPD attains optimal performance
by effectively mitigating the model’s position bias and en-
hancing its causal perception ability. Long-term dialogue
methods alleviate the poison of position bias by compress-
ing long-term dialogue history through summarization and
retrieval, respectively. Notably, in the ESConv dataset with
shorter dialogue turns, summary-based RSM outperforms
CONSTRAIN, while retrieval-based CONSTRAIN excels in
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Dataset Backbone Method BLEU-1 BLEU-2 ROUGE-L Distinct-1 Distinct-2 Relevance Fluency Informativeness

MSC

Llama2-7B

(1) Raw LLM 0.0911 0.0250 0.0860 0.0353 0.3051 1.50 1.84 1.43
(1) Finetuned LLM 0.1037 0.0283 0.0995 0.0371 0.3288 1.56 1.87 1.49
(2) RSM 0.1127 0.0336 0.1117 0.0373 0.3150 1.62 1.82 1.64
(2) CONSTRAIN 0.1167 0.0342 0.1118 0.0118 0.1410 1.68 1.86 1.69
(3) RPP 0.0927 0.0294 0.0877 0.0473 0.3650 1.47 1.87 1.48
(3) ZOE 0.1076 0.0328 0.1109 0.0446 0.3416 1.61 1.84 1.65
CPD (Ours) 0.1245 0.0441 0.1214 0.0655 0.4233 1.77 1.86 1.78

Qwen-14B

(1) Raw LLM 0.0973 0.0321 0.1041 0.0443 0.3199 1.51 1.86 1.49
(1) Finetuned LLM 0.1199 0.0364 0.1044 0.0486 0.3260 1.54 1.85 1.52
(2) RSM 0.1175 0.0379 0.1082 0.0526 0.3437 1.64 1.84 1.65
(2) CONSTRAIN 0.1258 0.0451 0.1233 0.0204 0.1474 1.73 1.86 1.70
(3) RPP 0.1076 0.0345 0.1059 0.0646 0.4416 1.53 1.85 1.50
(3) ZOE 0.1124 0.0318 0.1100 0.0632 0.4282 1.63 1.86 1.67
CPD (Ours) 0.1462 0.0519 0.1381 0.0887 0.5389 1.82 1.87 1.84

ESConv

Llama2-7B

(1) Raw LLM 0.0713 0.0181 0.0739 0.0578 0.3723 1.54 1.85 1.47
(1) Finetuned LLM 0.0842 0.0286 0.1047 0.0614 0.4018 1.57 1.85 1.52
(2) RSM 0.0949 0.0318 0.1098 0.0766 0.4404 1.64 1.87 1.68
(2) CONSTRAIN 0.0919 0.0276 0.1038 0.0118 0.1293 1.63 1.84 1.67
(3) RPP 0.0670 0.0258 0.0972 0.0870 0.4679 1.50 1.80 1.44
(3) ZOE 0.0943 0.0297 0.1041 0.0821 0.4532 1.61 1.85 1.67
CPD (Ours) 0.1091 0.0468 0.1324 0.0976 0.5094 1.79 1.86 1.81

Qwen-14B

(1) Raw LLM 0.1077 0.0326 0.1018 0.0744 0.4068 1.64 1.86 1.49
(1) Finetuned LLM 0.1145 0.0372 0.1118 0.0825 0.4230 1.66 1.85 1.53
(2) RSM 0.1237 0.0379 0.1168 0.0874 0.4413 1.74 1.84 1.73
(2) CONSTRAIN 0.1205 0.0301 0.1122 0.0302 0.2564 1.73 1.87 1.71
(3) RPP 0.1095 0.0307 0.1056 0.0939 0.4782 1.59 1.84 1.54
(3) ZOE 0.1195 0.0364 0.1147 0.0847 0.4437 1.69 1.86 1.70
CPD (Ours) 0.1489 0.0591 0.1442 0.1125 0.5459 1.84 1.87 1.88

Table 1: The performance of our proposed method and all baselines. The results of the best and the second performance in each column are
in boldface and underlined, respectively.

Backbone Methods MSC ESConv

BLEU-1 BLEU-2 ROUGE-L Distinct-1 Distinct-2 BLEU-1 BLEU-2 ROUGE-L Distinct-1 Distinct-2

Llama2-7B

CPD 0.1245 0.0441 0.1214 0.0655 0.4233 0.1091 0.0468 0.1324 0.0976 0.5094
w/o IRM 0.1036 0.0327 0.1102 0.0523 0.4063 0.0906 0.0310 0.1116 0.0895 0.4876
w/o MTE 0.1165 0.0375 0.1109 0.0423 0.3420 0.0916 0.0369 0.1260 0.0768 0.4412
w/o sampling 0.1074 0.0334 0.1009 0.0570 0.3882 0.0911 0.0321 0.1194 0.0856 0.4734

Qwen-14B

CPD 0.1462 0.0519 0.1381 0.0887 0.5389 0.1489 0.0591 0.1442 0.1125 0.5459
w/o IRM 0.1145 0.0431 0.1128 0.0753 0.4883 0.1225 0.0466 0.1239 0.1072 0.5107
w/o MTE 0.1253 0.0480 0.1271 0.0658 0.3743 0.1381 0.0534 0.1312 0.0946 0.4792
w/o sampling 0.1179 0.0461 0.1257 0.0784 0.4691 0.1320 0.0496 0.1269 0.1047 0.5079

Table 2: The performance of ablation study.

the longer MSC dataset. These phenomenons underscore
that while iterative summarization may retain more informa-
tion in the short term, it leads to inevitable information loss
with multiple iterations. CONSTRAIN neglects the poten-
tial significance of multiple causally relevant historical ut-
terances, exhibiting suboptimal performance for shorter di-
alogues. Additionally, CONSTRAIN performs poorly in di-
versity indicators, as it overlooks a significant portion of the
dialogues’ information. Unfortunately, the aforementioned
methods, while effectively enhancing LLMs by reducing di-
alogue history length, fall short of fundamentally improving
the models’ ability to comprehend extended contexts. Posi-
tion debiasing methods primarily focus on eliminating posi-
tion bias but do not address the underlying issue of causal
perception in LLMs, resulting in suboptimal performance.
RPP, destructing the dialogue structure during fine-tuning, se-
riously impairs the model’s perceptual ability, leading to the
poorest performance in word overlap metrics.

Human Evaluation. Overall, the results of manual and
automated assessments align consistently. All methods
achieved similar performance in fluency metrics, showcas-
ing the remarkable capabilities of LLMs. The raw and fine-
tuned models underperform in relevance and informative-
ness metrics due to position bias. CPD enhances both rele-
vance and information content indicators, achieving an aver-
age improvement of 5% and 7%, respectively, compared to
the state-of-the-art baselines. The significant improvement
underscores the efficacy of our method in effectively mitigat-
ing position bias in LLMs for specific tasks through causal
perception finetuning.

4.6 Ablation Study
To demonstrate the effectiveness of our proposed method, we
establish three variants: (1) w/o IRM: remove the invariant
risk minimization loss (Equation 7); (2) w/o MTE: remove
the maximizing treatment effects loss (Equation 8); (3) w/o
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Dialogue

. . .
Assistant : Hi, do have any issues that you would like to share with me today?
User : I am in disputed mod with my friends
Assistant : I am sorry to hear that. So, you and your friends are not seeing eye to eye? Do you mind telling me what the issue
is that you are not agreeing on?
. . .
User : They need more money from me, but i couldn’t give that much amount
. . .
User : Sure, it is my new way of relationship to me with others
Assistant : Yes, you’re growing and trying to do your best and wanting to expand your boundaries and make them clear. You
have taken the right approach and are on the best track to having a successful relationship in the future. Great Job! Thank you
for sharing your story with me today.
User : What kind of people do I dispute with?
Assistant :

Qwen-14B-chat

Raw It’s important to remember that everyone has different opinions and values which may differ from yours. This type of behavior
is very common among toxic relationships where one person takes advantage of another’s kindness and generosity without
reciprocating. If this continues, it will likely damage both parties involved emotionally and mentally over time. Is there
anything else I can assist you with?

Finetune It sounds like you may be disputing with those who are taking advantage of you. This type of behavior can happen when
someone does not respect our limits and tries to push their own agenda onto another person. If this continues please reach out
to local authorities if needed. Is there anything else I can assist you with?

RSM You have a disputation with someone who has a financial conflication. It is advisable to cultivate the skill of setting aside
conflicts and exploring more rational solutions. I hope to be of assistance to you.

CONSTRAIN You disputed with your friends.

RPP That sounds like something which would make anyone worry or be frightened by . Do you have any family around who could
support you if worse came to worst?

ZOE It sounds like you may just disagree with your friends’ values and beliefs which causes conflict within your relationships.

CPD It seems you are in dispute with friends who have not been responsive to your personal problems and have asked for more
money than you can provide. These situations can be challenging, but it’s important to communicate openly and set boundaries
in your relationships. Remember, it’s okay to say no when you’re uncomfortable with a request.

Table 3: Case study of Qwen-14B-chat. Relevant utterances are marked in boldface.

sampling: remove the positional difference sampling strategy.
The experimental results are shown in Table 2.

Experimental results indicate that all ablation variants
experienced varying degrees of performance degradation,
demonstrating the effectiveness of the components in our
method. Furthermore, invariant risk minimization loss can
effectively make the model’s generation towards gold re-
sponses, while maximizing treatment effects loss enhances
the diversity of model generation responses. The perfor-
mance of removing sampling strategy is extremely degraded,
proving that it effectively alleviates position imbalance.

4.7 Case Study
Table 3 illustrates an example. The existence of position
bias in both the raw and finetuned LLMs leads to generat-
ing safe and general but context-irrelevant responses. RSM
maintains part of memory capabilities through iterative sum-
marization. CONSTRAIN, despite finding a partially cor-
rect answer through retrieval, suffers from substantial infor-
mation loss in the dialogue, leading to a notable decrease in
response diversity. RPP disrupts the dialogue structure by al-
tering sentence-level positions during fine-tuning, impairs the
model’s ability to identify causally relevant utterances, and
results in generating context-irrelevant responses. ZOE elim-
inates part of position bias of LLMs, but the model’s causal

perception ability is still weak and unable to identify all rel-
evant utterances for response generation. In contrast, CPD
benefits from targeted causal perception fine-tuning, effec-
tively perceiving the correct answer and providing informa-
tive answers while considering the entire dialogue history.

5 Conclusion
In this paper, we analyze the deleterious impact effects of po-
sition bias in LLMs on long-term dialogue tasks from a causal
perspective. To solve the problem, we propose a model-free
Causal Perception long-term Dialogue framework (CPD). We
extract causally relevant utterances and mitigate position bias
through causally perturbed fine-tuning. Specifically, we pro-
pose local-position awareness by localizing position infor-
mation within utterances and further combining it with a
perturbation-based method to extract causally relevant utter-
ances. We also propose a causal perception fine-tuning strat-
egy that guides models to focus on causal invariant variables
by differently perturbing causally relevant and non-causally
relevant utterances in dialogues. A positional difference sam-
pling strategy is employed to address positional imbalances
in datasets while maintaining the temporal structure of dia-
logues. Experiment results demonstrate the effectiveness of
our method in alleviating position bias, resulting in informa-
tive and human-like response generation.
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