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Abstract
In this work, we propose a novel tree-based expla-
nation technique, PEACH (Pretrained-embedding
Explanation Across Contextual and Hierarchical
Structure), that can explain how text-based doc-
uments are classified by using any pretrained
contextual embeddings in a tree-based human-
interpretable manner. Note that PEACH can adopt
any contextual embeddings of the PLMs as a train-
ing input for the decision tree. Using the proposed
PEACH, we perform a comprehensive analysis of
several contextual embeddings on nine different
NLP text classification benchmarks. This analysis
demonstrates the flexibility of the model by appling
several PLM contextual embeddings, its attribute
selections, scaling, and clustering methods. Fur-
thermore, we show the utility of explanations by vi-
sualising the feature selection and important trend
of text classification via human-interpretable word-
cloud-based trees, which clearly identify model
mistakes and assist in dataset debugging. Besides
interpretability, PEACH outperforms or is similar
to those from pretrained models. Code and Ap-
pendix are in https://github.com/adlnlp/peach.

1 Introduction
Large Pretrained Language Models (PLMs), like BERT,
RoBERTa, or GPT, have made significant contributions to
the advancement of the Natural Language Processing (NLP)
field. Those offer pretrained continuous representations and
context models, typically acquired through learning from co-
occurrence statistics on unlabelled data, and enhance the gen-
eralisation capabilities of downstream models across vari-
ous NLP domains. PLMs successfully created contextualised
word representations and are considered word vectors sensi-
tive to the context in which they appear. Numerous versions
of PLMs have been introduced and made easily accessible to
the public, enabling the widespread utilisation of contextual
embeddings in diverse NLP tasks.

However, the aspect of human interpretation has been
rather overlooked in the field. Instead of understanding how
PLMs are trained within specific domains, the decision to
employ PLMs for NLP tasks is often solely based on their

state-of-the-art performance. This raises a vital concern: Al-
though PLMs demonstrate state-of-the-art performance, it is
difficult to fully trust their predictions if humans cannot inter-
pret how well they understand the context and make predic-
tions. To address those concerns, various interpretable and
explainable AI techniques have been proposed in the field
of NLP, including feature attribution-based [Sha et al., 2021;
Ribeiro et al., 2018; He et al., 2019], language explanation-
based [Ling et al., 2017; Ehsan et al., 2018] and probing-
based methods [Sorodoc et al., 2020; Prasad and Jyothi,
2020]. Among them, feature attribution based on attention
scores has been a predominant method for developing inher-
ently interpretable PLMs. Such methods interpret model de-
cisions locally by explaining the prediction as a function of
the relevance of features (words) in input samples. However,
these interpretations have two main limitations: it is chal-
lenging to trust the attended word or phrase as the sole re-
sponsible factor for a prediction [Serrano and Smith, 2019;
Pruthi et al., 2020], and the interpretations are often lim-
ited to the input feature space, requiring additional meth-
ods for providing a global explanation [Han et al., 2020;
Rajagopal et al., 2021]. Those limitations of interpretability
are ongoing scientific disputes in any research fields that ap-
ply PLMs, such as Computer Vision (CV). However, the CV
field has relatively advanced PLM interpretability strategies
since it is easier to indicate or highlight the specific part of the
image. While several post-hoc methods [Zhou et al., 2018;
Yeh et al., 2018] give an intuition about the black-box model,
decision tree-based interpretable models such as prototype
tree [Nauta et al., 2021] have been capable of simulating con-
text understanding, faithfully displaying the decision-making
process in image classification, and transparently organising
decision rules in a hierarchical structure. However, the perfor-
mance of these decision tree-based interpretations with neural
networks is far from competitive compared to state-of-the-art
PLMs [Devlin et al., 2019; Liu et al., 2020].

For NLP, a completely different question arises when we
attempt to apply this decision tree interpretation method:
What should be considered a node of the decision tree in NLP
tasks? The Computer Vision tasks typically use the specific
image segment and indicate the representative patterns as a
node of the decision tree. However, in NLP, it is too risky
to use a single text segment (word/phrase) as a representative
of decision rules due to semantic ambiguity. For example,
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if we have a single word ‘party’ as a representative node of
the global interpretation decision tree, its classification into
labels like ‘politics’, ‘sports’, ‘business’ and ‘entertainment’
would be highly ambiguous.

In this work, we propose a novel decision tree-based in-
terpretation technique, PEACH (Pretrained-embedding Ex-
planation Across Contextual and Hierarchical Structure), that
aims to explain how text-based documents are classified using
any pretrained contextual embeddings in a tree-based human-
interpretable manner. We first fine-tune PLMs for the in-
put feature construction and adopt the feature processing and
grouping. Those grouped features are integrated with the de-
cision tree algorithms to simulate the decision-making pro-
cess and decision rules, by visualising the hierarchical and
representative textual patterns. In this paper, our main contri-
butions are as follows:

• Introducing PEACH, the first model that can explain the
text classification of any pretrained models in a human-
understandable way that incorporates both global and lo-
cal interpretation.

• PEACH can simulate the context understanding, show
the text classification decision-making and transparently
arrange hierarchical-structured decision rules.

• Conducting comprehensive evaluation to present the
preservability of the model prediction behaviour, which
is perceived as trustworthy and understandable by hu-
man judges compared to widely-used benchmarks.

2 PEACH
The primary objective of PEACH (Pretrained-embedding Ex-
plainable model Across Contextual and Hierarchical Struc-
ture) is to identify a contextual and hierarchical interpretation
model that elucidates text classifications using any pretrained
contextual embeddings. To accomplish this, we outline the
construction process, including input representation, feature
selection and integration, tree generation, and interpretability
and visualisation of our tree-based model.

Preliminary Setup Before delving into the components of
the proposed explanation model PEACH, it is crucial to dis-
tinguish between the pretrained model, fine-tuned model, and
its contextual embedding. Appendix B illustrates the pre-
training and fine-tuning step. The pretraining step involves
utilising a large amount of unlabelled data to learn the overall
language representation, while the fine-tuning step further re-
fines this knowledge and generates better-contextualised em-
beddings on task-specific labelled datasets. Fine-tuned con-
textual pretrained embeddings typically serve as a valuable
resource for representing the text classification capabilities of
various deep learning models. Therefore, PEACH leverages
these contextualised embeddings to explain the potential out-
comes of a series of related choices using a contextual and
hierarchical decision tree.

2.1 Input Embedding Construction
We first wrangle the extracted pretrained contextual embed-
dings in order to demonstrate the contextual understanding

capability of the fine-tuned model. Note that we use fine-
tuned contextual embedding as input features by applying the
following two steps.

Step 1: Fine-Tuning
Given a corpus with n text documents, denoted as T =
{t1, t2, . . . , tn}, each ta represents a document instance from
the textual dataset. Each document can be from any text-
based corpus, such as news articles, movie reviews, or medi-
cal abstracts, depending on the specific task. Each document
can be represented as a semantic embedding by pretrained
models. To retrieve the contextual representation, we firstly
tokenise ta for a ∈ [1, n] with the pretrained model tokeniser
and fine-tune the PLMs on the tokenised contents of all doc-
uments, with the goal of predicting the corresponding doc-
ument label. Then, we extract the d-dimensional embedding
of the PLMs [CLS] token as the contextualised document em-
bedding ea ∈ E for a ∈ [1, n] (d = 768).

Step 2: Feature Processing
By using all the embeddings in E as row vectors, we con-
struct a feature matrix M ∈ Rn∗d. This feature matrix can be
represented as [c1 c2 . . . cd] where each ci corresponds to the
column feature vector along the i-th dimension, which con-
tains embedding values for the i-th dimension from all docu-
ment embeddings. To optimise the utilisation of the embed-
ding feature matrix in decision tree training, we experiment
with various feature selection methods, including the follow-
ing statistical approaches and a deep learning approach, to
extract the most informative features.

Statistical Approaches We employ statistical approaches
to extract informative features from the column features of
M . We calculate the correlation between each pair of dimen-
sions using Pearson correlation coefficient. For dimensions i
and j (i, j ∈ [1, d]), the correlation Ri,j is computed as:

Ri,j = Pearson(ci, cj) (1)

for each i, j ∈ [1, d].
Dimensions with high Pearson correlation values indicate

similar semantic features during fine-tuning. To identify
those similar dimensions, we use a percentile v to find the
correlation threshold. The threshold t is calculated as

t = Pv(R) (2)

which gives us the v-th percentile value in R. Using this
threshold, we cluster the 768 dimensions and take the aver-
age to reduce the number of features we will have eventually.

We divide the set of column features {c1, c2, . . . , cd} into
m exclusive clusters. Starting from c1, we find all the dimen-
sions having correlations greater than t with c1 and collect
them as a new cluster C1. Among the remaining dimensions,
we take the first column feature (e.g. ck /∈ C1) as the new
cluster centre and find all the dimensions correlating greater
than t with ck, and consider them as the new cluster C2.
This process is repeated iteratively until all dimensions are
assigned to a certain cluster. In this way, we re-arranged all
the dimensions into a set of clusters C = {C1, C2, . . . , Cm}
where the column vectors in each cluster have correlations
greater than t with the cluster centre.
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Figure 1: A PEACH is a globally interpretable model that faithfully explains the pretrained models’ reasoning using the pretained contextual
embedding (left, on MR dataset). Additionally, the decision-making process for a single prediction can be detailed presented (right, partially
shown). The detailed description can be found in Section 5.

In addition to Pearson, we explore K-means Clustering as
an alternative method to cluster the dimension vectors. The
K-means aims to minimise the objective function given by:

L(M) =
m∑
i=1

d∑
j=1

(||vi − cj ||)2 (3)

where vi is the cluster centre for each cluster Ci. After clus-
tering, we merge the features in each cluster as a single fea-
ture vector by taking their average since they exhibit high cor-
relation. By combining the representations from each cluster,
we obtain the final feature matrix F ∈ Rn∗m. This success-
fully reduces the number of features from the original embed-
ding dimension d to the number of clusters m. The resulting
feature matrix F can be directly used as input for training
decision trees using ID3/C4.5/CART algorithms.

Deep Learning Approach We also apply a Convolutional
Neural Network (CNN) to extract the input feature matrix F
from the initial embedding feature matrix E. Our CNN con-
sists of two blocks, each comprising a 1D convolutional layer
followed by a 1D pooling layer. The network is trained to pre-
dict the document class based on the output of the last pooling
layer, minimising the cross-entropy loss. The filter of each
layer reduces the dimension according to the following way,
ensuring the last pooling layer has dimension m:

Dout =
Din − f + 2p

s
− 1 (4)

where Din is the input feature dimension of the convolu-
tion/pooling layer, Dout is the output feature dimension of the
convolution/pooling layer, f is the filter size, p is the padding
size, and s is the stride size for moving the filter.

2.2 Decision Tree Generation
We apply the feature matrix F to construct various types
of decision trees. In this section, we describe several tradi-
tional decision tree training algorithms that we adopted for
our model. The ID3 algorithm calculates the information gain
to determine the specific feature for splitting the data into sub-
sets. For each input feature fi ∈ F that has not been used as

a splitting node previously, the information gain (IG) is com-
puted as follows to split the current set of data instances S:

IG(S, fi) = H(S)−
∑
t∈T

p(t)H(t)

= H(S)−H(S|fi)
(5)

where H(S) is entropy of the current set of data S, T is the
subsets of data instances created from splitting S by fi and
p(t) is the proportion of the number of elements in t to the
number of elements in S and H(t) is the entropy of subset t.
The feature with the maximum information gain is selected
to split S into two different splits as the child nodes. The
C4.5 algorithm calculates the gain ratio to select the specific
feature to split the data into subsets. It is similar to ID3 but
instead of calculating information gain, it calculates the gain
ratio to select the splitting feature. The gain ratio is calculated
as follows:

GainRatio(S, fi) =
IG(S, fi)

SplitInfo(S, fi)
(6)

where
SplitInfo(S, fi) =

∑
t∈T

p(t)log2(t) (7)

The CART algorithm calculates the Gini index to select the
specific feature for splitting the data into subsets. The Gini
index is defined as:

Gini(S, fi) = 1−
n∑

x=1

(Px)
2 (8)

where Px is the probability of a data instance being classi-
fied to a particular class. The feature with the smallest Gini is
selected as the splitting node. The Random Forest (RF) al-
gorithm functions as an ensemble of multiple decision trees,
where each tree is generated using a randomly selected subset
of the input features. The individual trees in the forest can be
constructed using any of the aforementioned algorithms.
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2.3 Interpretability and Visualisation

PEACH aims to foster global and local interpretability for text
classification by arranging hierarchical-structured decision
rules. PEACH simulates the context understanding, shows
the text classification decision-making process and transpar-
ently presents a hierarchical decision tree. For the decision
tree, the leaves present the class distributions, the paths from
the root to the leaves represent the learned classification rules,
and the nodes contain representative parts of the textual cor-
pus. This section explains the way of representing the node
in the tree structure and which way of visualisation presents
a valuable pattern for human interpretation.

Interpretable Prototype Node: The aim of the decision
tree nodes in PEACH is to visualise the context understand-
ing and the most common words in the specific decision path,
and simulate the text classification decision-making process.
Word clouds are great visual representations of word fre-
quency that give greater prominence to words that appear
more frequently in a source text. These particular characteris-
tics of word clouds would be directly aligned with the aim of
the decision tree nodes. For each node in the tree, we collect
all the documents going through this specific node in their
decision path. These documents are converted into lower-
case, tokenised, and the stopwords in these documents are re-
moved. Then, Term Frequency Inverse Document Frequency
(TFIDF) of the remaining words is calculated and sorted. We
take the 100 distinct words with the top TFIDF values to be
visualised as a word cloud. This gives us an idea of the se-
mantics that each node of the tree represents and how each
decision path evolves before reaching the leaf node (the final
class).

Visualisation Filter: The more valuable visualisation pat-
tern the model presents, the better the human-interpretable
models are. We apply two valuable token/word types in order
to enhance the quality of visualisation of the word cloud node
in the decision tree. First, we adopt Part-of-Speech (PoS)
tagging, which takes into account which grammatical group
(Noun, Adjective, Adverb, etc.) a word belongs to. With
this PoS tagging, it is easy to focus on the important aspect
that each benchmark has. For example, the sentiment anal-
ysis dataset would consider more emotions or polarities so
adjective or adverb-based visualisation would be more valu-
able. Secondly, we also apply a Named Entity Recognition
(NER), which is one of the most common information extrac-
tion techniques and identifies relevant nouns (person, places,
organisations, etc.) from documents or corpus. NER would
be a great filter for extracting valuable entities and the main
topic of the decision tree decision-making process.

Word Cloud - Document Word Matching: To facilitate
the visualisation of local interpretations, which aims to elu-
cidate the decision-making process for specific document ex-
amples, we employ two methods to align word elements in
word clouds with the actual document for classification. The
first method involves an exact string match. When a word
in the word clouds exactly corresponds to a word token in
the original document, we highlight all instances of that word
in both the word clouds and the original document using a
green colour. The second method employs WordNet syn-

onym matching, leveraging the WordNet from the nltk1 li-
brary. We explore the document for words that belong to
possible synonym sets of the words in the word clouds, high-
lighting them in yellow if a match is found.

3 Evaluation Setup2

3.1 Datasets3

We evaluate PEACH with 5 state-of-the-art PLMs on 9
benchmark datasets. Those datasets encompass five text
classification tasks, including Natural Language Inference
(NLI), Sentiment Analysis (SA), News Classification (NC),
Topic Analysis (TA), and Question Type Classification (QC).
1) Natural Language Inference (NLI) Microsoft Research
Paraphrase (MSRP) [Dolan et al., 2004] contains 5801 sen-
tence pairs with binary labels. The task is to determine
whether each pair is a paraphrase or not. The training set
contains 4076 sentence pairs and 1725 testing pairs for gen-
erating decision trees. During PLM finetuning, we randomly
split the training set with a 9:1 ratio so 3668 pairs are used
for training and 408 pairs are used for validation. Sen-
tences Involving Compositional Knowledge (SICK) [Marelli
et al., 2014] dataset consists of 9840 sentence pairs that in-
volve compositional semantics. Each pair can be classified
into three classes: entailment, neutral or contradiction. The
dataset has 4439, 495, and 4906 pairs for training, validation
and testing sets. For both MSRP and SICK, we combine each
sentence pair as one instance when finetuning PLMs. 2) Sen-
timent Analysis (SA) The sentiment analysis datasets in this
study are binary for predicting positive or negative movie re-
views. Standford Sentiment Treebank (SST2) [Socher et al.,
2013] has 6920, 872 and 1821 documents for training, vali-
dation and testing. The MR [Pang and Lee, 2005] has 7108
training and 3554 training documents. IMDB [Maas et al.,
2011] and 25000 training and 25000 training documents. For
MR and IMDB, since no official validation split is provided,
the training sets are randomly split into a 9:1 ratio to obtain
a validation set for finetuning PLMs. 3) News Classification
(NC) The BBCNews is used to classify news articles into five
categories: entertainment, technology, politics, business, and
sports. There are 1225 training and 1000 testing instances,
and we further split the 1225 training instances with 9:1 ra-
tio to get the validation set for finetuning PLMs. 20ng is
for news categorization with 11314 training and 7532 test-
ing documents and aims to classify news articles into 20 dif-
ferent categories. Similar to BBCNews, the training set is
split with 9:1 ratio to obtain the finetuning validation set. 4)
Topic Analysis (TA) The Ohsumed provides 7400 medical
abstracts, with 3357 train and 4043 test, to categorise into 23
disease types. 5) Question Type Classification (QC) The
Text REtrieval Conference (TREC) Question Classification
dataset offers 5452 questions in the training and 500 ques-
tions in the testing set. This dataset categorises different nat-
ural language questions into six types: abbreviation, entity,
description and abstract, human, location, and numbers.

1https://www.nltk.org/howto/wordnet.html
2The baseline description can be found in the Appendix B
3The statistics can be found in the Appendix B
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(a) MSRP (b) BBCNews (c) 20ng

Figure 2: The effects of input feature dimension with PEACH on three datasets, including MSRP, BBCNews, and 20ng

3.2 Implementation Details
We perform finetuning of the PLMs and then construct the de-
cision tree-based text classification model for the evaluation.
We initialise the weights from five base models: bert-base-
uncased, roberta-base, albert-base-v2, xlnet-base-cased
and the original 93.6M ELMo for BERT, RoBERTa, AL-
BERT, XLNet, and ELMo respectively. A batch size of 32 is
applied for all models and datasets. The learning rate is set to
5e-5 for all models, except for the ALBERT model of SST2,
20ng and IMDB datasets, where it is set to 1e-5. All mod-
els are fine-tuned for 4 epochs, except for the 20ng, which
used 30 epochs. To extract the features from learned embed-
ding and reduce the number of input features into the decision
tree, we experiment with quantile thresholds of 0.9 and 0.95
for correlation methods. For k-means clustering, we search
for the number of clusters from 10 to 100 (step size: 10 or
20), except for IMDB where we search from 130 to 220 (step
size: 30). For CNN features, we use kernel size 2, stride size
2, and padding size 0 for two convolution layers. The same
hyperparameters are applied to the first pooling layer, except
for IMDB where stride size 1 is used to ensure we can have
enough input features for the next convolutional block and get
enough large number of features from the last pooling layer.
Kernel size and stride size for the last pooling layer are ad-
justed to maintain consistency with the number of clusters
used in k-means clustering. Decision trees are trained using
the chefboost library with a maximum depth of 95. We used
em core web sm model provided by spaCy library to obtain
the NER and POS tags for visualization filters. All experi-
ments are conducted on Google Colab with Intel(R) Xeon(R)
CPU and NVIDIA T4 Tensor Core GPU. Classification accu-
racy is reported for comparison.

4 Results
4.1 Overall Classification Performance
We first evaluate the utility of PLMs after incorporating
PEACH in Table 1. As shown, our proposed PEACH with
PLMs (rows 7-11) outperforms or performs similarly to the
fine-tuned PLMs (rows 2-6) in all benchmarks. Note that our
model outperforms the baselines in all binary sentiment anal-
ysis datasets (SST2, MR, IMDB) when utilising RoBERTa
features in our PEACH model. Furthermore, our model
outperforms the baselines in more general domain datasets
with multiple classes, such as BBC News, TREC, and 20ng,
when BERT features are employed in PEACH. We also ex-
perimented with various types of PLMs, other than BERT

and RoBERTa, on our PEACH, including BERT-based (AL-
BERT), generative-based (XLNet), and LSTM-based model
(ELMo). In general, RoBERTa and BERT performed bet-
ter across all datasets, except IMDB, where XLNet and its
PEACH model showed superior performance. This observa-
tion is attributed to the larger corpus of IMDB and requires
more features for an accurate explanation.

4.2 Ablation and Parameter Studies4

The effects of Feature Processing All three feature process-
ing methods we propose in Section 2.1 work well overall. Ta-
ble 2 shows that K-means demonstrated the best across most
datasets, except for MR and TREC. CNN worked better on
the MR dataset. Conversely, Pearson correlation grouping
worked better for TREC. The fine-tuned BERT model cap-
tured features that exhibited stronger correlations with each
other rather than clustering similar question types together.
The effects of Input Dimension We then evaluate the effects
of input feature dimension size with PEACH. We selected
three datasets, including BBCNews (the largest average doc-
ument length with a small data size), 20ng (a large number
of classes with a larger dataset size) and MSRP (a moderate
number of documents and a moderate average length). We
present macro F1 and Accuracy to analyse the effects of class
imbalance for some datasets. Figure 2 shows there is no dif-
ference in the trend for F1 and the trend for accuracy on these
datasets; especially the relatively balanced dataset BBCNews
provides almost identical F1 and accuracy. The binary dataset
MSRP does not lead to large gaps in the performance of dif-
ferent input dimensions, however, for those with more classes
(BBCNews and 20ng), there is a noticeable performance drop
when using extremely small input dimensions like 10. The
performance difference becomes less significant as the input
dimension increases beyond 20.

The Maximum Tree Depth Analysis was conducted to
evaluate the visualisation of the decision-making pattern. The
result can be found in Appendix C.

4.3 Human Evaluation
To assess interpretability and trustability, we conducted a hu-
man evaluation5, 26 human judges6 annotated 75 samples

4The effects of the Decision Tree is in Appendix A
5Sample Cases for the Human Evaluation is in the Appendix H
6Annotators are undergraduates and graduates in computer sci-

ence; 6 females and 20 males. The number of human judges and
samples is relatively higher than other NLP interpretation papers
[Rajagopal et al., 2021]
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Model MSRP SST2 MR IMDB SICK BBCNews TREC 20ng Ohsumed
BERT [Devlin et al., 2019] 0.819 0.909 0.857 0.870 0.853 0.969 0.870 0.855 0.658
RoBERTa [Liu et al., 2020] 0.824 0.932 0.867 0.892 0.881 0.959 0.972 0.802 0.655
ALBERT [Lan et al., 2020] 0.665 0.907 0.821 0.879 0.838 0.917 0.938 0.794 0.518
XLNet [Yang et al., 2019] 0.819 0.907 0.879 0.905 0.727 0.959 0.950 0.799 0.669
ELMo [Peters et al., 2018] 0.690 0.806 0.751 0.804 0.608 0.845 0.790 0.537 0.359
PEACH (BERT) 0.816 0.885 0.853 0.871 0.837 0.975 0.978 0.849 0.649
PEACH (RoBERTa) 0.819 0.938 0.872 0.893 0.877 0.947 0.968 0.800 0.651
PEACH (ALBERT) 0.650 0.885 0.804 0.878 0.834 0.921 0.942 0.783 0.497
PEACH (XLNet) 0.809 0.903 0.790 0.899 0.832 0.964 0.966 0.776 0.638
PEACH (ELMo) 0.638 0.632 0.510 0.725 0.565 0.900 0.702 0.164 0.284

Table 1: Classification performance comparison between fine-tuned contextual embeddings and those with PEACH. Best performances
among the baselines are underscored, and the best performances among our PEACH variants are bolded.

Model MSRP SST2 MR IMDB SICK BBCNews TREC 20ng Ohsumed
PEACH (Pearson) 0.817 0.913 0.862 0.892 0.867 0.972 0.978 0.845 0.645
PEACH (K-means) 0.819 0.938 0.869 0.893 0.877 0.975 0.974 0.849 0.651
PEACH (CNN) 0.817 0.936 0.872 0.890 0.870 0.974 0.974 0.801 0.621

Table 2: The effects of feature processing approach.

from MR, SST2, TREC, and BBC News. Judges conducted
the pairwise comparison between local and global explana-
tions generated by PEACH against two commonly used text
classification-based interpretability models, LIME [Ribeiro
et al., 2016] and Anchor [Ribeiro et al., 2018]. The judges
were asked to choose the approach they trusted more based
on the interpretation and visualisation provided. We specifi-
cally considered samples, where both LIME and PEACH or
Anchor and PEACH predictions were the same, following
[Wan et al., 2021]. Among 26 judges, our PEACH expla-
nation evidently outperforms the baselines by a large margin.
All percentages in the first column of all four datasets are
over 84%, indicating that the majority of annotators selected
our model to be better across interpretability and trustability.
The last column (‘Agree’) represents results from the Fleiss’
kappa test used to assess inter-rater consistency, and all the
agreement scores are over 0.7 which shows a strong level of
agreement between annotators. Several judges commented
that the visualisation method of PEACH allows them to see
the full view of the decision-making process in a hierarchical
decision path and check how the context is trained in each de-
cision node. This indicates a higher level of trust in PEACH
than in the saliency technique commonly employed in NLP.

5 Analysis and Application
5.1 Visualisation Analysis
Figure 1 in Section 1 shows the sample interpretations by
PEACH on MR, a binary dataset predicting positive or nega-
tive movie reviews. The global explanation in Figure 1(left)
faithfully shows the entire classification decision-making be-
haviour in detail. Globally, the decision tree and its nodes
cover various movie-related entities and emotions, like DOC-
UMENTARY, FUN, FUNNY, ROMANTIC, CAST, HOLLY-
WOOD, etc. In addition, final nodes (leaves) are passed via
the clear path with definite semantic words, distinguishing be-
tween negative and positive reviews. In addition to the global

interpretation, our PEACH can produce a local explanation
(Figure 1, right). By applying generated decision rules to the
specific input text, a rule path for the given input simulates
the decision path that can be derived to the final classifica-
tion (positive or negative). We also present how PEACH can
visualise the interpretation by comparing the successful and
unsuccessful pretrained embeddings in Figure 3. While the
successful one (RoBERTa with MR - Figure 3 left) shows a
clear and traceable view of how they can classify the positive
samples by using adjectives like moving and engaging, the
unsuccessful one (ELMo with MR - Figure 3 right) has many
ambiguous terminologies and does not seem to understand
the pattern in both positive and negative classes, e.g. amus-
ing is in the negative class. More visualisations on different
datasets and models are shown in Appendix D and E.

5.2 Application: PEACH

We developed an interactive decision tree-based text classi-
fication decision-making interpretation system for different
PLMs. This would be useful for human users to check the
feasibility of their pretrained and/or fine-tuned model. The
user interface and detailed description are in Appendix F.

5.3 Case-Study: High-risk Medical Domain

Furthermore, illustrated in Appendix G, we undertook an ad-
ditional case study focused on the high-risk text classification
domain, specifically in tasks such as medical report analy-
sis. This endeavour aimed to illustrate how interpretability
can be effectively integrated into specialised domains with
heightened sensitivity and complexity. By applying our visu-
alization techniques and interpretative tools to the intricacies
of medical text analysis, we sought to demonstrate the adapt-
ability and utility of our approach in enhancing transparency
and understanding within critical and specialised areas of text
classification.
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MR SST2 TREC BBCNews

PEACH LIME Tie Agree PEACH LIME Tie Agree PEACH LIME Tie Agree PEACH LIME Tie Agree

92.3 1.3 6.4 0.83 88.4 1.8 9.8 0.78 96.1 1.2 2.7 0.81 84.6 3.9 11.5 0.75

PEACH Anchor Tie Agree PEACH Anchor Tie Agree PEACH Anchor Tie Agree PEACH Anchor Tie Agree

94.6 2.1 3.3 0.85 87.2 2.5 10.3 0.76 95.4 1.8 2.8 0.83 85.3 3.5 11.2 0.71

Table 3: Human evaluation results. Pairwise comparison between PEACH with LIME and Anchor across the interpretability. The ‘Agree’
column shows the Fleiss’ Kappa results.

Figure 3: The local explanation decision trees generated for a positive review in MR dataset based on fine-tuned RoBERTa embedding
compared to fine-tuned ELMo embedding.

6 Related Works
Interpretable Models in NLP Among interpretable NLP,
feature attribution-based methods are the most common7.
There are mainly four types, including Rationale Extrac-
tion [Lei et al., 2016; Sha et al., 2021], Input Perturba-
tion [Ribeiro et al., 2016; Ribeiro et al., 2018; Slack et al.,
2020], Attention Methods [Mao et al., 2019], and Attribu-
tion Methods [He et al., 2019; Du et al., 2019]. Such models
locally explain the prediction based on the relevance of input
features (words). However, global explainability is crucial to
determine how much each feature contributes to the model’s
predictions of overall data. A few recent studies touched
on the global explanation idea and claimed they have global
interpretation by providing the most relevant concept [Ra-
jagopal et al., 2021] or the most influential examples [Han
et al., 2020] searched from the corpus to understand why the
model made certain predictions. Such global explanations do
not present the overall decision-making flow of the models.
Tree-structured Model Interpretation The recent studies
adopting decision-tree and rules[Quinlan, 2014; Han et al.,
2014] into neural networks [Fuhl et al., 2020; Lee and
Jaakkola, 2020; Wang et al., 2020a] introduced neural trees
compatible with the state-of-the-art of CV and NLP down-
stream tasks. Such models have limited interpretation or

7Some studies cover the language explanation-based, probing-
based or counterfactual explanation-based methods, but the text-
based model interpretation methods are dominant by feature
attribution-based approaches.

are only suitable to the small-sized dataset. Tree-structured
neural models have also been adopted in syntactic or se-
mantic parsing [Nguyen et al., 2020; Wang* et al., 2020b;
Yu et al., 2021; Zhang et al., 2021]. Few decision-tree-based
approaches show the global and local explanations of black-
boxed neural models. NBDT [Wan et al., 2021] applies a
sequentially interpretable neural tree and uses parameters in-
duced from trained CNNs and requires WordNet to establish
the interpretable tree. ProtoTree [Nauta et al., 2021] and ViT-
NeT [Kim et al., 2022] construct interpretable decision trees
for visualising decision-making with prototypes for CV tasks.
Despite their promise, those have not been adopted in NLP.

7 Conclusion
We introduce PEACH, a novel tree-based explanation tech-
nique for text-based classification using pretrained contextual
embeddings. While many NLP applications rely on PLMs,
the focus has been on employing them without thoroughly
analysing their contextual understanding for specific tasks.
We provide a human-interpretable explanation of how text-
based documents are classified, using any pretrained contex-
tual embeddings in a hierarchical tree-based manner. The hu-
man evaluation also indicates that the visualisation method
of PEACH allows them to see the full global view of the
decision-making process in a hierarchical decision path, mak-
ing fine-tuned PLMs interpretable. We hope that PEACH can
open avenues for understanding the reasons behind the effec-
tiveness of PLMs in NLP.
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