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Abstract
End-to-end spoken language understanding (SLU)
aims to directly capture the comprehensive seman-
tics from the given spoken utterance without gener-
ating transcripts. Since transcripts may not always
be available, Textless SLU is attracting increasing
attention, which eliminates the need for transcripts
but usually does not perform as well as SLU models
trained with transcripts. In this paper, we focus on
the scenarios where the transcripts are not available
and propose GMA-SLU to generate more audio ac-
cording to the labels. In order to solve the modality
gap between text and audio, two different language
models are built, and discrete tokens are utilized as
a bridge, where the first language model utilizes la-
bels to generate the semantic tokens and the second
language model uses these semantic tokens and the
acoustic tokens of source audios to obtain the syn-
thetic audios. All experiments are conducted on the
monolingual SLU dataset SLURP and the multilin-
gual SLU dataset MINDS-14. Experimental results
show that our method outperforms the previous best
Textless End-to-end SLU models and can obtain a
comparable performance with these models trained
with the assistance of the corresponding transcripts.

1 Introduction
Spoken Language Understanding (SLU) focuses on compre-
hending the spoken utterances and generating relevant predic-
tions, which is widely used in the personal assistants, spoken
dialogue systems, and recent voice-controlled devices [Wang
et al., 2005; Cheng et al., 2023a; Zhu et al., 2023]. As demon-
strated in Figure 1, for the audio input, SLU typically contains
two subtasks: Slot Filling (SF) and Intent Detection (ID). SF
is a sequence labeling task [Tur and De Mori, 2011], aiming
to assign the slot to each token in spoken utterance, and ID is
a classification task [Cheng et al., 2023c], aiming to predict
the intent label of the entire spoken utterance.

Traditional SLU approaches integrate an automatic speech
recognition (ASR) model and a natural language understand-
ing (NLU) model within the two-step pipelines [Hakkani-Tür
et al., 2006; Morbini et al., 2012]. However, the prediction
of ASR may contain errors and lose the prosodic information

which is beneficial for NLU. Besides, cascaded systems usu-
ally have higher latency, which is not conducive to deploying
models in real situations. For the reason, end-to-end SLU has
attracted increasing attention in the recent years [Chen et al.,
2018; Chung et al., 2021]. For end-to-end SLU, the predicted
results are directly generated from input audio without gener-
ating the intermediate transcripts.

Due to the modality gap between audio representations and
text embeddings [Mai et al., 2020], training end-to-end SLU
models directly is much more challenging than training cas-
cade SLU models. To address the issue, a mainstream method
is to train end-to-end SLU models with the assistance of tran-
scripts. [Seo et al., 2022] designs junctional representation to
leverage the transcripts as the interface of the ASR model and
the NLU model. [Ma et al., 2023b] adopts knowledge distilla-
tion and leverages the transcripts to train an NLU model as the
teacher model. However, owing to the exorbitant expenses of
collecting the transcripts, transcripts are not always available.
In addition, there are still thousands of unwritten languages in
the world, it is impractical to obtain their corresponding tran-
scripts [Zhang et al., 2021]. Therefore, designing methods to
train end-to-end SLU models without utilizing the transcripts
is becoming an important research direction.

In the absence of transcripts, audio and their corresponding
labels should be utilized more effectively to train the superior
end-to-end SLU models. Motivated by the recent success of
data augmentation in many other tasks [Fang and Feng, 2023;
Cheng et al., 2023b; Wang et al., 2023b], we decide to gener-
ate more audios according to the labels. However, as a cross-
modality task, directly utilizing labels to generate more audio
will face two major difficulties:

(1) Modeling difficulty. Due to the modality gap between
textual labels and audio inputs, training a single model to di-
rectly generate audios based on the labels is challenging. Mo-
tivated by the success of discrete tokens in various tasks [Hsu
et al., 2021; Zhang et al., 2023a; Wang et al., 2023a], we pro-
pose to employ the discrete tokens as a bridge. We separately
train two different language models, where the first language
model is leveraged to transform the labels to semantic tokens,
and the second language model uses the semantic tokens and
acoustic tokens of audio inputs to obtain the generated acous-
tic tokens. By using the two-stage generation method, we can
effectively address the challenges in modeling.

(2) Data scarcity. By contrast, SLU dataset is relatively
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wake me up at ten

Intent:

alarm_set

[time: ten]

Slot:

Figure 1: An illustration of Spoken Language Understanding, which
includes two subtasks: intent detection and slot filling.

small [Bastianelli et al., 2020; Gerz et al., 2021]. To achieve
the high performance without relying on transcripts for train-
ing, it is helpful to generate more audio data. As a result, we
design multiple prompts for the first model, enabling the gen-
eration of more semantic tokens that align with specified slots
and intents. Acoustic tokens from different source audios are
fed into the second language model to enhance the generation
of audios with the diverse speaker characteristics and thereby
further expand the training data.

In this paper, we propose GMA-SLU to generate more au-
dios based on the labels. All experiments are conducted on a
monolingual SLU benchmark dataset SLURP [Bastianelli et
al., 2020] and the multilingual SLU dataset MINDS-14 [Gerz
et al., 2021]. Experimental results show that our method sur-
passes the previous best Textless end-to-end SLU models and
achieves a comparable performance with the models trained
with the assistance of transcripts. Further analyses also verify
the advantages and effectiveness of our proposed method.

To sum up, the contributions of our method are three-fold:
• We propose the framework GMA-SLU, which generates

more audios based on labels to enhance end-to-end SLU.
• We separately train two language models to tackle mod-

eling difficulty and data scarcity.
• Experiment results on two benchmark datasets show that

our proposed model surpasses the previous best model.

2 Related Work
2.1 Spoken Language Understanding
SLU aims at comprehending and interpreting the spoken lan-
guage. Cascaded SLU methods work on the ASR transcripts,
where solving the error propagation poses a significant chal-
lenge [Lee et al., 2012; Chang and Chen, 2022]. Recent end-
to-end SLU approaches have gained attention, especially with
the performance gap compared to cascaded SLU systems be-
ing mitigated in many cases due to the rich knowledge of pre-
trained models [Serdyuk et al., 2018; Haghani et al., 2018;
Wang et al., 2021]. However, most of previous SLU methods
use transcripts for training, which are not always available. In
our study, we explore leveraging the audio input more effec-
tively to maintain the high performance.

2.2 Discrete Tokens
Discrete tokens are widely used in various speech processing
tasks [Borsos et al., 2022; Rubenstein et al., 2023; Dong et

al., 2023b]. Current discrete tokens can be broadly classified
into two types: semantic tokens [Baevski et al., 2020; Hsu et
al., 2021] and acoustic tokens [Zeghidour et al., 2021; Borsos
et al., 2022; Garcia et al., 2023]. Semantic tokens are derived
from pre-trained models that use masked language modeling
as their training objective [Vaessen and Van Leeuwen, 2022].
These tokens primarily capture the content information in the
speech while neglecting the paralinguistic aspects [Polyak et
al., 2021]. Acoustic tokens can be obtained from neural audio
codecs with reconstruction as their training objective, aiming
to capture all facets of information, including timbre, content,
prosody, and recording conditions [Défossez et al., 2022]. In
our approach, we use semantic tokens as the bridge of the two
language models to tackle the modality gap. Besides, we use
acoustic tokens from different source audios to generate more
audios with different speaker characteristics.

2.3 Language Models
Recently, natural language capabilities have obtained signifi-
cant advancements via language modeling. Language model-
ing encompasses the approaches to predict the corresponding
next tokens in the utterance or those masked spans [Devlin et
al., 2019]. [Brown et al., 2020] introduces a novel large lan-
guage model with 175 billion parameters, demonstrating the
robust performance in many tasks in zero-shot, one-shot, and
few-shot scenarios. [Ma et al., 2023a] finds that existing lan-
guage models are not effective few-shot information extrac-
tors and proposes the novel adaptive paradigm to leverage the
strengths of language models effectively. In our approach, we
design two language models to generate more pseudo audios.

3 Method
In this section, we introduce the problem definition (§3.1) and
the model architecture (§3.2). The audio generation contains
three parts, including discrete tokens generation (§3.3), label-
to-token language model (§3.4), and token-to-audio language
model (§3.5). Finally, we present the data filtration (§3.6) and
the training strategy (§3.7) of our method. Note that these two
language models are trained from scratch, and we also report
the results obtained by supervised fine-tuning the recent large
language models in Sec. 5.7 for reference.

3.1 Problem Definition
Given the audio x = (x1, x2, . . . , xm), where m is the length
of audio waveform x, cascade SLU methods first transform x
to transcript y = (y1, y2, . . . , yn) and then predict the intent
oI and the slot oS =

(
oS1 , o

S
2 , . . . , o

S
n

)
, where n is the length

of transcript y. End-to-end SLU methods directly predict oI

and oS based on x without generating y. It has been verified
that utilizing transcript y for auxiliary training could improve
the performance of End-to-end SLU methods. However, con-
sidering that transcripts are not always available for training,
we decide to train the Textless end-to-end SLU model without
using transcripts in this paper unless otherwise specified.

3.2 Model Architecture
Following previous work [Wang et al., 2021], our framework
GMA-SLU consists of an acoustic encoder to generate repre-
sentations for the audio input and two decoders for ID and SF,
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Figure 2: Overview of the model architecture, including the HuBERT as the acoustic encoder and two decoders for ID and SF, respectively.

respectively. For a fair comparison, we use the HuBERT [Hsu
et al., 2021] as the acoustic encoder. For ID, the decoder con-
sists of two self-attention layers [Vaswani et al., 2017] and the
following average pooling layer. For SF, the decoder consists
of four self-attention layers. The overview of model architec-
ture is illustrated in Figure 2.

The training objectives of ID and SF are as follows:

LI ≜ −
nI∑
i=1

ŷi,I log
(
oi,I

)
(1)

LS ≜ −
n∑

j=1

nS∑
i=1

ŷi,S
j log

(
oi,S
j

)
(2)

where ŷi,I and ŷi,S
j denote the gold intent label and gold slot

label, respectively, nI denotes the number of the intent labels,
and nS denotes the number of the slot labels.

The final training objective L is as follows:

L = αLI + (1− α)LS (3)

where α is the coefficient balancing the two subtasks.

3.3 Discrete Tokens Generation
We utilize two kinds of discrete tokens to train language mod-
els, including semantic tokens and acoustic tokens.

We use a pre-trained HuBERT1[Hsu et al., 2021] to gener-
ate semantic tokens. HuBERT produces continuous represen-
tations at a rate of 50Hz for the audio. We adopt the K-means
clustering algorithm to continuous representations of the au-
dio input and transform these continuous representations into
their corresponding cluster indices subsequently. These clus-
ter indices are regarded as semantic tokens. By this approach,
the audio input x = (x1, x2, . . . , xm) is converted to seman-
tic tokens z = (z1, z2, . . . , zT ), where zt ∈ {0, 1, ...,K−1},
zt denotes any token in z, K denotes the number of clusters,
and T = ⌊ m

320⌋ denotes the number of frames. Through using
semantic tokens, the modeling difficulty could be alleviated.

We utilize a pre-trained EnCodec2[Défossez et al., 2022] to
generate the acoustic tokens. The EnCodec model is a simple

1https://github.com/facebookresearch/fairseq/tree/main/
examples/hubert

2https://github.com/facebookresearch/encodec

streaming and convolutional-based encoder-decoder architec-
ture with a sequential modeling component utilized to the la-
tent representation, both on the encoder side and decoder side,
and the audio input is sampled at 24 kHz. Acoustic tokens can
preserve the speech information more effectively than seman-
tic tokens, so we decide to utilize them to assist in preserving
the speech information of speakers.

3.4 Label-to-Token Language Model
As demonstrated in the left part of Figure 3, we train the label-
to-token language model to generate semantic tokens accord-
ing to the labels. Motivated by the recent success of the reduc-
tion strategy [Lee et al., 2022], the repeating semantic tokens
are merged to obtain the reduced semantic tokens. In order to
facilitate the generation of semantic tokens, we design several
prompts to construct the training corpus for natural language
based on the semantic tokens and labels. For example, a sim-
ple prompt can be like: “Generate the utterance whose intent
is [I label] and slot is [S label]: [semantic token]”, where
[I label] will be replaced with the intent label, [S label] will
be replaced with the slot label, and [semantic token] will be
replaced with the reduced semantic tokens. More prompts are
demonstrated in Table 1. Via using the prompts, the language
model implicitly improves the alignment within the represen-
tation space between semantic tokens and labels. It should be
noted that since the MINDS-14 dataset only includes the in-
tent labels, the portion containing slot labels will be removed
from the example prompts, and the processed prompt can be
like: “Generate the utterance whose intent is [I label]: [se-
mantic token]”. During the training stage, semantic tokens of
the source audios are utilized, and during the inference stage,
the generated semantic tokens are fed into the token-to-audio
language model to generate the pseudo audios. The prompt is
randomly selected during both training and inference.

3.5 Token-to-Audio Language Model
As illustrated in the right part of Figure 3, we train the token-
to-audio language model to generate pseudo audios. Its input
contains three parts, where the first part is the acoustic tokens
of another randomly selected audio from the training data, the
second part is the semantic tokens obtained by expanding the
semantic tokens from the label-to-token language model, and
the third part is the corresponding acoustic tokens.
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Token-to-Audio Language Model
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Label-to-Token Language Model
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Source Audio
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Generated Audios

Training
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Encoder
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Figure 3: Overview of the two language models. Semantic tokens are used as the bridge between these two language models. During training,
semantic tokens of source audios are used by the label-to-token language model, and acoustic tokens of source audios are used by the token-
to-audio language model. During inference, the generated reduced semantic tokens by the label-to-token language model are then fed into the
token-to-audio language model and the generated acoustic tokens by the token-to-audio language model are fed into the EnCodec decoder.

Data: <I label, S label, semantic token>
Prompt 1: Generate the utterance whose intent is [I label] and slot is [S label]: [semantic token]
Prompt 2: Generate the utterance whose slot is [S label] and intent is [I label]: [semantic token]
Prompt 3: Generate a statement with the intent as [I label] and slot as [S label] : [semantic token]
Prompt 4: Generate a statement with the slot as [S label] and intent as [I label]: [semantic token]
Prompt 5: Produce an expression containing the slot [S label] and the intent [I label]: [semantic token]
Prompt 6: Produce an expression containing the intent [I label] and the slot [S label]: [semantic token]
Prompt 7: Craft a phrase with the slot labeled as [S label] and the intent labeled as [I label]: [semantic token]
Prompt 8: Craft a phrase with the intent labeled as [I label] and the slot labeled as [S label]: [semantic token]
Prompt 9: Construct a sentence denoting the slot as [S label] and the intent as [I label]: [semantic token]
Prompt 10: Construct a sentence denoting the intent as [I label] and the slot as [S label] : [semantic token]

Table 1: Prompts to construct the training data for the label-to-token language model.

Considering that the semantic tokens obtained by the label-
to-token language model are reduced, we introduce a duration
predictor [Ren et al., 2020] to predict the duration of semantic
tokens. The predictor consists of two 1D-convolutional layers
with ReLU activation [Glorot et al., 2011], each succeeded by
layer normalization and the dropout layer. Additionally, there
is a linear layer to project the hidden states into the duration.
Given a predicted duration vector d = (d1, d2, . . . , dT∗) and
the ground truth d̂ = (d̂1, d̂2, . . . , d̂T∗), the training objective
LD of the duration predictor is as follows:

LD =
1

T ∗

T∗∑
t=1

(log(1 + dt)− log(1 + d̂t))
2 (4)

By using the duration vector, reduced semantic tokens can
be expanded via repeating each semantic token. For instance,
before being used as the input of the label-to-token language
model, the semantic tokens (1, 2, 2, 3, 3, 4, 4) collapse to the
reduced semantic tokens (1, 2, 3, 4) and the duration vector is
(1, 2, 2, 2). Via predicting the duration, the reduced semantic
tokens can be converted into original semantic tokens. During
the training stage, ground truth duration is applied, and during

the inference stage, the predicted duration is applied.
The acoustic tokens are generated by feeding the source au-

dios into the encoder of the EnCodec model. Since the acous-
tic tokens can preserve useful speech information more effec-
tively, we use them to assist in generating audios that matches
the speech information of the speakers in the training set more
accurately. To solve data scarcity, we randomly select another
source audio from the training set to obtain acoustic tokens as
the first part of the input. During the whole training stage, the
third part is obtained from these source audios, and during in-
ference, the generated acoustic tokens are fed into the decoder
of the EnCodec model to synthesize the audios.

3.6 Data Filtration
In order to filter out the low-quality generated audios, we train
an additional SLU model to predict the intent and slot of the
generated audios, whose model architecture is the same as the
architecture in Sec 3.2. We assess the intent accuracy and the
slot SLU-F1 of the generated audios. Only the top ρ% audios
are kept based on the sum of intent accuracy and slot SLU-F1.
Similarly, since only intent labels are available in MINDS-14
dataset, only intent accuracy is considered for data filtration.
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3.7 Training Strategy
Though we apply the data filtration, the generated audios still
contain the noise. Therefore, to dominate the training process
with the real audios, we first pre-train the SLU model utilizing
generated audios, followed by fine-tuning on real audios.

4 Experiments
4.1 Datasets and Metrics
We conduct all the experiments on a monolingual SLU bench-
mark dataset SLURP3[Bastianelli et al., 2020] and the multi-
lingual SLU dataset MINDS-144[Gerz et al., 2021]. SLURP
dataset constitutes the repository encompassing 72.2k real au-
dio recordings and 69.3k synthetic audio for a broad range of
speech commands, each encapsulating brief interactions with
the home assistant, which is considered the most challenging
SLU dataset due to its lexical complexity. SLURP is meticu-
lously annotated across 3 semantic layers, including scenario,
action, and entities, where a pair (scenario, action) defines an
intent. Unlike SLURP dataset focuses on English utterances,
MINDS-14 is a multilingual SLU dataset for the banking sce-
narios with 14 distinct intents in 14 languages. Each language
incorporates approximately 600 utterances. We report the re-
sults of 4 languages, including en-US, fr-FR, pl-PL, and ko-
KR with a 30-20-50% train-dev-test split following the previ-
ous work for a fair comparison [Conneau et al., 2022].

Following [Dong et al., 2023a; Peng et al., 2022; Conneau
et al., 2022], for SLURP, we evaluate the performance of slot
filling with SLU-F1 score, intent detection with accuracy, and
for MINDS-14, we evaluate the performance of intent detec-
tion in different languages with accuracy.

4.2 Implementation Details
We utilize the pre-trained HuBERT5[Hsu et al., 2021] follow-
ing the base configuration as the acoustic encoder. Following
previous work [Wang et al., 2021], the batch size is set to 16.
We apply the Adam optimizer [Kingma and Ba, 2015], and 4k
warm-up updates to optimize parameters, where the learning
rate is increased from 4e-4 to 2e-3. If the loss on dev set does
not decrease for 5 epochs, the training process will early-stop
to avoid overfitting. For all experiments, we choose the model
that achieves the best performance on the dev set and evaluate
it on the test set. The weight α is set to 0.9. For the semantic
tokens, we utilize the pre-trained quantized model6 where the
number of clusters K is 100 to convert the audios to semantic
tokens. During the data filtration stage, we set the threshold ρ
to 80. All experiments are conducted at an Nvidia V100.

4.3 Baselines
SLURP We compare our GMA-SLU with four SLU base-
lines trained without transcripts, including MTL-SLT [Huang
et al., 2022], Speech-Brain [Ravanelli et al., 2021], Branch-
former [Peng et al., 2022], and HuBERT SLU [Wang et al.,

3https://github.com/pswietojanski/slurp
4https://huggingface.co/datasets/PolyAI/minds14
5https://dl.fbaipublicfiles.com/hubert/hubert base ls960.pt
6https://dl.fbaipublicfiles.com/textless nlp/gslm/hubert/km100/

km.bin

2021]. We also report the results of SLU models trained with
the assistance of transcripts for reference, including CTI [Seo
et al., 2022], CIF-PT [Dong et al., 2023a] with the Conformer
[Gulati et al., 2020] as the acoustic encoder and CIF-PT with
the pre-trained Data2vec [Baevski et al., 2022] as the acoustic
encoder. In addition, we also report the results of recent large
language models for reference, including ChatGPT [OpenAI,
2023] and SpeechGPT [Zhang et al., 2023a]. Since the pre-
trained models applied by different SLU models might be dif-
ferent, we list the pre-trained models in Table 2 for reference.
MINDS-14 We compare our GMA-SLU with LaBSE [Gerz
et al., 2021] and XLSR [Lozhkov, 2022]. In addition, we also
report the results of ChatGPT for reference. LaBSE performs
SLU in a cascade manner and the input is the ASR transcripts.
BERT [Devlin et al., 2019] is applied as its pre-trained model.
XLSR is trained without the assistance of transcripts and per-
forms SLU in an end-to-end manner as GMA-SLU. Wav2vec
2.0 [Baevski et al., 2020] is the pre-trained model of XLSR.
The performance of ChatGPT is from [He and Garner, 2023].

5 Results and Analysis
5.1 Results on SLURP Dataset
Experimental results on SLURP dataset are shown in Table 2,
from which we have the following observations:

(1) Our approach achieves the consistent improvements in
slot filling and intent detection. Specifically, GMA-SLU sur-
passes the previous best model training without transcripts by
2.01% SLU-F1 and 1.59% accuracy. This improvement could
be attributed to the proposed audio generation strategy, which
can enlarge the training set and improve the robustness.

(2) Another encouraging result is that our method achieves
the comparable performance with the models trained with the
assistance of transcripts, which outperforms CTI and CIF-PT
with Conformer as the acoustic encoder. This result indicates
that generating more audios through our approach can allevi-
ate the reliance on transcripts, which is particularly meaning-
ful in scenarios where transcripts are unavailable.

(3) Following the previous work [He and Garner, 2023], we
use ASR transcripts to evaluate the performance of ChatGPT
and SpeechGPT. In this evaluation, these models are provided
with 20 examples and prompted to adapt to ASR errors. How-
ever, though these large language models have shown the su-
periority in few-shot learning and zero-shot learning, there is
still a performance gap between them and our approach. This
result implies that large language models might encounter dif-
ficulties in understanding spoken utterances. As a result, it is
still an essential task to establish a robust SLU framework and
it warrants further exploration and investigation.

5.2 Results on MINDS-14 Dataset
Table 3 shows the experimental results on MINDS-14 dataset.
We can obviously observe that the proposed approach outper-
forms previous models in all languages, which further verifies
the effectiveness of our approach.

5.3 Ablation Study
To verify the benefits of our approach from various angles, we
undertake ablation studies on SLURP and MINDS-14, whose
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Model Pre-trained Model Slot (SLU-F1) ↑ Intent (Acc) ↑

Training w/o Transcripts

MTL-SLT [Huang et al., 2022] LAS [Chan et al., 2016] + BART [Lewis et al., 2020] 74.49 83.10
Speech-Brain [Ravanelli et al., 2021] wav2vec 2.0 [Baevski et al., 2020] 74.62 85.34
Branchformer [Peng et al., 2022] - 77.70 88.10
HuBERT SLU [Wang et al., 2021] HuBERT [Hsu et al., 2021] 78.92 89.38

Training w/ Transcripts

CTI [Seo et al., 2022] wav2vec 2.0 [Baevski et al., 2020] + RoBERTa [Liu et al., 2019] 74.66 86.92
CIF-PT [Dong et al., 2023a] - 78.67 89.60
CIF-PT [Dong et al., 2023a] Data2vec [Baevski et al., 2022] 81.63 91.32

Large Language Models

ChatGPT [OpenAI, 2023] - 62.76 73.96
SpeechGPT [Zhang et al., 2023a] - 61.23 72.61

GMA-SLU w/o Reduced Strategy HuBERT [Hsu et al., 2021] 79.68 (↓1.25) 90.39 (↓0.58)
GMA-SLU w/o Different Acoustic Tokens HuBERT [Hsu et al., 2021] 79.45 (↓1.48) 90.13 (↓0.84)
GMA-SLU w/o Data Filtration HuBERT [Hsu et al., 2021] 79.57 (↓1.36) 90.24 (↓0.73)
GMA-SLU w/o Two-Stage Training Strategy HuBERT [Hsu et al., 2021] 79.82 (↓1.11) 90.55 (↓0.42)
GMA-SLU (ours) HuBERT [Hsu et al., 2021] 80.93† 90.97†

Table 2: SLU-F1 of slot filling and accuracy (Acc) of intent detection on the SLURP dataset. ‘†’ denotes our GMA-SLU achieves statistically
significant improvements over baselines with p < 0.01. ‘Training w/o Transcripts’ indicates the SLU model is trained without transcripts and
‘Training w/ Transcripts’ indicates the SLU model is trained with the assistance of transcripts. ‘Pre-trained Model’ indicates the corresponding
pre-trained model used by the SLU model. Considering that the transcripts are not always available, GMA-SLU is trained without transcripts.

Model en-US fr-FR pl-PL ko-KR

LaBSE [Gerz et al., 2021] 95.1 93.1 89.2 91.4
XLSR [Lozhkov, 2022] 93.3 94.4 91.5 86.5

ChatGPT (0-shot) 95.4 97.4 90.0 89.2
ChatGPT (1-shot) 97.9 99.3 96.1 90.5

GMA-SLU w/o RS 96.6 (1.6↓)98.6 (0.9↓)95.2 (1.1↓)91.3 (0.5↓)
GMA-SLU w/o DAT 96.1 (2.1↓)97.8 (1.7↓)94.4 (1.9↓)90.5 (1.3↓)
GMA-SLU w/o DF 96.3 (1.9↓)98.2 (1.3↓)94.7 (1.6↓)90.9 (0.9↓)
GMA-SLU w/o TSTS 96.8 (1.4↓)98.9 (0.6↓)95.5 (0.8↓)91.5 (0.3↓)
GMA-SLU (ours) 98.2† 99.5† 96.3† 91.8†

Table 3: Intent detection results for different languages in MINDS-
14 dataset. ‘†’ denotes GMA-SLU achieves the statistically signifi-
cant improvements over baselines with p < 0.01.

outcomes are shown in the lower part of Table 2 and Table 3.

Effect of Reduced Strategy We apply the reduced strategy
to merge the repeated semantic tokens in the proposed label-
to-token language model and utilize the duration predictor to
expand the reduced semantic tokens in the token-to-audio lan-
guage model. To evaluate the superiority of the reduced strat-
egy, we conduct an ablation experiment where we remove the
reduced strategy, and the original semantic tokens are used as
the bridge between these two proposed language models. We
refer this experiment to w/o Reduced Strategy in Table 2 and
w/o RS in Table 3. We observe the significant decreases in all
the metrics across the two datasets, affirming that the reduced
strategy makes the positive contribution to our method, which
aligns with past observations in [Lee et al., 2022]. We believe
it is because reduced strategy could make the semantic tokens
resemble text more closely and simplify the whole generation
process due to the shortened length of semantic tokens.

Effect of Different Acoustic Tokens In the token-to-audio
language model, acoustic tokens of another audio in the train-
ing set are used as the first part of the input. To verify that it is
more effective to use different acoustic tokens, we remove it
and retain only the second and third parts of the input. We re-
fer the experiment to w/o Different Acoustic Tokens in Table 2
and w/o DAT in Table 3. We could clearly discern that the ab-
sence of the first part leads to the decreased performance. We
believe the reason is that applying the first part can solve data
scarcity issue more effectively. Besides, via incorporating the
acoustic tokens as the first part of the inputs, the acoustic to-
kens of the third part could align more closely with the estab-
lished rules of acoustic tokens during the generation process.

Effect of Data Filtration To filter out the low-quality gen-
erated audios, we first perform the data filtration before train-
ing the SLU model. To verify the superiority of data filtration,
we remove it and refer it to w/o Data Filtration in Table 2 and
w/o DF in Table 3. It is evident that the performance declines
after removing the data filtration, which suggests that the data
filtration indeed could improve the performance. It is because
even the two language models are meticulously designed, the
noise in the generated audios is still inevitable.

Effect of Two-Stage Training Strategy We train the SLU
model using a two-stage training strategy to alleviate the neg-
ative effect of the noise in generated audios. In order to eval-
uate its effectiveness, we remove it and refer this ablation ex-
periment to w/o Two-Stage Training Strategy and w/o TSTS in
Table 2 and Table 3, respectively. We could observe a decline
in performance on these two datasets, which substantiates that
the two-stage training strategy is effective.
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Text: call the nearest thai restaurant with delivery

Ref. Intent: takeway order
Slot: food type bussiness type order type

HuBERT SLU Intent: cooking order
Slot: coffee type bussiness type order type

GMA-SLU Intent: takeway order
Slot: food type bussiness type order type

Table 4: Case study of HuBERT SLU and GMA-SLU on SLURP dataset. Text in italic denotes the incorrect predictions.
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Figure 4: SLU-F1 of slot filling and accuracy (Acc) of intent detec-
tion on the SLURP dataset with different threshold ρ.

5.4 Impact of Data Filtration Ratio
When performing the data filtration, it is important to choose
the appropriate threshold ρ. To investigate how ρ affects SLU
performance, we constrain ρ in [0, 20, 40, 60, 80, 100] on the
SLURP, whose results are shown in Figure 3. When ρ = 100,
data filtration is equivalent to being removed, which indicates
that all generated audios are retrained, and when ρ = 0, our
method degrades to HuBERT SLU [Wang et al., 2021]. From
the results, we observe that our method achieves the best per-
formance at ρ = 80%. Besides, when ρ = 100%, the perfor-
mance is still relatively high, which verifies that the generated
audios maintain a relatively high level of quality.

5.5 Case Study
To further showcase the effectiveness of our approach in han-
dling SLU, we provide a case study on SLURP dataset apply-
ing HuBERT SLU and our GMA-SLU. As shown in Table 4,
HuBERT SLU predicts the scenario of intent and the slots of
some tokens incorrectly, whereas our model can predict them
accurately. This result substantiates that the generated audios
indeed has the potential to enhance the performance.

5.6 Effect of Different Audio Codecs
Recently, there has been an increasing amount of research on
audio codecs, and more and more speech tokenizers with high
performance are proposed. To verify that our approach is also
adapted to the advanced tokenizers, we replace the EnCodec
with SpeechTokenizer [Zhang et al., 2023b], TiCodec [Ren et
al., 2023], and HiFi-Codec [Yang et al., 2023], respectively.

Model Slot (SLU-F1) ↑Intent (ACC) ↑
SpeechTokenizer [Zhang et al., 2023b] 81.25 91.23
TiCodec [Ren et al., 2023] 80.98 91.29
HiFi-Codec [Yang et al., 2023] 81.15 91.18
GMA-SLU (ours) 80.93 90.97

Table 5: SLU-F1 of slot filling and accuracy (Acc) of intent detec-
tion on the SLURP dataset with different audio codecs.

Model Slot (SLU-F1) ↑ Intent (ACC) ↑
Llama 2 [Touvron et al., 2023] 83.46 92.51
SpeechGPT [Zhang et al., 2023a] 86.72 94.53
LTU-AS [Gong et al., 2023] 87.35 94.32
GMA-SLU (ours) 80.93 90.97

Table 6: SLU-F1 of slot filling and accuracy (Acc) of intent detec-
tion on the SLURP dataset with different large language models. For
simplicity, we only use the large language models as the pre-trained
model of the label-to-token language model.

The corresponding results on SLURP are demonstrated in Ta-
ble 5. We can observe that through employing these advanced
speech tokenizers, the corresponding performance can be fur-
ther enhanced, underscoring the generality of our method.

5.7 Effect of Large Language Model
In this study, we train both two language models from scratch.
In order to explore the effect of recent large language models,
we perform supervised fine-tuning to the large language mod-
els to obtain the label-to-token language model. As shown in
Table 6, we observe that the recent large language models can
indeed enhance the performance of SLU. We attribute this im-
provement to abundant semantic knowledge in large language
models. Besides, SpeechGPT [Zhang et al., 2023a] and LTU-
AS [Gong et al., 2023] can perform better than Llama 2 [Tou-
vron et al., 2023]. We believe this is because SpeechGPT and
LTU-AS are meticulously designed for audios, which enables
the generation of more accurate semantic tokens.

6 Conclusion
In this paper, we propose the framework GMA-SLU for SLU,
which utilizes two language models to generate more audios
as additional training data. Experiments on two datasets show
that our model surpasses the previous best Textless SLU mod-
els and obtains a comparable performance with recent end-to-
end SLU models trained with the assistance of transcripts. We
believe that our approach is generalizable to more fully utilize
limited annotated data and thus improve the performance.
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