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Abstract

Memes, initially created for humor and social com-
mentary, have transformed into platforms for offen-
sive online content. Detecting such content is cru-
cial; however, existing deep learning-based meme
offensiveness classifiers lack transparency, func-
tioning as opaque black-box systems. While In-
tegrated Gradient and similar input-attribution in-
terpretability methods exist, they often yield in-
adequate and irrelevant keywords. To bridge this
gap, we introduce SEMANTIFY, a novel system
featuring a theoretically grounded multi-step fil-
tering process. SEMANTIFY extracts meaning-
ful “tokens” from a predefined vocabulary, gener-
ating a pertinent and comprehensive set of inter-
pretable keywords. These extracted keywords re-
veal the model’s awareness of hidden meanings in
memes, enhancing transparency. Evaluation of SE-
MANTIFY using interpretability metrics, includ-
ing ‘leakage-adjusted simulatability,’ demonstrates
its superiority over various baselines by up to 2.5
points. Human evaluation of ‘relatedness’ and ‘ex-
haustiveness’ of extracted keywords further vali-
dates its effectiveness. Additionally, a qualitative
analysis of extracted keywords serves as a case
study, unveiling model error cases and their rea-
sons. SEMANTIFY contributes to the advance-
ment of more interpretable multimodal systems for
meme offensiveness detection, fostering trust for
real-world applications.

1 Introduction
In recent times, memes have emerged as a ubiquitous form
of online expression, blending humor, satire, and social com-
mentary to encapsulate complex ideas in a single image or
short video. While created to disseminate humor, it is of-
ten misused to perpetuate societal harm [Kiela et al., 2021].
A significant portion of the meme ecosystem is tainted with
content that is offensive, hateful, or even dangerous. There-
fore, it is crucial to develop effective tools for the automated
detection of offensive memes, to preserve the integrity of on-
line spaces.

However, a simple classification of memes as offensive
is often insufficient. Making the system interpretable is
paramount as it can elucidate whether the system learns from
spurious correlations in the data or whether it can reliably
classify a meme as offensive. This clarity aids in enhanc-
ing user trust on these systems through transparency. Further,
interpretability methods help users to know if the model ac-
quired some kind of inadvertent biases while training.

Existing input-attribution-based explainability methods
like LIME [Ribeiro et al., 2016], SHAP [Guo et al., 2019],
and GradCAM [Selvaraju et al., 2019] work well in practice
but suffer from two issues, viz. i) Semantic Irrelevance: The
keywords that are attributed to model predictions are often
semantically irrelevant to the model input, making it hard for
humans to assess their effect on the model’s behavior; and
ii) Incohesive: Existing input-attribution methods operate on
the input space, generating a set of keywords that often lack a
central theme and consequently miss crucial words essential
for a more comprehensive explanation of the model and its
predictions.
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Figure 1: We compare and contrast SEMANTIFY vs Integrated
Gradient. Observe the relevance of extracted keywords obtained by
SEMANTIFY. Red denotes offensive and green denotes neutral or
non-offensive keywords.

An example of the above drawbacks can be shown in Fig-
ure 1, where we compare our method, SEMANTIFY with
Integrated Gradient [Sundararajan et al., 2017], which is
an input-attribution based explainability method. The to-
kens retrieved by input attribution are ‘Mexican’, ‘Child’,
and ‘Good’, which are Semantically Irrelevant to the hidden
meaning of the meme which is associated with ‘Racism’. In
contrast, our method, SEMANTIFY consults a large set of
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vocabulary space and retrieves a much more relevant set of
keywords (e.g. ‘Refugees’, ‘Slavery’ etc.). Also, the set of
retrieved keywords from Integrated Gradient lacks a central
theme, which makes them Incohesive.

We enumerate the major contributions/attributes of our cur-
rent work as follows1:

1. We propose a theoretically grounded technique that (re-
fer alignment-optimization correlation in Section §3.3)
could explain a model’s behavior by retrieving ‘tokens’
from a global vocabulary space. The retrieved tokens
are compared with input attribution based baselines and
found to carry both a ‘faithful’ representation of the in-
put meme as well as semantically relevant information.

2. Our method is extensively evaluated for both automatic
and human evaluation. A detailed analysis is performed
to assess its effectiveness.

3. While we demonstrate the application of our method in
the realm of internet memes, it is fundamentally model
and task-agnostic. Expanding its application to other
tasks is beyond the scope of this paper and is left for
future research.

2 Related Work
Multimodal Offensiveness Detection. In the realm of
Natural Language Processing (NLP), previous research
has primarily concentrated on identifying offensive content
[Waseem and Hovy, 2016; Sarkar et al., 2021], addressing
cyberbullying [Van Hee et al., 2018], hate speech [Caselli
et al., 2021], and similar issues within social media posts
[Roberts et al., 2012]. Nevertheless, these computational
methods have predominantly been evaluated using textual
data. Turning to visual offensiveness detection, earlier inves-
tigations have centered on identifying sexually explicit im-
ages [Ganguly et al., 2017]. The pivotal moment came when
Kiela et al. [2021] introduced a set of benchmarks and re-
leased the Facebook Hateful meme dataset, which ignited re-
search in this field. This led to a series of research on detect-
ing offensiveness in multimodal media [Yang et al., 2022],
particularly in memes [Sharma et al., 2020]. Suryawanshi
et al. [2020] used an early fusion method for combining vi-
sual and textual features, leading to more accurate detection.
Chen and Pan [2022] stacked visual features, object tags, and
text features to Vision-Language Pre-Training Model with an-
chor points to detect offensive memes. While these models
are proven to be useful for predictions, their outputs are not
interpretable and cannot be reliably used in real-world use
cases.

Multimodal Interpretability. Recently, there have been a
notable number of multimodal models [Du et al., 2022;
Li et al., 2023; Liu et al., 2023b; Zhu et al., 2023] for various
tasks. However, there is a dearth of research on generating
explanations or justifications around their predictions. Re-
searchers predominantly relied on interpretability techniques.

1Code and Supplementary Material available at:
https://github.com/newcodevelop/semantify

LIME [Ribeiro et al., 2016] explains predictions of any clas-
sifier by fitting a sparse linear model locally around the in-
stance being explained. It converts the instance into a binary
vector, indicating the presence or absence of interpretable
components (like words). SHAP [Lundberg and Lee, 2017a]
explains machine learning model’s predictions by computing
Shapley values, inspired from game theory. These values rep-
resent each feature’s contribution to a prediction. Gradient
heatmap [Guo et al., 2019] explains predictions by comput-
ing gradients of the model output concerning the input fea-
tures.

However, recent years have witnessed a shift in the fo-
cus of interpretability research, recognizing the potential for
generating natural language explanations for both unimodal
and multimodal systems [Kayser et al., 2021]. Instead of
traditional end-to-end training, Koh et al. [2020] first pre-
dicted concepts and used those to predict the labels such that
the model could be interpreted by changing the concepts.
There exist some natural-language-based techniques like wt5
[Narang et al., 2020], which is available for text-only sys-
tems. Some recent methods like NLX-GPT [Sammani et
al., 2022] bridges the gap between text-based and multimodal
natural language generation. Cross-modal attention, which
attends to the distinguishing features between text and image
modalities, is used in the transformer encoder for sarcasm ex-
planation [Desai et al., 2021]. Sharma et al. [2022] gener-
ates explanations for visual semantic role labeling in memes.
These methods together can generate textual explanations for
the behavior of multimodal models. As shown in Figure 1 and
mentioned in the Introduction, all of these current methods
fall short in adequately explaining model behavior for inputs
with implicit meaning. To tackle this, we aim to address the
issue by retrieving keywords aligned with the model’s inner
workings.

3 Methodology
The proposed systems combine a multimodal encoder for an
input meme and a language model (LM). The LM acts both
as the final classifier and interpretable keyword retriever. It
categorizes the input meme as either non-offensive or offen-
sive, and, through sampling, can extract a set of keywords to
elucidate its prediction. Thus, our system follows a two-step
strategy, i.e. i) Multimodal encoding followed by ii) Classi-
fying via a language model (LM). We elaborate the steps in
details as below:

3.1 System Design
Multimodal Encoding. Let M denote the input meme (sin-
gle instance), consisting of an image V and accompanying
text T . We utilize a pre-trained and frozen CLIP model [Rad-
ford et al., 2021] to obtain textual (ft) and visual (it) repre-
sentations. These features, with dimensions Rm×1 and Rn×1

respectively, are used to generate a multimodal representation
Mt ∈ Ro×1 (here, m = n = 512).

The fusion process employs trainable weight matrices U
and V with dimensions Rm×ko. The multimodal representa-
tion is calculated as follows: Mt = AveragePool(UTft ◦
V T it, k), where ◦ denotes element-wise multiplication, k
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Figure 2: Detailed Diagram outlining the system underlying the proposed framework. Multimodal encoding as well as the gumbel logits from
the first stage is forwarded to the second stage where GPT2 classifies the input meme as offensive or normal. The exact input prompt used is
more verbose, simplified here for illustration.

represents the stride for the overlapped window used in the
pooling operation, and o denotes the output dimension. This
encoding scheme, inspired by a similar approach [Bandy-
opadhyay et al., 2023], maintains high performance with a
low parameter count. This multimodal encoding is passed
through two feed-forward neural networks (FFNs) which pro-
duce predicted labels l (0 or 1) corresponding to the input
meme.

Using LM as the Classifier cum Retriever. We utilize a
GPT2 model [Radford et al., 2019] as the classifier as well as
for generating the interpretive keywords. The input prompt
of GPT2 constitutes of the plain text input of the ‘meme text’
and the ‘meme caption’, which is automatically generated via
OFA [Wang et al., 2022] module. Along with these plain
text input prompts, it also takes an embedding representa-
tion m ∈ R1×1024, which is obtained by projecting Mt via
an FFN. Further, to facilitate backpropagation, the predicted
label from the first stage, l, is passed through Gumbel soft-
max [Jang et al., 2017] which produces a soft logit score,
which is then passed as an input token. The input prompt is
then appended by a fixed string: ‘This meme is’. The model
is then trained to output ‘offensive’ or ‘normal’ (the label as-
sociated with the meme in the training data) as the next token
of the input prompt via causal language modeling objective.

The system architecture is visualized in Figure 2.

3.2 Retrieving Keywords Beyond Input Space
Obtaining a comprehensive set of human-comprehensible and
interpretable keywords that effectively encapsulate the oper-
ational characteristics of a classifier when presented with a
given input typically poses a challenge. One plausible ap-
proach to address this issue involves the utilization of input-
attribution-based methodologies, such as Integrated Gradient
or Attention Heatmaps. Such techniques serve to highlight
specific parts of the input data that are correlated to the clas-
sifier output. However, it is noteworthy that these methods
only yield set of tokens present in the input space, thereby
limiting their applicability due to lack of diversity, as it is il-
lustrated by an example in Figure 1. The proposed method

for extracting the set of relevant keywords (interchangeably
called tokens) involves four filtering steps involving the vo-
cabulary set of the language model used (i.e. GPT2).

1. Maximally Relevant: First, we filter out the keywords
that are not relevant continuation of the input prompt.
The GPT2 model is trained via causal language model-
ing (CLM) objective to predict either ‘offensive’ or ‘nor-
mal’ as the next token of the input prompt. The CLM
objective ensures that Top-K sampling of the next token
gives the k most plausible set of tokens that are maxi-
mally relevant continuation of the input prompt.

2. Alignment - Optimization Correlation: The set of ex-
tracted keywords from the first step (their embedding is
denoted as e) should be such that they belong in a spe-
cial ϵ neighborhood. This is an additional filter that the-
oretically ensures that the set of keywords does not pos-
sess redundant information while also not completely
alienated from the optimization objective. The definition
and interpretation of this is presented in Section 3.3.

3. Semantically Relevant: In this step, we filter additional
keywords that are semantically irrelevant to the input
meme. Mathematically, we take the cosine similarity
between m and ti, where ti is the text embedding of
i-th keyword obtained through the CLIP Text encoder.
Finally, we sort them by values of cosine distance and
only keep top 20 keywords out of them. CLIP being
trained with contrastive learning only preserves tokens
that are semantically relevant to the input meme.

4. Prediction Preserving : The fourth step is the most
stringent one. First, we use the trained LM in inference
mode to generate knowledge text by passing extracted
tokens as input prompt. Again, together with the ex-
tracted tokens, we pass their generated knowledge text
to the LM. If the model predicts the same class as it
has predicted before, we call the passed token prediction
preserving. If the passed token flips the actual prediction
then we can confidently say that the token is not causally
related to model prediction and thus it is not faithful. We
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filter out only top four keywords after this step by sorting
with respect to the log-likelihood score of the predicted
tokens in decreasing order.

3.3 Alignment - Optimization Correlation
In the pursuit of optimizing machine learning models, we of-
ten encounter the challenge of striking the right balance be-
tween the alignment of information vectors and optimization
efficiency. To explore this delicate trade-off, we introduce the
following theorem.

We first assume that our objective function ŷ = f(m) is
strongly convex. Here, ŷ shows the model predicted class.
Also, we consider two non-zero real column vectors e (to-
ken embedding) and m (multimodal embedding of the input
meme). ∇mŷ = ∇mf(m) refers to the gradient of the pre-
diction with respect to m such that m+ = m+ γ∇mf(m).
Theorem 1. With very small step size γ, the condition
eT ·∇mf(m+) > eT ·∇mf(m)ρ, where ρ > 1, holds true.

This theorem carries substantial empirical implications:
i) Sampling tokens with their token embedding e such that

eT · ∇mf(m) > 0 would imply alignment between e and
∇mf(m), i.e. moving m in the direction of e aids opti-
mization. As demonstrated by the left-hand side (LHS) of the
inequality, successive gradient ascents on m progressively
reduce the angle between e and ∇mf(m). Intuitively, this
entails e aids in the model optimization process, thus its cor-
responding tokens are also interpretable.

ii) With ∇mf(m) being smooth and differentiable, when
eT · ∇mf(m) → 0, we find that eT · ∇mf(m+) > 0. Even
as e and ∇mf(m) approach near-orthogonality, indicative of
e carrying diverse information rather than perfect alignment
with the gradient, the positive value of eT ·∇mf(m+) signi-
fies e as aligned for subsequent gradient-based optimization
steps w.r.t m. We term this phenomenon the ‘Alignment -
Optimization Correlation Criteria’. In practical applications,
this serves as a filtering mechanism to retain tokens relevant
to regions where eT ·∇mf(m) → 0. This condition is hence-
forth referred to as ϵ ball or ϵ neighborhood constraint inter-
changeably. This theoretically grounded motivation signifi-
cantly enhances our ability to extract diverse yet interpretable
tokens, as shown through results and analysis. The proof of
this Theorem 1 and the physical implication are described in
detail in Technical Supplementary Material Section A and B,
respectively. The Algorithm for our filtering process is shown
in Algorithm 1.

4 Experiments and Analysis
4.1 Experimental Setup
Our proposed model was constructed using PyTorch, a
Python-based deep-learning library. In our experimenta-
tion, we imported GPT-2 from the Huggingface transform-
ers package. All experiments were conducted on a sin-
gle Nvidia A100 80GB GPU. We employed the Adam op-
timizer [Kingma and Ba, 2017] with a learning rate of
0.005 for optimization. We use the Facebook Hateful Meme
dataset [Kiela et al., 2021] for performing the experiments.

To ensure robust evaluation on simulatability, we con-
duct a 5-fold cross-validation for testing the surrogate models

Algorithm 1 Retrieve explainable keywords with four step
filtering
explain out = [] ; /* Final token placeholder */
first stage = [] ; /* Placeholder or TopK & ϵ neighborhood
constraint */

rclip←Meme Image Embedding from CLIP
{ ti }← Top-k tokens from Vocabulary set V ; /* TopK Filtering */

for ti ∈ {ti} do
ei← GPT2Embedding( ti )

if ∥ei · ∇mŷ∥ ≤ ϵ then
ticlip ← Text Embedding from CLIP(ei)
simcosine ← rclip · ticlip
first stage . append({ti : simcosine}) ; /* filtered tokens
from ϵ neighborhood */

end
end
{t′i} ← Top 20 tokens decreasingly sorted by simcosine from first stage. ;
/* CLIP filtering */

for t′i ∈ {t
′
i} do

e′
i← GPT2Embedding( t′i )
if f(e′

i) = ŷ then
explain out . append(t′i) ; /* Output preservation
filtering */

end
end
explain out ← Top 4 tokens from explain out sorted by log likelihood. ;
/* Final step */

(§Section 4.2) after running experiments for 3, 500 steps on
the respective train set. We report averaged scores obtained
from 5 experiment runs. Additionally, we maintain a consis-
tent random seed of 42 across all our experiments.

4.2 Results and Analysis
Automatic Evaluation
For Automatic evaluation, we resort to using ‘model faith-
fulness’ as a guiding principle to evaluate the effect of the
obtained keywords on model behavior. Especially, we mea-
sure ‘simulatability’, which can be defined as how well we
can use the extracted keywords to predict (i.e. simulate via
another surrogate model) the model’s output. In Table 1,
we depict the effect of various filtering mechanisms form-
ing an ablation and compare our proposed method with the
well-known input attribution-based methods, e.g. Integrated
Gradient and KernelSHAP. For comparison, we use i) Leak-
age adjusted simulatability (LAS) [Hase et al., 2020] score,
which measures the effect of predicted keywords/explanation
on simulating model prediction opting for explanation leak-
age. A positive LAS score reflects better ‘simulatability’ or
‘faithfulness’ of the extracted keywords corresponding to the
model prediction. For evaluating the effect of extracted key-
words on simulator confidence, we use ii) Comprehensive-
ness (↑) and iii) Sufficiency (↓) metrics [DeYoung et al.,
2020]. Intuition and technical details of the measurement of
these metrics can be found in Supplementary Section I. We
also list three accuracy-based measures for the simulator: i)
F1 score using both generated explanation and input meme
as input to the model (denoted as F1), ii) F1 score using only
input (denoted as F1 w/ inp) and iii) F1 score using only
explanation (denoted as F1 w/ exp). We also propose two
metrics: i) Inter-sample diversity defined as Div (Inter) and
ii) Intra-sample diversity defined as Div (Intra) elaborated in
the Supplementary Material Section H. These metrics respec-
tively measure the average diversity/exhaustiveness of all the
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TopK ϵ-ball SR OP Div (Inter) Div (Intra) LAS (↑) Compre. (↑) Suff. (↓) F1 (%) F1 w/ inp (%) F1 w/ exp (%)
Random. - - - - - 0.0 −2.42x10−4 27.0 79 79 40

Saliency Map - - - 4.06 7.43 -0.4 0.4 14.0 79 79 68
Inp x Grad [Shrikumar et al., 2017] - - - 3.25 7.40 -0.4 0.5 14.8 79 79 69

Int. Grad. [Sundararajan et al., 2017] - - - 3.62 6.94 0.0024 0.3 16.0 79 79 65
KernelSHAP [Lundberg and Lee, 2017b] - - - 4.01 6.57 0.052 0.2 18.0 79 79 59

× × ✓ ✓ 10.81 3.81 -0.9 2.8 16.0 82 79 74
× 0.05 ✓ ✓ 6.28 6.94 0.5 2.7 14.0 82 79 76
× 0.01 ✓ ✓ 5.96 7.47 1.0 3.5 13.3 83 79 76

3500 × ✓ ✓ 5.53 7.21 2.0 4.3 7.9 84 79 84
2500 × ✓ ✓ 5.48 7.16 2.3 4.2 7.7 84 79 85
1500 × ✓ ✓ 5.23 7.17 1.6 3.8 7.7 83 79 85

500 × ✓ ✓ 4.76 7.19 1.2 5.6 6.9 85 79 87
3500 0.1 ✓ ✓ 5.53 7.19 2.7 4.3 8.5 85 79 85
2500 0.1 ✓ ✓ 5.48 7.16 1.9 4.1 7.5 84 79 85
1500 0.1 ✓ ✓ 5.24 7.17 1.9 3.8 7.6 83 79 85

500 0.1 ✓ ✓ 4.75 7.15 2.3 5.6 7.1 85 79 88

Table 1: Automatic evaluation for faithfulness. Empirical performance of our proposed method in different setups (ablations) and comparison
with baselines. F1 w/ inp is redundantly kept in the table to aid easier comparison. All the metrics are linearly scaled in the range of 0 to
100 for better comparison. SR (semantic relevance) and OP (output preserving) refer to the CLIP-based filtering step and output preservation
steps, respectively.

retrieved keywords across the dataset and for a specific ex-
ample. The trade-off between these two illustrates various
properties of the retrieved keywords, as illustrated in the dis-
cussion below.

Comparison with Baselines. In the first five rows of Table
1, we describe the effect of extracting keywords from var-
ious input attribution-based explanation methods which are
compared with random keywords. As expected, the random
keywords obtained very low scores for all metrics reflecting
the input attribution-based methods which work well in prac-
tice. For every setup of our proposed model in the remaining
rows, we observe the superiority of our proposed approach
by observing better obtaining scores for all the metrics. We
also observe that although F1 w/ exp score is better for the
baselines compared to the ‘Random’ explanations, the model
performance remains the same when explanation and input
both are used as input, as seen through the same F1 score ob-
tained. This intuitively illustrates the fact that the extracted
explanations do not provide extra information compared to
inputs, such that the before and after F1 scores remain the
same. Comparison with LLaVA-13B [Liu et al., 2023a] can
be found at Supplementary Material Section D.

i) Does epsilon ball constraint work in the absence of
Top-K constraint? Firstly, in rows 6 to 8, we consider drop-
ping off the Top-K sampling restriction (first stage) and ob-
serving the effect of disabling and enabling the second stage
with different values of ϵ. Without any ϵ constraint, we obtain
a negative LAS score along with a low ‘comprehensiveness’
score. It shows that only selecting the keywords using CLIP-
based representation does not retrieve semantically relevant
keywords. Next, we enable the second stage with two sepa-
rate values of ϵ ∈ {0.05, 0.01}. As can be seen through tabu-
lated metrics, enabling the second stage has a positive effect
on the quality of retrieved keywords. Also, ϵ = 0.01 works
better than ϵ = 0.05 in terms of performance, suggesting that
our theoretical justification of retrieving tokens in the neigh-
borhood of eT ·∇mf(m) → 0 indeed works well in practice.
However, lowering the ϵ by too much (ϵ ∼ 0) would result in
non-retrieval of any keyword.

ii) Why would a larger Top-K be associated with a lower
comprehensiveness score? From the Inter sample diversity
score, we observe that a higher Top-K value relates to higher

Inter sample diversity, which entails that diversity between
two explanation sets will be larger. Intuitively, it can be seen
that evaluating the simulator model on a more diverse expla-
nation set leads to a lower probability of the predicted class
due to lower model confidence. This consequently leads to
lower comprehensiveness and higher sufficiency scores. It
may be observed that there is a steady increase in inter-sample
diversity with increasing Top-K value, which further leads to
lower comprehensiveness scores.

iii) For the same Top-K value what would the effect
of enabling ϵ constraint be? Comparing scores from the
third and fourth set of rows, we observe that enabling the ϵ
constraint seems to be beneficial for the ‘simulatability’, as
can be seen by higher LAS scores for the same Top-K value
without the ϵ constraint. This can be attributed to the same
inter-sample diversity (indicating variations among samples)
but lower intra-sample diversity (indicating lesser variation
among retrieved keywords specific to an input meme). Less
variation among the retrieved keywords for an input meme
would intuitively mean better simulatability. However, this
case is not always true, as a very low intra-sample diversity
score would entail that the retrieved keywords are very sim-
ilar and would result in a low LAS score (observe the sixth
row). Intuitively, there is an optimal spot where the ratio of
inter-sample and intra-sample diversity would indicate opti-
mally selected retrieved keywords.

iv) What is the similarity of the retrieved explanations
using a specific Top-K value w.r.t various ϵ balls? We ob-
serve that enabling the Top-K constraint unequivocally re-
trieves better tokens as illustrated by Table 1. To theoreti-
cally justify it, we measure Jaccard similarity between the
a) set of tokens retrieved using a specific Top-K value and
b) tokens retrieved from the open ϵ neighborhood [−ϵ,+ϵ].
This test is done on a randomly selected set of 100 test
memes, keeping equal representation from all over the full
test set. From Figure 3, we observe Jaccard similarity value
spikes at [−0.01,+0.01] when TopK ∈ {3500, 2500, 1500}
and at [+0.02,+0.03] when TopK ∈ {500}. This entails
Top-K retrieved tokens mostly lie in the neighborhood where
eT · ∇mf(m) → 0, which is theoretically justifiable.

v) Is the Output preservation stage necessary? We state
that this stage is of utmost importance. From Figure 4, we ob-
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Figure 3: Plot of Jaccard similarity (Y-axis) between set of tokens in specific ϵ neighborhoods and for specific Top-K sizes. Each plot refers to
a specific Top-K size. Each point in X-axis refers to an ϵ neighborhood bin starting from ‘−0.09 to −0.07’ and ending at ‘+0.07 to +0.09’

Figure 4: We plot values for various metrics for various fixed Top-K values and ϵ values in X axis. On: O/P Preservation stage is on and Off:
O/p preservation stage is off.

serve that for different Top-K values (both with and without
ϵ constraint enabled), enabling the output preservation stage
always retrieves more interpretable keywords rather than dis-
abling it. The same test subset is used to perform these exper-
iments, as illustrated in the previous point. Also, the perfor-
mance gap is quite significant, as seen in Figure 4.

vi) What is the interpretive impact of keywords on
model decisions? We input the extracted keywords as knowl-
edge tokens during testing to empirically verify their influ-
ence on the model. The analysis reveals that in the majority
of cases (86.23%), the predicted probability for the model-
assigned class increased, with a mean rise of 0.06 and a stan-
dard deviation of 0.07. Moreover, the predicted class remains
consistent in 97.41% of cases. Additionally, incorporating
keywords does not adversely affect the model; instead, it
boosts confidence in predicting the class, emphasizing the in-
terpretive value of keywords in shaping the model’s decisions.

vii) Is semantic relevance (CLIP filtering) stage neces-
sary? For every set-up in Table 1, we manually tested a ran-
dom set of same 30 memes with and without the CLIP fil-
tering stage enabled. Without CLIP filtering, the quality of

the retrieved keywords are worse such that they do not se-
mantically match with the input meme, which renders them
unusable for explanation purposes.

viii) How well does it classify input memes? The macro-
F1 and Accuracy score on the offensiveness classification task
using our proposed system are 73.46% and 75.64% respec-
tively on the test set. This is at par or better than the standard
visuo-lingual baselines used in [Kiela et al., 2021] where the
FB hateful meme dataset was originally proposed. We also
observe that the GPT2 prompt without the projected multi-
modal embedding Mt obtains only around 57% F1 score.

Human Evaluation
We perform a human evaluation of the generated keywords
using two metrics, viz. Relatedness and Exhaustiveness. Re-
latedness is defined as how much a set of generated keywords
is relevant to the content of the input meme, and Exhaustive-
ness is defined as how much of the aspects of an input meme
are correctly represented in a set of retrieved keywords. The
scale of these metrics is illustrated in Supplementary Material
Section G. Based on these definitions, five people (three au-
thors of this paper and two undergraduate students) are cho-
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Meme Ours ϵ-ball w/ CLIP CLIP only Integrated Gradient Pred Act

01276

philanthrop
words

encourage
happiness

charitable
encourage

charity
estimates

optimistic
optimism

worth
Worth

smile
worth

thousand
words

0 0

Correctly Classified 98724

jews
holocaust

nazis
hitler

nazis
adolf
sergei

churchill

Adolf
ologists
Stalin
Polish

shits
loses
polish
normal

1 1

91768
jew

holocaust
hitler

jew
abolished

jew
jew
Jew
Jew

wearing
:wtf

normal
adolf

1 0

Misclassified 13875

cats
cat

lunch
eat

cat
cooperation
sandwiches

menu

cats
cats
cat
Cat

see
normal
lunch
let’s

0 1

Table 2: Qualitative analysis of our proposed method’s output w.r.t several baseline outputs. Model outputs are shown for both success and
failure cases for our model. 0: Not Hateful and 1: Hateful

Ours ϵ-ball (0.1) CLIP Integrated
Gradient

Relevance 3.32 2.65 2.77 2.51
Exhaustiveness 3.30 2.58 2.69 2.44

Table 3: Human evaluation results based on 200 samples, evaluated
by five annotators across Relevance and Exhaustiveness.

sen to rate the generated explanations (a randomly chosen set
of 200 examples) on a scale of 1-5 in the 5 point Likert scale.
The inter-rater agreement (Cohen kappa score [Cohen, 1960])
for all the settings is more than 0.7, indicating fair agreement.
For both exhaustiveness and relatedness, our methods achieve
the best performance as observed from Table 3, followed by
ϵ-ball, CLIP, and lastly Integrated Gradient.

01276 13875 91768 98724

Figure 5: Memes corresponding to the examples in Table 2

4.3 Interpreting Model from Retrieved Keywords
In our analysis, we employ sampling from GPT-2 for both
keyword extraction and prediction to enhance interpretabil-
ity. Our focus is on understanding the model’s decision-
making process in meme explanation and assessing offen-
siveness, leading us to prioritize interpretability over utilizing
more advanced language models like GPT-3, which may gen-
erate unfaithful yet plausible explanation [Filippova, 2020;
Maynez et al., 2020].

For the correctly classified memes (with IDs 01276, and
98724), our proposed approach (Top-K=3500 with ϵ = 0.1
and other filters enabled) provides a relevant and exhaustive
set of keywords for the input meme which may adequately
represent the correct model prediction obtained. These ex-

planations are also intuitive and help us to clarify that the
model is not relying on spurious correlations to predict its de-
cision for that particular meme. For other variations of our
proposed methods and the baseline method, we observe the
quality of the retrieved keywords seems arbitrary to the input
meme. Thus, they do not adequately reflect the reason based
on which the model might have predicted the correct label.

Even though the CLIP retrieves semantically relevant to-
kens, they are not exhaustive and often repetitive.

From meme ID 91768, we observe that the model predicts
the meme as offensive even though it is a funny meme about
Hitler. Due to the presence of Hitler’s face, the model clas-
sifies it as offensive, which may be correctly illustrated by
the retrieved keywords using our method. The baseline per-
forms poorly and the variations of our method yield retrieved
keywords that are either repetitive or not very semantically
relevant to the input meme. Another example is shown for
meme ID 13875, where the the model predicted an offensive
meme as normal. The prediction appears to be influenced by
the presence of the word ‘cat,’ which the model uses as a de-
termining factor. This phenomenon can be attributed to the
model’s lack of exposure to relevant memes during training,
resulting in an inability to recognize the underlying racism.

5 Conclusion
Classifying hateful content on social media and generating
explanations for moderation is crucial. Existing interpretabil-
ity methods operate on the input space, making it difficult to
explain content with hidden meanings. Our work not only
identifies hateful content that requires moderation but also
provides explanations for hidden meanings. This improves
the efficiency of uncovering hidden meanings in memes and
clarifies the model’s decision-making process. It also helps
identify model bias, as shown in qualitative evaluations. Our
method outperforms various baseline models in both auto-
mated and manual evaluations and is applicable to social me-
dia, with potential real-life impact. Additionally, our task-
agnostic method can be applied to various visual-linguistic
tasks (e.g., Visual Question Answering, Visual NLI), present-
ing an important challenge for future studies.
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SemEval-2020 task 8: Memotion analysis- the visuo-
lingual metaphor! In Proceedings of the Fourteenth Work-
shop on Semantic Evaluation, pages 759–773, Barcelona

(online), December 2020. International Committee for
Computational Linguistics.

[Sharma et al., 2022] Shivam Sharma, Siddhant Agarwal,
Tharun Suresh, Preslav Nakov, Md. Shad Akhtar, and Tan-
moy Chakraborty. What do you meme? generating expla-
nations for visual semantic role labelling in memes, 2022.

[Shrikumar et al., 2017] Avanti Shrikumar, Peyton Green-
side, Anna Shcherbina, and Anshul Kundaje. Not just a
black box: Learning important features through propagat-
ing activation differences, 2017.

[Sundararajan et al., 2017] Mukund Sundararajan, Ankur
Taly, and Qiqi Yan. Axiomatic attribution for deep net-
works, 2017.

[Suryawanshi et al., 2020] Shardul Suryawanshi,
Bharathi Raja Chakravarthi, Mihael Arcan, and Paul
Buitelaar. Multimodal meme dataset (MultiOFF) for
identifying offensive content in image and text. In Pro-
ceedings of the Second Workshop on Trolling, Aggression
and Cyberbullying, pages 32–41, Marseille, France,
May 2020. European Language Resources Association
(ELRA).

[Van Hee et al., 2018] Cynthia Van Hee, Gilles Jacobs, Chris
Emmery, Bart Desmet, Els Lefever, Ben Verhoeven, Guy
De Pauw, Walter Daelemans, and Véronique Hoste. Au-
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