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Abstract
This paper moves the first step towards automat-
ing the composition of Answer Set Programming
(ASP) specifications. In particular, the following
contributions are provided: (i) A dataset focused on
graph-related problem specifications, designed to
develop and assess tools for ASP automatic coding;
(ii) A two-step architecture, implemented in the
NL2ASP tool, for generating ASP programs from
natural language specifications. NL2ASP uses neu-
ral machine translation to transform natural lan-
guage into Controlled Natural Language (CNL)
statements. Subsequently, CNL statements are con-
verted into ASP code using the CNL2ASP tool. An
experiment confirms the viability of the approach.

1 Introduction
Natural Language Processing (NLP) methodologies [Juraf-
sky and Martin, 2009] have determined impressive changes
in the way we engage with computers, streamlining a multi-
tude of tasks that would otherwise demand considerable time
and proficiency from users. A noteworthy example is the
emergence of tools for the automatic composition of com-
puter programs [Ernst and Bavota, 2022; Peng et al., 2023],
like GitHub Copilot [Dakhel et al., 2023; Kalliamvakou,
2022]. Nevertheless, prevailing tools of this nature pre-
dominantly cater to widely used programming languages,
and limited (or no support) is available for many problem-
solving formalisms in the area of Knowledge Representa-
tion and Reasoning (KR&R). An example of a formalism for
KR&R that misses automatic program composition tools is
Answer Set Programming (ASP). Answer Set Programming
(ASP) [Brewka et al., 2011; Gelfond and Lifschitz, 1988] is a
declarative programming paradigm that can be used to solve
complex AI problems. ASP originates from research on logic
programming, nonmonotonic reasoning and knowledge rep-
resentation. ASP became popular for featuring both an ex-
pressive declarative language and some efficient implemen-
tations [Gebser et al., 2020], such as Clingo [Gebser et al.,
2016] and DLV [Alviano et al., 2017]. ASP has been applied
both in academia and industry, and it was effective in several
knowledge-intensive applications of AI, such as scheduling,
product configuration, robotics, workforce management, and

decision support [Erdem et al., 2016; Gebser et al., 2020]. In
the last few years, quite some effort has been spent on provid-
ing programming environments and tools for assisting pro-
grammers in devising ASP specifications [Vos et al., 2012;
Alviano et al., 2023; Hahn et al., 2023; Febbraro et al., 2011;
Busoniu et al., 2013], including advanced editors, debug-
gers, testing frameworks, visualization tools, etc. Nonethe-
less, coding in ASP still is very challenging for beginners,
especially for those having a weak mathematical and logical
background, and is a time-consuming (sometimes repetitive)
task also for expert programmers. On the other hand, once we
look for the latest tools that significantly boosted the produc-
tivity of developers using mainstream imperative program-
ming languages, it is easy to observe that a great benefit has
been brought by the introduction of automatic program com-
position tools, such as GitHub Copilot [Dakhel et al., 2023;
Kalliamvakou, 2022]. However, no programming environ-
ment for ASP (as far as we know) features automatic code
composition from the user’s requests in natural language.
Streamlining KR formalism with an automatic tool shows
promise in boosting productivity for experts and easing en-
try for newcomers, potentially reducing adoption barriers,
even in industrial settings. One might observe that genera-
tive AI tools, like ChatGPT, are capable of generating some
ASP code snippets from specific prompts. Actually, they
have been proficiently used to produce factual statements in
an ASP-based system for reasoning from text [Yang et al.,
2023]; but, it can be easily verified that these AI models
are not robust in generating valid and correct ASP programs.
Thus, the problem of (robustly) composing ASP programs
from statements provided in natural language remains open.

In this paper, the first steps towards filling this gap are
taken, and the following contributions are provided:

(i) A dataset focused on graph-related problem specifica-
tions, that is conceived to develop and assess NLP tools
for the automatic composition of ASP programs;

(ii) A two-step architecture, implemented in the NL2ASP
tool, aiming at automating the translation of natural lan-
guage specifications into ASP programs;

(iii) An experiment providing empirical evidence that the
dataset and the architecture are a good first step towards
automated code generation for ASP.

NL2ASP processes the input in two distinct phases: The
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first phase draws inspiration from Neural Machine Transla-
tion (NMT). NMT [Yang et al., 2020] methods utilize deep
learning algorithms to translate text from one language to
another, providing more natural and accurate results com-
pared to traditional machine translation methods [Stahlberg,
2020]. NL2ASP employs NMT techniques to translate the
input sentences in natural language to statements conform-
ing to a recently-introduced controlled natural language for
ASP [Caruso et al., 2024]. For this task, NL2ASP can resort
either to BART-base [Lewis et al., 2019] or T5-small [Raf-
fel et al., 2020]. In the second phase, the Controlled Natu-
ral Language (CNL) statements are converted into ASP code
using the CNL2ASP tool [Caruso et al., 2024]. The perfor-
mance of NL2ASP is measured in an experiment in terms of
the quality of the statements produced in each of the steps of
the composition process. In particular, the CNL statements
produced by NL2ASP are evaluated in terms of BLEU [Pap-
ineni et al., 2002], METEOR [Banerjee and Lavie, 2005] and
Syntax Correctness Accuracy (a measure of the capability of
producing syntactically-valid CNL statements). Eventually,
the overall behaviour of the system is assessed by implement-
ing an end-to-end test in which the capability of producing
correct ASP specifications is measured. The obtained results
are very promising and confirm the viability of the approach.

2 Related Work
The benefits and drawbacks of automated composition of pro-
grams have been studied in the literature [Ernst and Bavota,
2022], and the enormous potential of these tools is nowa-
days recognized [Kalliamvakou, 2022; Peng et al., 2023;
Dakhel et al., 2023]. Almost all mainstream programming
languages have been supported by academic or industrial
tools [Chen et al., 2021]. The benefits of providing tools
for easing the development of ASP programs reducing the
impedance mismatch existing from natural language speci-
fications and ASP source code has been also recognized in
the literature [Erdem and Yeniterzi, 2009; Fang and Tom-
pits, 2017; Schwitter, 2018; Caruso et al., 2024]. We are
not currently aware of ASP-specific tools targeting automatic
program composition from natural language based on NMT
as NL2ASP. Nonetheless, there are some that support inputs
from more structured or simpler languages.

Baral et al. automated the solving of logic puzzles
in simplified English by translating their descriptions into
ASP [Baral and Dzifcak, 2011] by resorting to λ-calculus
and probabilistic combinatorial categorical grammars. The
Controlled Natural Languages (CNLs) are subsets of the full
natural languages with restricted grammar and vocabulary
[Kuhn, 2014]. Several efforts have been made to develop
CNLs that target ASP programs. Erdem et al. described
the specific grammatical structure of a CNL named BIO-
QUERYCNL, as well as the algorithm for converting queries
into ASP [Erdem and Yeniterzi, 2009]. Fang et al. intro-
duced a CNL approach for representing answer sets based on
Language for ANnotating Answer-set programs (LANA) an-
notations [Fang and Tompits, 2017] which was implemented
in the SeaLion IDE. Schwitter developed in 2018 a gram-
mar to specify and verbalize answer set programs using a

CNL named PENGASP [Schwitter, 2018]. Lifschitz [Lifs-
chitz, 2022] highlighted the connection between mathemat-
ical definitions and the knowledge representation capability
of ASP. More recently, Dodaro et al. presented CNL2ASP,
a comprehensive publicly-available tool that converts con-
trolled natural language into ASP programs [Caruso et al.,
2024]. NL2ASP resorts to the CNL and tool devised by Do-
daro et al. CNLs ease the task of programming but still re-
quire human developers. NL2ASP aims at overcoming this
by making the encoding process automatic. Our approach is
also related to the development of datasets for knowledge-
based question answering and to other applications of ASP
to natural language. Datasets that are useful for question
answering were proposed by Perevalov et al. that extended
the Knowledge Graph Question Answering (KGQA) bench-
marks QALD-9 by adding question query pairs up to 8 lan-
guages [Perevalov et al., 2022]. Dubey et al. introduced
a comprehensive dataset for complex question answering,
called LC-QuAD 2.0 [Dubey et al., 2019]. This dataset
includes 30,000 questions, their corresponding paraphrases,
and SPARQL queries. An NMT method based on long short-
term memory (LSTM) units was presented by Sutskever et
al. on an English-to-French translation task [Sutskever et al.,
2014]. As part of the English-to-French translation task, Bah-
danau et al. proposed an NMT module based on Bidirec-
tional Recurrent Neural Networks [Bahdanau et al., 2015].
An NMT method for KBQA that automatically translates nat-
ural language in SPARQL queries was proposed by Borroto
and Ricca [Borroto and Ricca, 2023] that performed well in
the Question Answering over Linked Data (QALD) competi-
tion. More recently, Nye et al. presented a GPT-3 based dual-
system (neural System 1 and the logical System 2) model,
which generates the semantic parses from natural language
sentence and couples it with reasoning modules [Nye et al.,
2021]. In this line of research, Yang et al. proposed LLMs
like GPT-3 can act as few-shot semantic parsers, convert-
ing natural language into logical forms for answer set pro-
gramming (ASP) [Yang et al., 2023]. This system can ad-
dress diverse question-answering tasks without distinct re-
training. Ishay et al. leveraged LLMs to get the ASP with
prompt engineering for solving logic puzzles [Ishay et al.,
2023]. They have used the logic puzzle dataset of [Mitra and
Baral, 2016]. Although LLMs excel in System-1 processes,
their results can frequently be inconsistent and incoherent.
Mitra and Baral proposed a heterogeneous agent model for
question-answering tasks in Facebook’s bAbl dataset [Mitra
and Baral, 2016] where ASP is used for knowledge repre-
sentation and reasoning. Moldovan et al. demonstrated that
a logic prover can be integrated into a Question Answering
system [Moldovan et al., 2003], where logic representations
are used to transform questions and answers.

3 Basics on Answer Set Programming
Answer Set Programming (ASP) [Brewka et al., 2011; Gel-
fond and Lifschitz, 1991] is a declarative logic-based lan-
guage for knowledge representation and reasoning. Rather
than writing algorithms, the ASP programmer describes prob-
lems with a declarative formal language and uses an ASP sys-
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tem [Lierler et al., 2016] to find solutions [Lifschitz, 2019].
The Language of ASP. The main construct of the ASP lan-
guage is the logic rule, which is a construct of the form:

a1 | . . . | an : − b1, . . . , bk ; not bk+1, . . . , not bm (1)

where ai (0 ≤ i ≤ n) are atoms, bi (0 ≤ i ≤ k ≤ m) and
not bj (k ≤ j ≤ m) are positive and negative literals, respec-
tively. Informally, a rule reads as follows: “at least one of the
ai is true whenever all bi (0 ≤ i ≤ k ≤ m) are true and all
bj (k ≤ j ≤ m) are false”. On the right-hand side of a rule
is the body (or antecedent) and on the the left-hand side of a
rule is the head (or consequent). The rule is called Fact if the
body of a rule is empty. A rule with an empty head is called
Constraint. An ASP program is a set of logic rules, which is
interpreted according to common sense principles. An ASP
program represents a problem to be solved that together with
input (also expressed by a collection of rules) admits a col-
lection of answers (possibly also no answer) corresponding
to the solutions of the problem [Lifschitz, 2019].

For example, the well-known 3-colorability is solved by:

col(X, red) | col(X, green) | col(X, yellow) : − node(X)

: −col(X,C), col(Y,C), edge(X,Y )

The first rule reads “if X is a node then it can be colored
either in red or in green or in yellow”, and the second rule (a
constraint) reads “it is not possible that adjacent nodes have
the same color”. Here, the input is modelled by a set of facts
of the form node(·) and edge(·, ·). Suppose we provide as
input the graph node(1), node(2), node(3), edge(1, 2) and
edge(1, 3); it can be verified that a possible solution (an-
swer set) is {col(1, red), col(2, green), col(3, green)}. The
‘color’ is abbreviated as ‘col’.

ASP also supports weak constraints, choice rules, aggre-
gates, etc.; however, a full description of the ASP language
is not instrumental for this paper. Please refer to dedi-
cated literature [Calimeri et al., 2020; Brewka et al., 2011;
Gelfond and Lifschitz, 1991; Lifschitz, 2019; Gebser et al.,
2012] for a more detailed (and formal) account on ASP.
Controlled Natural Language for ASP. Controlled Natu-
ral Languages (CNLs) are subsets of natural languages with
restricted grammar and vocabulary [Kuhn, 2014].

A comprehensive CNL tool for ASP that supports all the
main language constructs is CNL2ASP [Caruso et al., 2024].
In CNL2ASP, CNL specifications are made up of proposi-
tions that are structured by means of clauses, connected by
connectives to express concepts and conditions. To provide
flavour and a basic understanding of CNL2ASP we resort to
our running example, i.e., an encoding of the 3-colorability
problem. First of all, we define node, edge and color by using
the following definition statements:
A node is identified by an id.
A edge is identified by a firstnode, and by

a secondnode.
A color is identified by an id.
These are used by CNL2ASP to initialize the internal data

structures and know about the domain of discourse. Then,
we specify the assignment of colors to nodes by using the
following whenever/then clause:

Whenever there is a node with id X then we
can have a col with node X, and with color
equal to blue, or a col with node X, and with
color equal to red, or a col with node X, and
with color equal to green.

Finally, we specify valid colorings with the following neg-
ative strong constraint statement:
It is prohibited that C1 is equal to C2,

whenever there is a col with node X, and with
color C1, whenever there is a col with node
Y, and with color C2, whenever there is an
edge with firstnode X, and with secondnode Y.

The ASP program resulting from a call to CNL2ASP is:

col(X, blue) | col(X, red) | col(X, green) : − node(X).

: −C1 = C2, col(X,C1), col(Y,C2), edge(X,Y ).

It is worth observing that the CNL specification is amenable
to a human and does not require to know the technicalities of
the syntax of ASP. The interested reader can find more details
CNL2ASP in the original article [Caruso et al., 2024].

4 The Problem and Some Assumptions
The problem we tackle in this paper is to ease the process
of composing formal ASP statements (ASP programs) from
problem specifications given in natural language. However,
this is quite an ambitious final objective. In order to take
the first steps towards pursuing this goal we begin by making
some pragmatic simplifying assumptions.

The first assumption we make is: problem formulations are
given as a bag of statements, where contiguous subsets of
statements can be encoded with a logical rule. This makes
it possible to compose a program by iteratively transforming
groups of statements in the corresponding rule.

The second assumption we make is that we are given a cor-
pus of pairs that associates each bag of statements to a “gold
program”. The gold program is an example of an expected
encoding of the statements in ASP. A subset of that corpus
can be used to train a neural network to perform the task
of ASP program composition (training set); another (disjoint
from the training set) subset of that corpus can be used for
testing the correctness of the system (test set).

The problem we tackle is, thus, formalized as follows:
Given a specification P of a problem (a bag of statements),
compose a program Pasp that is uniform equivalent to the gold
program Pgold associated to P .

Two ASP programs P1 and P2 are uniform equivalent iff
for any set of (non-disjunctive) facts F , P1 ∪ F and P2 ∪ F
admit the same answer sets [Eiter et al., 2007]. This captures
that an ASP program models uniformly a problem over vary-
ing instances provided via facts [Brewka et al., 2011].

The formulation of the composition problem makes it pos-
sible to iteratively process the input by identifying the state-
ments corresponding to a rule, and transforming such state-
ments into the corresponding rule. In our approach, this latter
task is performed in two steps: (i) translation of the natural
language in a corresponding CNL (NMT task); (ii) conver-
sion of the CNL in ASP (the basic task of CNL2ASP).
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Figure 1: Dataset creation workflow

To the best of our knowledge, no dataset supporting the
above tasks is available; thus, we have developed one as de-
scribed in the next section. Pragmatically, we concentrated
our efforts on graph-related problems. This is a domain of
problems that is classically addressed with ASP [Brewka et
al., 2011; Erdem et al., 2016; Lierler et al., 2016; Calimeri et
al., 2020], and is very rich and variegate (in terms of number,
complexity and importance of problems) to be considered a
meaningful pragmatic choice to assess our approach.

Concerning the issue of testing our implementation, we ob-
serve that checking solutions is intractable (i.e., is undecid-
able in general and very hard for specific cases, e.g., uniform
equivalence belongs to the second level of the polynomial hi-
erarchy for already ground disjunctive ASP programs) [Eiter
et al., 2007]. Thus, in our experiment we will pragmatically
consider, in analogy to what has been done in other similar
contexts, looser measures of correctness, such as purely syn-
tactic measures (BLEU, METEOR); and, in end-to-end tests,
correctness was certified by a human expert.

5 Dataset Construction
One of the contributions of our work is a specialized dataset
centered on graph-related problem specifications. This sec-
tion details the creation process of this dataset, named
NL2CNL. The workflow of dataset creation is illustrated in
Figure 1, which entails collecting ASP encodings of graph-
related problems. NL2CNL includes problem statements in
natural language and corresponding CNL propositions.

The ASP encodings were mainly collected from ASP com-
petitions (2015, 2017), books, lecture notes, data shared by
renowned professors, and other online sources. For each
collected ASP encoding, we have written the correspond-
ing CNL and generated a new ASP encoding by using the
CNL2ASP [Caruso et al., 2024] tool. Then, we cross-
verified the answer sets of both actual ASP encoding and
tool-generated ASP encoding to identify trivial problems, and
checked the encoding manually. This way, we ensure the
CNL we have written is compliant with the actual encoding.
We have tried to cover the five main grammar propositions
of tool CNL2ASP: (i) negative strong constraint proposition,
(ii) positive strong constraint proposition, (iii) weak con-
straint proposition, (iv) definition proposition, and (v) quan-
tified choice proposition. We have ensured that each CNL is
accompanied by a corresponding natural language statement
that accurately reflects the original semantics, while also re-
taining important information about the verb, noun, and vari-
able names used in the CNL. Despite successfully generating
NL statements and CNL propositions for 20 programs, the
resulting dataset (494 pairs) is too small for effective use in
data-driven approaches. To address this limitation, augmen-
tation techniques are applied to expand the size and diversity

Sentence Template
CNL: Node 1 have an edge node X,
where X is one of 2, 5.

TCNL: Noun 1 num 1 have an verb 1 noun 1
var 1, where var 1 is one of num 2, num 3.

NL: There is node 1 has an edge to node
X, where X is one of the numbers 2 or
5.

TNL: There is noun 1 num 1 has an verb 1 to
noun 1 var 1, where var 1 is one of the numbers
num 2 or num 3.

Table 1: An overview of CNL & NL pair template

of the dataset.
Motivated by the existing template-based approaches [Hua

and Wang, 2020; Dubey et al., 2019; Xu et al., 2018;
Trivedi et al., 2017] in creating quality datasets, we decided
to apply this type of approach in our case. Templates ensure
content consistency by generating syntactically and semanti-
cally correct data, minimizing dataset errors. They are eas-
ily modifiable and scalable, ensuring well-structured, error-
free datasets with specific patterns. Thus, we manually cre-
ated CNL-NL template pairs based on the propositions of
CNL2ASP, and ended up developing 369 unique templates
for each grammar proposition.

Templates were obtained as follows: we start from a valid
CNL-NL pair, and we replace specific parts of speech (nouns,
verbs, etc.) with placeholders in order to obtain a template
CNL-NL pair. A placeholder is a symbolic representation of
a specific replacement, and we used conventions for different
categories: numbers are “num X”, verbs are “verb X”, nouns
are “noun X”, variables are “var X”, colors are “color X”,
and special predicate identifiers PIDs are “PID X”, and so
on (“X” is a positive integer ensuring uniqueness of place-
holders). Based on CNL patterns for specified facts, numeric
placeholders are: (i) num range, defined to signify a range
of numbers; and (ii) num choice, used for referencing spe-
cific numbers. For instance, the range from 1 to 4 is pre-
sented as num range (1 to 4), and num choice (1, 2, and 5) or
num choice (2 or 3). This process is exemplified in Table 1,
where a template is obtained by introducing placeholders in
sentences of a CNL-NL pair, i.e. “noun” placeholder, used
to replace the word “node”, “verb” placeholder replaces the
word “edge”, variable “var” placeholder replaces capital al-
phabet “X”, and number “num” placeholders replace the
numbers 2 and 5. Numeric placeholders are accompanied
by other categories like verb “verb X” and noun “noun X”
for word variations. Placeholder “var X” represents capi-
tal alphabets, while “col X” denotes a list of colors. Spe-
cial placeholders are introduced for contexts with the clause
“whenever,”, where the defined list of placeholders follows
the pattern of PID X, e.g. PID 1 is replaced with “first vtx”.

After creating the unique template CNL-NL pairs, we cre-
ated suitable Bag-of-Words (BoW) to obtain possible replace-
ments for placeholders. We considered three categories of
words, verbs, nouns, and special predicate identifiers like
PIDs. We manually identified: 21 PIDs, 77 nouns, and 408
verbs. Words that might be used as predicate names were
taken from problem specifications, and the others were added
so to construct meaningful CNL and NL.

Having defined the templates and the BoWs, we replaced
the placeholders at random by respecting the placeholder ex-
pected type (e.g., verb X in templates, it is replaced by asso-
ciating a verb from the BoW of verbs), num X are replaced
by integer values, num range is replaced by numbers gener-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6201



Grammar Type Source Gener. Rep.Ct. Total
Def. Const/Comp. 154 21 875 1050
Def. ‘When’ 145 15 800 960
Def. ‘Whenever’ 110 41 755 906
Neg. Constraint 22 138 800 960
Pos. Constraint 39 121 800 960
Quant. Choice 13 156 845 1014
Weak Constraint 11 149 800 960
Grand Total 494 641 5675 6810

Table 2: Count of CNL2ASP propositions in NL2CNL. ‘Gener.’
stands for ‘Generated’, ‘Rep.Ct.’ stands for ‘Rephrased Count’.

ated at random within the delineated limits, num choice, we
choose random integers between 1 and 10 and arranged them
in order and comma separated.

The distinct counts for each grammar proposition is re-
ported in Table 2 in column “Source”. To mitigate potential
class imbalances in training data-driven models, we instan-
tiated the templates in such a way that the total number of
NL2CNL pairs per proposition type in the expanded dataset is
almost equal. In summary, we augmented the source dataset
with 641 template-generated pairs (cfr. “Gener.” column in
Table 2), resulting in a total of 1135 NL2CNL pairs.

To enhance the quality and diversity of our dataset, we de-
cided to perform an additional paraphrasing task on all the
NL statements. This process increases the dataset size and
introduces varied linguistic representations while maintain-
ing the original meaning so to enable effective training of a
robust Language Model (LM). Thus, we used OpenAI API1

for this task, with “text-davinci-003” engine with specific
parameters, such as: prompt set to “Rephrase the following
sentence: sentence”, temperature value of 0.6, and maximum
token limit of 1000. Each sentence was rephrased five times
in order to strike a balance between diversity and semantic di-
lution. Generation of more than five may lead to unintended
overlaps or even slight semantic shifts. After rephrasing nat-
ural sentences the count increased to 5675 (cfr. “Rep.Ct.”
column in Table 2). All available NL-CNL pairs constitute
the dataset NL2CNL of 6810 pairs (see Table 2).

6 The NL2ASP Tool
The architecture of the NL2ASP tool for the automatic com-
position of ASP programs from natural language statements
is depicted in Figure 2. In the first step, we transform NL
statements into CNL statements, and in the second step, we
obtain the ASP code by running the CNL2ASP tool. As a
consequence, we inherit in the implementation some limita-
tions of CNL2ASP, such as the fact that the user has to spec-
ify the schema (or the facts) before providing the rules, and
the rule specifications must be provided in such a way that
some body-to-head dependency is respected [Caruso et al.,
2024]. Note that, this limitation is not present in the transla-
tion from sentences to CNL. Indeed, in the proposed architec-
ture, the first step relies on the recent advances in Neural Ma-
chine Translation [Yang et al., 2020]. Specifically, encoder-
decoder-based Transformer architectures are incorporated to

1https://platform.openai.com/docs/api-reference

Figure 2: Architecture for automatic composition of ASP programs.

facilitate the translation of NL specifications into CNL propo-
sitions. Using these high-performance models, we capture
language nuances and produce grammatically accurate trans-
lations. The use of NMT to address the first step is a decision
that arises intuitively, as it is easy to realise that the task is
like translating from English into another (more restricted)
language, i.e., the language of CNL2ASP. Our architecture is
simple, ensuring adaptability, can be implemented with dif-
ferent NMT tools, and can take profit from the dataset we
have presented in the previous section.

In the implementation we used state-of-the-art
transformer-based architectures i.e., T5 [Raffel et al.,
2020] and BART [Lewis et al., 2019], which have proven
their efficiency for different language tasks like text sum-
marization, question-answering, and machine translation.
The T5 model introduces an encoder-decoder transformer
architecture that undergoes pretraining in a combination of
unsupervised and supervised tasks, with each task trans-
formed into a text-to-text format [Raffel et al., 2020]. The
BART model follows a denoising autoencoder approach,
where the input sequence is corrupted using a noise func-
tion [Lewis et al., 2019]. Then, the sequence of corrupted
entries passes through a bidirectional encoder, which cap-
tures contextual information from both directions. Then, the
encoder representation is introduced into an autoregressive
decoder from left to right, which generates the sequence by
predicting the next token based on the previously generated
tokens.

7 Experiments
We have evaluated empirically our approach, and, in this sec-
tion, describe two sub-analyses: (i) assessment of the NMT
model’s translation quality, and (ii) end-to-end assessment of
the proposed architecture, i.e., assessment of the ability of our
NL2ASP to accurately create ASP programs from natural lan-
guage. To this end, we fine-tuned pre-trained versions of the
T5 and BART models on the proposed dataset and measured
several evaluation metrics. Datasets and tools are available at
https://github.com/IrfanKareem/nl2asp.

Software and Hardware Details. We adopted the pre-
trained T5 and BART models freely available on the Hug-
ging Face platform (https://huggingface.co/). Specifically,
we used the T5-small (https://huggingface.co/t5-small) and
Bart-base (https://huggingface.co/facebook/bart-base) mod-
els, which have a size of 60 and 140 million of parameters,
respectively. The choice of versions was based on the capa-
bilities of the hardware at our disposal.
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Split BLEU-1 BLEU-2 BLEU-3 BLEU-4 MET
0 0.955 0.944 0.939 0.925 0.960
1 0.966 0.957 0.952 0.940 0.969
2 0.961 0.952 0.947 0.935 0.966
3 0.959 0.949 0.944 0.931 0.961
4 0.962 0.952 0.947 0.935 0.965

Avg. 0.961 0.951 0.946 0.933 0.964

Table 3: Scores across splits for T5-small model

The models were implemented using Keras 2.12.0 on top
of Tensorflow and the Transformers 4.30.2 library. To run the
experiments, we used an Ubuntu 20.04 server with 500GB of
RAM, a 16 GB NVIDIA Tesla V100-PCIE GPU card, and
CUDA 11.8. The code ran using Python 3.9.17 in a Jupyter
Notebook environment.
Evaluation Measures. The translation quality of the model
was evaluated using the BLEU [Papineni et al., 2002],
METEOR [Banerjee and Lavie, 2005], and the translation
Syntactic Accuracy (SA) measures. BLEU is founded on
precision-based attributes and functions by comparing the n-
grams (a sequence of n words) found in the candidate transla-
tion with those in one or more reference translations. BLEU
falls within the range of 0 to 1, the larger the higher degree of
similarity between the translation and the reference transla-
tion. METEOR [Banerjee and Lavie, 2005] assesses machine
translation hypotheses by aligning them with one or more ref-
erence translations. This alignment process considers exact,
stem, synonym, and paraphrase matches between words and
phrases. The metric relies on the harmonic mean of precision
and recall for unigrams. A value closer to 1 indicates a higher
translation quality. METEOR is said to have a better correla-
tion with human judgment than BLEU. The SA (see Equation
2) metric, measures the proportion of translated sentences that
conform to the CNL2ASP grammar.

SA =
#syntantically correct sentences

#total sentences
(2)

7.1 Assessment of the NMT Models
Experiment A: Cross-Validation. In the first experiment,
we performed K-fold cross-validation, models T5 and BART
are trained k times, the dataset is divided in one fold as a test
set, and k-1 folds are used as the training set. This approach
provides a robust estimate of model generalization ability.
The value of k was set to 5. We use all 6810 NL to CNL
pairs from NL2CNL dataset, which are named as features of
“sentences” and “targets” respectively.

To perform the text tokenization, we used the AutoTok-
enizer utility provided by the Transformer library, which al-
lows us to use the pre-trained tokenizers of T5-small and
Bart-base. To handle the collating and batching of input data
for training, we used the DataCollator utility in the Trans-
former library. It plays a vital role in streamlining the data
preparation process and ensuring seamless integration during
training and inference. The batch size was set to 16.

The Adam Weight Decay (AdamW) optimizer is used in
the training process. This optimizer is based on the adaptive
estimation of first and second order moments with an added

Split BLEU-1 BLEU-2 BLEU-3 BLEU-4 MET
0 0.841 0.783 0.751 0.686 0.875
1 0.845 0.786 0.753 0.686 0.877
2 0.853 0.797 0.767 0.704 0.890
3 0.818 0.758 0.726 0.660 0.864
4 0.842 0.787 0.757 0.696 0.879

Avg. 0.84 0.782 0.751 0.686 0.877

Table 4: Scores across splits for Bart-base model

method to decay the weights. AdamW is a variant of the
Adam optimizer that decouples weight decay from the adap-
tive learning rate, which leads to better performance. We set
learning rate= 2× 10−5, and weight decay= 0.01.

To calculate the BLEU we have used “corpus bleu”, a
function from the NLTK [Wagner, 2010] library in Python.
It computes the BLEU score of the entire dataset, by taking
multiple pairs of source and reference sentences. Moreover,
we decided to calculate the cumulative BLEU up to 4-gram.
We have tuned METEOR with standard parameters, i.e. al-
pha=0.9, beta=3, and gamma=0.5. These values make the
trade-off between recall, precision, the penalty for sentence
length mismatches, and word order differences respectively.
We ran the training of the models for 200 epochs for each
split and applied the Early Stopping technique to monitor the
validation loss with minimum mode and patience equal to 20,
thus reducing the overfitting and computational resources.

Table 3 illustrates the T5-small BLEU and METEOR
scores by split and the final average. The BLEU scores for
all n-grams are generally high, ranging from 0.90% to 0.97%,
which shows strong performance in terms of n-gram overlap
with the reference text. The METEOR score also indicates
high performance, with values ranging from 0.94% to 0.98%
across the splits. On the other hand, Table 4 shows the metrics
scores for the fine-tuned Bart-base model. Bart-base model
scores are low compared to model T5-small (cfr. Table 3).

Although training times might vary with hardware, there
are significant differences in training and scoring times be-
tween T5-small and Bart-base models. T5-small takes about
5 hours on average to train across the split, with scoring times
of 3 to 5 minutes, while Bart-base averages approximately
two hours for training and six hours for scoring. Despite
Bart-base requiring fewer epochs, it spends more time on
calculating translation quality measures. T5-small surpasses
Bart-base in all translation quality measures and excels in
high-quality text generation. Despite a longer training time,
T5-small delivers faster predictions compared to Bart-base.
These performance advantages make T5-small the preferred
choice, despite it requires longer training times.

Experiment B: Syntax Correctness. This more demand-
ing experiment aims at checking the syntactic correctness of
the CNL propositions produced by the two models. Thus, we
assessed each CNL proposition using the syntax checker from
the CNL2ASP tool. In particular, the syntactic correctness
checking was performed during K-fold cross-validation by
running the trained models on their splits. Since the NL2CNL
dataset has a length of 6810, for each split, a validation set of
1362 examples is used. Again model T5-small, with a SA of
about 94%, performs better than model Bart-base with SA is
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Split Total Bart-base T5-small
Errors Acc. Errors Acc.

0 1362 650 52.28 93 93.17
1 1362 630 53.74 78 94.27
2 1362 572 58.00 69 94.93
3 1362 619 54.55 82 93.98
4 1362 600 54.95 80 94.13

Table 5: Syntax check for T5-small & Bart-base with K=5.

around 55% (cfr. Table 5).
Looking at problematic generations we observe that T5-

small exhibits issues, particularly with the clause “whenever”
when used with other propositions. Also sentences exceed-
ing 60 characters occasionally result in incomplete genera-
tion. Some minor issues are present in the transformation of
“less than or equal to” to “at most or equal to,”. Nonetheless,
a human user can fix these issues with minor adjustments. On
the other hand, Bart-base model exhibits some more issues in
addition to those previously discussed for T5-small. These in-
clude occasional generation of additional spaces (e.g., “C2”
generated as “C 2”), inconsistent word connections (e.g.,
vice-versa), and problems with capitalization (e.g., “when-
ever There is a”). Furthermore, the model occasionally uses
dashes instead of underscores to connect words (e.g., “Dom-
inating Set” vs. “Dominating-Set”), which is not acceptable
for the CNL2ASP parsing tool, but could be addressed with
post-generation processing.
Experiment C: Assessment on Unseen. In this experi-
ment, we train both models with the complete dataset. Dur-
ing training, T5 converged at 155 epochs, with a training loss
of 0.022 and validation loss equal to 0.0467; the best BART
model was obtained at 37 epochs, with training and valida-
tion losses of 0.010 and 0.0492, respectively. These values
are quite low, evidencing the ability of the models to learn
from the dataset. As test set we prepared a new test dataset
manually, which consisted of 209 new specifications. We did
the inference and calculated BLEU, METEOR, accuracy, pre-
cision, recall, and F1-score for both T5-small and Bart-base.
T5-small consistently outperformed Bart-base in all metrics,
see Table 6. Both models generalize well and achieve robust
performance on unseen instances.

7.2 End-to-End Evaluation
We now measure the ability of the NL2ASP tool to produce
valid ASP programs. To this end, we targeted six well-known
graph-related problems, i.e. Maximize Clique, Hamiltonian
Cycle, Graph Coloring, Connected Dominating Set, Travel-
ing Salesman Problem, and Hierarchical Clustering. We man-
ually created a dataset with the specifications for the afore-
mentioned problems, including two different encodings for
the Graph Coloring problem (called GCv1 and GCv2). The
inherent flexibility of natural language allows for a multitude
of ways to express the same concept. So to make the assess-
ment more realistic the dataset was expanded by paraphrasing
the former specifications with the support of ChatGPT. In to-
tal, we obtained 21 problem specifications.

The NL2ASP tool, configured with the best performing T5-
small fine-tuned in the Experiment C, was fed with one prob-

Metric T5-small Bart-base
BLEU-4 0.860 0.704

METEOR 0.935 0.876
Precision 0.929 0.860

Recall 0.927 0.921
F1-Score 0.928 0.88
Accuracy 0.368 0.253

Table 6: Evaluation measures for T5-small & Bart-base.

lem specification at time to obtain the corresponding ASP
programs. Since automatic checking of correctness is unfea-
sible, we manually checked the produced programs.

During the translation step, NL2ASP was able to produce
389 syntactically correct CNL statements out of 393, per-
forming for a good 98.98%. In this case, we found minor
errors, for example, our tool generated “at most or equal to”
instead of “less than or equal to”. The mentioned issues were
found in two variants of the Hierarchical Clustering problem,
so NL2ASP was able to produce 19 correct ASP programs
over 21 problem specifications. It is important to mention that
only minor manual fixes would be required by a human to fix
the aforementioned issues that affected Hierarchical Cluster-
ing instances.

Additional Experience With LLMs. As a final test, we
wanted to check to what extent a general purpose LLM, such
as GPT 3.5, is capable of carrying out ASP program com-
position. The goal of this experiment is not to establish a
direct comparison with ChatGPT, but to ensure that specific-
purpose tools like ours can perform better than general-
purpose models that are not directly trained to tackle this kind
of tasks. The prompt we used to request the program gen-
eration is: “Please give the ASP program of the following
natural language statements:”, followed by the natural lan-
guage statements. As expected, the “out-of-the-box” Chat-
GPT was able to generate ASP programs given the specifica-
tion. However, these programs are neither syntactically nor
semantically correct most of the time (17/21), and quite some
effort would be required to fix them manually. For all wrong
programs we asked ChatGPT to regenerate them 3 times, but
this resulted in no gain. It is an open research question to ex-
plore how/if these models can be robustly used for this task.

8 Conclusion
This paper introduces the NL2CNL dataset and NL2ASP tool
for the automatic composition of ASP programs. NL2ASP
is based on a two-step architecture, which transforms natu-
ral language specifications in CNL statements that, eventu-
ally, are converted into valid ASP programs. NL2ASP has
been implemented with two Transformer-based models for
NMT tasks, i.e. T5-small, and Bart-base. In our experi-
ments, T5-small performed better than Bart-base for text-to-
text translation according to several translation quality mea-
sures. Our future work involves expanding the dataset to in-
clude non-graph problems, enhancing both the dataset and
system to process more natural sentences with reduced re-
liance on CNL2ASP constraints and explicit mention of vari-
ables, and further exploring the usage of LLM for this task.
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