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Abstract
Data-driven discovery of governing equations has
kindled significant interests in many science and
engineering areas. Existing studies primarily focus
on uncovering equations that govern nonlinear dy-
namics based on direct measurement of the system
states (e.g., trajectories). Limited efforts have been
placed on distilling governing laws of dynamics di-
rectly from videos for moving targets in a 3D space.
To this end, we propose a vision-based approach
to automatically uncover governing equations of
nonlinear dynamics for 3D moving targets via raw
videos recorded by a set of cameras. The approach
is composed of three key blocks: (1) a target track-
ing module that extracts plane pixel motions of
the moving target in each video, (2) a Rodrigues’
rotation formula-based coordinate transformation
learning module that reconstructs the 3D coordi-
nates with respect to a predefined reference point,
and (3) a spline-enhanced library-based sparse re-
gressor that uncovers the underlying governing law
of dynamics. This framework is capable of effec-
tively handling the challenges associated with mea-
surement data, e.g., noise in the video, imprecise
tracking of the target that causes data missing, etc.
The efficacy of our method has been demonstrated
through multiple sets of synthetic videos consider-
ing different nonlinear dynamics.

1 Introduction
Nonlinear dynamics is ubiquitous in nature. Data-driven dis-
covery of underlying laws or equations that govern com-
plex dynamics has drawn great attention in many science and
engineering areas such as astrophysics, aerospace science,
biomedicine, etc. Existing studies primarily focus on uncov-
ering governing equations based on direct measurement of the
system states, e.g., trajectory time series, [Bongard and Lip-
son, 2007; Schmidt and Lipson, 2009; Brunton et al., 2016;
Rudy et al., 2017; Chen et al., 2021b; Sun et al., 2021]. Lim-
ited efforts have been placed on distilling governing laws of
dynamics directly from videos for moving targets in a 3D
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space, which represents a novel and interdisciplinary research
domain. This challenge calls for a solution of fusing various
techniques, including computer stereo vision, visual object
tracking, and symbolic discovery of equations.

We consider a moving object in a 3D space, recorded by a
set of horizontally positioned, calibrated cameras at different
locations. Discovery of the governing equations for the mov-
ing target first requires accurate estimation of its 3D trajectory
directly from the videos, which can be realized based on com-
puter stereo vision and object tracking techniques. Computer
stereo vision, which aims to reconstruct 3D coordinates for
depth estimation of a given target, has shown immense poten-
tial in the fields of robotics [Nalpantidis and Gasteratos, 2011;
Li et al., 2021], autonomous driving [Ma et al., 2019;
Peng et al., 2020], etc. Disparity estimation is a crucial step in
stereo vision, as it computes the distance information of ob-
jects in a 3D space, thereby enabling accurate perception and
understanding of the scene. Recent advances of deep learning
has kindled successful techniques for visual object tracking
e.g., DeepSORT [Wojke et al., 2017] and YOLO [Redmon
et al., 2016]. The aforementioned techniques lay a critical
foundation to accurately estimate the 3D trajectory of a mov-
ing target for distilling governing equations, simply based on
videos recorded by multiple cameras in a complex scene.

We assume that the nonlinear dynamics of a moving target
can be described by a set of ordinary differential equations,
e.g., dy/dt = F(y), where F is a nonlinear function of the
d-dimensional system state y = {y1(t), y2(t), . . . , yd(t)} ∈
Rd. The objective of equation discovery is to identify the
closed form of F given observations of y. This could be
achieved via symbolic regression [Bongard and Lipson, 2007;
Schmidt and Lipson, 2009; Sahoo et al., 2018; Petersen
et al., 2021; Mundhenk et al., 2021; Sun et al., 2023] or
sparse regression [Brunton et al., 2016; Rudy et al., 2017;
Rao et al., 2023]. When the data is noisy and sparse, dif-
ferentiable models (e.g., neural networks (NN) [Chen et al.,
2021b], cubic splines [Sun et al., 2021; Sun et al., 2022]) are
employed to reconstruct the system states, thereby forming
physics-informed learning for more robust discovery.

Recently, attempts have been made toward scene under-
standing and prediction grounding physical concepts [Jaques
et al., 2020; Chen et al., 2021a]. Although a number of efforts
have been placed on distilling the unknown governing laws of
dynamics from videos for moving targets [Champion et al.,
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2019; Udrescu and Tegmark, 2021; Luan et al., 2022], the
system dynamics was assumed in plane (e.g., in a 2D space).
To our knowledge, distilling governing equations for a mov-
ing object in a 3D space (e.g., d = 3) directly from raw videos
remains scant in literature. To this end, we introduce a uni-
fied vision-based approach to automatically uncover govern-
ing equations of nonlinear dynamics for a moving target in a
predefined reference coordinate system, based on raw video
data recorded by a set of horizontally positioned, calibrated
cameras at different locations.

Contributions. The proposed approach is composed of
three key blocks: (1) a target tracking module based on
YOLO-v8 that extracts plane pixel motions of the moving tar-
get in each video data; (2) a coordinate transformation model
based on Rodrigues’ rotation formula, which allows the con-
version of pixel coordinates obtained through target tracking
to 3D spatial/physical coordinates in a predefined reference
coordinate system given the calibrated parameters of only one
camera; and (3) a spline-enhanced library-based sparse re-
gressor that uncovers a parsimonious form of the underlying
governing equations for the nonlinear dynamics. Through the
integration of these components, it becomes possible to ex-
tract spatiotemporal information of a moving target from 2D
video data and subsequently uncover the underlying govern-
ing law of dynamics. This integrated framework excels in ef-
fectively addressing challenges associated with measurement
noise and data gaps induced by imprecise target tracking. Re-
sults from extensive experiments demonstrate the efficacy of
the proposed method. This endeavor offers a novel perspec-
tive for understanding the complex dynamics of moving tar-
gets in a 3D space.

2 Related Work
Computer stereo vision. Multi-view stereo aims to recon-
struct a 3D model of the observed scene from images with
different viewpoints [Schönberger et al., 2016; Galliani et al.,
2016], assuming the intrinsic and extrinsic camera parameters
are known. Recently, deep learning has been employed to
tackle this challenge, such as convolutional neural networks
[Flynn et al., 2016; Huang et al., 2018] and adaptive modula-
tion network with co-teaching strategy [Wang et al., 2021].

Target tracking. Methods for vision-based target track-
ing can be broadly categorized into two main classes: cor-
relation filtering and deep learning. Compared to traditional
algorithms, correlation filtering-based approaches offer faster
target tracking [Mueller et al., 2017], while deep learning-
based methods [Ciaparrone et al., 2020; Marvasti-Zadeh et
al., 2021] provide higher precision.

Governing equation discovery. Data-driven discovery
of governing equations can be realized through a number
of symbolic/sparse regression techniques. The most popu-
lar symbolic regression methods include genetic program-
ming [Koza, 1994; Bongard and Lipson, 2007; Schmidt
and Lipson, 2009], symbolic neural networks [Sahoo et
al., 2018], deep symbolic regression [Petersen et al., 2021;
Mundhenk et al., 2021], and Monte Carlo tree search [Lu et
al., 2021; Sun et al., 2023]. Sparse regression techniques
such as SINDy [Brunton et al., 2016; Rudy et al., 2017;

Rao et al., 2023] leverage a predefined library that includes a
limited number of candidate terms, which search for the un-
derlying equations in a compact solution space.

Physics-informed learning. Physics-informed learning
has been developed to deal with noisy and sparse data in
the context of equation discovery. Specifically, differentiable
models (e.g., NN [Raissi et al., 2019; Chen et al., 2021b], cu-
bic splines [Sun et al., 2021; Sun et al., 2022]) are employed
to reconstruct the system states and approximate the required
derivative terms required to form the underlying black equa-
tions.

Vision-based discovery of dynamics. Very recently, at-
tempts have been made to discover the governing of equa-
tions for moving objects directly from videos. These meth-
ods are generally based on autoencoders that extract the la-
tent dynamics for equation discovery [Champion et al., 2019;
Udrescu and Tegmark, 2021; Luan et al., 2022]. Other re-
lated works include the discovery of intrinsic dynamics [Flo-
ryan and Graham, 2022] or fundamental variables [Chen et
al., 2022] based on high-dimensional data such as videos.

3 Methodology
We here elucidate the basic concept and approach of vision-
based discovery of nonlinear dynamics for a moving target
in a 3D space. Figure 1 shows the schematic architecture of
our method. The target tracking module serves as the foun-
dational stage, which extracts pixel-level motion information
from the target’s movements across consecutive frames in a
video sequence. The coordinate transformation module uti-
lizes Rodrigues’ rotation formula with respect to a predefined
reference coordinate origin, which lays the groundwork for
the subsequent analysis of the object’s dynamics. The fi-
nal crucial component is the spline-enhanced library-based
sparse regressor, essential for revealing the fundamental dy-
namics governing object motion.

3.1 Coordinates Transformation
In this paper, we employ three cameras with known and fixed
positions oriented in different directions to independently
capture the motion of an object (see Figure 1a). With the con-
straint of calibrating only one camera, our coordinate learning
module becomes essential (e.g., the 3D trajectory of the target
and other camera parameters can be simultaneously learned).
In particular, it is tasked with learning the unknown param-
eters of the other two cameras, including scaling factors and
the rotation angle on each camera plane. These parameters
enable to reconstruct the motion trajectory of the object in the
reference coordinate system. We leverage Rodrigues’ rota-
tion formula to compute vector rotations in three-dimensional
space, which enables the derivation of the rotation matrix, de-
scribing the rotation operation from a given initial vector to a
desired target vector. This formula finds extensive utility in
computer graphics, computer vision, robotics, and 3D rigid
body motion problems.

In a 3D space, a rotation matrix is used to represent the
transformation of a rigid body around an axis. Let v0 rep-
resent the initial vector and v1 denote the target vector. We
denote the rotation matrix as R. The relationship between
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Figure 1: Schematic of vision-based discovery of nonlinear dynamics for 3D moving target. Firstly, we record the motion trajectory of the
object in a 3D space using multiple cameras in a predefined reference coordinate system (see a). Pixel trajectory coordinates are obtained
through target identification and tracking. Note that camera parameters include the camera’s position, the normal vector of the camera’s view
plane, and the calibrated camera parameters, which comprise the scaling factor and tilt angle. In particular, we use coordinate learning and
transformation to obtain the spatial motion trajectory in the reference coordinate system. Secondly, for each dimension of the trajectory, we
introduce a spline-enhanced library-based sparse regressor to uncover the underlying governing law of dynamics. The differentiation for the
trajectory and spline curve with respect to time are respectively given by ẋ = dx/dt, Ġ = dG/dt (see b).

the pre- and post-rotation vectors can be expressed as v1 =
Rv0. The rotation angle, denoted as θ, can be calculated via
cos θ = v0·v1

∥v0∥∥v1∥ . The rotation axis is represented by the unit
vector u = [ux, uy, uz], namely, u = v0×v1

∥v0×v1∥ . Having de-
fined the rotation angle θ and the unit vector k, we construct
the rotation matrix R using Rodrigues’ rotation formula:

R = I+ sin θU+ (1− cos θ)U2. (1)

where I is a 3 × 3 identity matrix, and U is a 3 × 3 skew-
symmetric matrix representing the cross product of the rota-
tion axis vector u expressed as

U =

[
0 −uz uy

uz 0 −ux

−uy ux 0

]
. (2)

When projecting an object onto a plane, denoting the coordi-
nates of the projection as xp = (xp, yp, zp)

T . The procedure
for projecting a 3D object onto a plane is elaborated in Ap-
pendix A. The object’s projected shape on a plane is deter-
mined solely by plane’s normal vector. Refer to Appendix B
for a detailed proof, and Appendix C for calculation of the
camera’s offsets from a camera plane.

3.2 Cubic B-Splines
B-splines are differentiable, and constructed using piecewise
polynomial functions called basis functions. When the mea-
surement data is noisy and sparse, cubic B-splines could serve
as a differentiable surrogate model to form robust physics-
informed learning for equation discovery [Sun et al., 2021].
We herein adopt this approach to tackle challenges associ-
ated with data noise and gaps induced by the imprecise target

tracking for discovering laws of 3D dynamics. The i-th cubic
B-spline basis function of degree k, written as Gi,k(u), can
be defined recursively as:

Gi,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise ,

Gi,k(u) =
u− ui

ui+k − ui
Gi,k−1(u) +

ui+k+1 − u

ui+k+1 − ui+1
Gi+1,k−1(u),

(3)

where ui represents a knot that partitions the computational
domain. By selecting appropriate control points and com-
binations of basis functions, cubic B-splines with C2 conti-
nuity can be customized to meet specific requirements. In
general, a cubic B-spline curve of degree p defined by n + 1
control points P = {p0,p1, ...,pn} and a knot vector U =
{u0, u1, ..., um} is given by: C(u) =

∑n
i=0 Gi,3(u) · pi. To

ensure the curve possesses continuous and smooth tangent
directions at the starting and ending nodes, meeting the first
derivative interpolation requirement, we use Clamped cubic
B-spline curves for fitting.

3.3 Network Architecture
We utilized the YOLO-v8 for object tracking in the recorded
videos (see Figure 1a). Regardless of whether the captured
object has an irregular shape or is in a rotated state, we only
need to capture their centroid positions and track them to ob-
tain pixel data. Subsequently, leveraging Rodrigues’ rotation
formula and based on the calibrated camera, we derive the
scaling and rotation factors of the other two cameras. These
factors enable the conversion of the object trajectory’s pixel
coordinates into the world coordinates deducing the physical
trajectory. For the trajectory varying with time in each di-
mension, we use the cubic B-splines to fit the trajectory and a
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library-based sparse regressor to uncover the underlying gov-
erning law of dynamics in the reference coordinate system.
This approach is capable of dealing with data noise, multiple
instances of data missing and gaps.

Learning 3D trajectory. In this work, we use a three-
camera setup to capture and represent the object’s 2D motion
trajectory in each video scene, yielding the 2D coordinates
denoted as (xrp, yrp). The rotation matrix R is decomposed
to retain only the first two rows, denoted as R−, to suitably
handle the projection onto the image planes. Under the con-
dition of calibrating only one camera, we can reconstruct the
coordinates of a moving object in the reference 3D coordinate
system using three fixed cameras capturing an object’s mo-
tion in a 3D space. The assumed given information includes
normal vectors v1,v2,v3 of camera planes for all three cam-
eras, the positions of the cameras, as well as a scaling factor
s1 and rotation angles ϑ1 for one of the cameras. We define
the scaling factor vector as s = {s1, s2, s3} and the rotation
angle vector as ϑ = {ϑ1, ϑ2, ϑ3}. The loss function for re-
constructing the 3D coordinates of the object in the reference
coordinate system is given by

Lr (s
∗;ϑ∗) =

1

Nm
∥x̃− (s1T (ϑ1)xc1 +∆c1)∥

2
2 , (4)

where

x̃ = R−
1

[
R−

2

R−
3

]−1 [
s2T (ϑ2)xc2 +∆c2
s3T (ϑ3)xc3 +∆c3

]
. (5)

Here, s∗ = {s2, s3} and ϑ∗ = {ϑ2, ϑ3}. Note that
xci = (xci , yci)

T represents the pixel coordinates, black
∆cidenotes deviation of object position from image coordi-
nate origin. Nm the number of effectively recognized object
coordinate points, T (ϑ) the transformation matrix induced
by rotation angle ϑ expressed as T (ϑ) = [cosϑ sinϑ; −
sinϑ cosϑ]. When using three cameras, the transformation
between the object’s coordinates xref in the reference coordi-
nate system and the pixel coordinates xc in the camera setups
reads

x =

 R−
1

R−
2

R−
3

−1 [
s1T (ϑ1)xc1 +∆c1
s2T (ϑ2)xc2 +∆c2
s3T (ϑ3)xc3 +∆c3

]
. (6)

Solving for parameter values (s∗, ϑ∗) via optimization of
Eq. (4), we can subsequently compute the reconstructed 3D
physical coordinates via the calculation provided in Eq. (6).

Equation discovery. Given the potential challenges in tar-
get tracking, e.g., momentary target loss, noise, or occlusions,
we leverage physics-informed spline learning to address these
issues (see Figure 1b). In particular, cubic B-splines are em-
ployed to approximate the 3D trajectory. Given three sets of
control points denoted as P = {p1,p2,p3} ∈ Rr×3. Given
that the coordinate system is arbitrarily defined, and to en-
hance the fitting of data Dr, we introduce the learnable adap-
tive offset parameter ∆ = {∆1,∆2,∆3}. The 3D parametric
curves where x(t;P,∆) are defined by the control point vec-
tors P, the cubic B-spline basis functions G(t) and the offset
parameter ∆, namely, x(t;P,∆) = G(t)P + ∆. Since the
basis functions consist of differentiable polynomials, the ex-
pression of its differential equation is given by ẋ(P) = ĠP.

Generally, the dynamics is governed by a limited number of
significant terms, which can be selected from a library of l
candidate functions, v.i.z., ϕ(x) ∈ R1×l [Brunton et al.,
2016]. The governing equations can be written as:

ẋ(P) = ϕ(P,∆)Λ, (7)

where ϕ(P,∆) = ϕ(x(t;P,∆)), and Λ = {λ1,λ2,λ3} ∈
S ⊂ Rl×3 is the sparse coefficient matrix belonging to a con-
straint subset S (only the terms active in ϕ are non-zero).

Accordingly, the task of equation discovery can be formu-
lated as follows: when provided with reconstructed 3D tra-
jectory data Dr = {xm

1 ,xm
2 ,xm

3 } ∈ RNm×3. In other words,
Dr is presented as effectively tracking the object movements
in a video and subsequently transforming them into a 3D tra-
jectory, where Nm is the number of data points. Our goal
is to identify the suitable set of P and a sparse Λ that fits
the trajectory data meanwhile satisfying Eq. (7). Considering
that the reconstructed trajectory Dr might exhibit noise or
temporal discontinuity, we use collocation points denoted as
Dc = {t0, t1, . . . , tnc−1} to compensate data imperfection,
where Dc denotes the randomly sampled set of Nc number of
collocation points (Nc ≫ Nm). These points are strategically
employed to reinforce the fulfillment of physics constraints at
all time instances (see Figure 1b).

3.4 Network Training
The loss function for this network comprises three main com-
ponents, namely, the data component Ld, the physics compo-
nent Lp, and the sparsity regularizer, given by:

arg min
{P,Λ,∆}

[Ld + αLp + β∥Λ∥0] , (8)

where

Ld (P,∆;Dr) =
1

Nm

3∑
i=1

∥Gmpi +∆i − xm
i ∥22 , (9a)

Lp (P,∆,Λ;Dc) =
1

Nc

3∑
i=1

∥∥∥Φ(P,∆)λi − Ġcpi

∥∥∥2

2
. (9b)

Here, Gm denotes the spline basis matrix evaluated at the
measured time instances, xm

i the coordinates in each dimen-
sion after 3D reconstruction in the reference coordinate sys-
tem (may be sparse or exhibit data gaps whereas Ġc the
derivative of the spline basis matrix evaluated at the collo-
cation instances. The term Gmpi is employed to fit the mea-
sured trajectory in each dimension, while Ġcpi is used to
reconstruct the potential equations evaluated at the colloca-
tion instances. Additionally, Φ ∈ RNc×l represents the col-
location library matrix encompassing the collection of candi-
date terms, ∥Λ∥0 the sparsity regularizer, α and β the relative
weighting parameters.

Since the regularizer ∥Λ∥0 leads to an NP-hard optimiza-
tion issue, we apply an Alternate Direction Optimization
(ADO) strategy (see Appendix D) to optimize the loss func-
tion [Chen et al., 2021b; Sun et al., 2021]. The interplay of
spline interpolation and sparse equations yields subsequent
effects: the spline interpolation ensures accurate modeling
of the system’s response, its derivatives, and the candidate
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function terms, thereby laying the foundation for constructing
the governing equations. Simultaneously, the equations rep-
resented in a sparse manner synergistically constrain spline
interpolation and facilitate the projection of accurate candi-
date functions. Ultimately, this transforms the extraction of
a 3D trajectory of an object from video into a closed-form
differential equation.

ẋ = ϕ(x−∆∗)Λ∗. (10)
After applying ADO to execute our model, resulting in the
optimal control point matrix P∗, sparse matrix Λ∗, and adap-
tive parameter ∆∗, an affine transformation is necessary to
eliminate ∆∗ in the identified equations. We replace x with
x − ∆∗, as shown in Eq. (10), to obtain the final form of
equations. We then assign a small value to prune equation
coefficients, yielding the discovered governing equations in a
predefined 3D coordinate system.

4 Experiments
In this section, we evaluate our method for uncovering 3D
governing equations of a moving target automatically from
videos using nine datasets1. The nonlinear dynamical equa-
tions for these chaotic systems and their respective trajecto-
ries can be found in Appendix E (see Figure S1). We gen-
erate 3D trajectories based on the governing equations of the
dataset and subsequently produce corresponding video data
captured from various positions. Our analysis encompasses
the method’s robustness across distinct video backgrounds,
varying shapes of moving objects, object rotations, levels of
data noise, and occlusion scenarios. We further validate the
identified equations demonstrating their interpretability and
generalizability. The proposed computational framework is
implemented in PyTorch. All simulations in this study are
conducted on an Intel Core i9-13900 CPU workstation with
an NVIDIA GeForce RTX 4090 GPU.

Data generation. The videos in this study are synthet-
ically generated using MATLAB to simulate real dynamic
systems captured by cameras. To commence, the dynamic
system is pre-defined, and its trajectory is simulated utiliz-
ing the 4th-order Runge-Kutta method in MATLAB. Lever-
aging the generated 3D trajectory, a camera’s orientation is
established within a manually defined 3D coordinate system
to simulate the 2D projection of the object onto the camera
plane. The original colored images featuring the moving ob-
ject are confined to dimensions of 512 × 512 pixels at 25
frames per second (fps). Various shapes are employed as
target markers in the video along with local dynamics (e.g.,
with self-rotation) to emulate the motion of the object (see
Appendix F). Subsequently, a set of background images are
randomly selected to mimic the real-world video scenarios.
The resultant videos generated within the background im-
agery comprise color content, with each frame containing
RGB channels (e.g., see Appendix Figure S2). After obtain-
ing the video data, it becomes imperative to perform object
recognition and tracking on the observed entities based on
the YOLO-v8 method.

1The datasets are derived from instances introduced in [Gilpin,
2021], where we utilize the following examples: Lorenz, SprottE,
RayleighBenard, SprottF, NoseHoover, Tsucs2 and WangSun.

Cases Methods Terms False ℓ2 Error
P (%) R (%)Found? Positives (×10−2)

Lorenz Ours Yes 1 1.50 92.31 100
PySINDy Yes 1 4.17 92.31 100

SprottE Ours Yes 0 0.15 100 100
PySINDy Yes 3 3.48 72.73 100

RayleighBenard Ours Yes 1 2.00 91.67 100
PySINDy Yes 2 2.74 84.62 100

SprottF Ours Yes 0 0.16 100 100
PySINDy No 1 7.51 90 90

NoseHoover Ours Yes 0 6.22 100 100
PySINDy Yes 3 824.44 75 100

Tsucs2 Ours Yes 1 5.39 93.75 100
PySINDy Yes 1 12.29 93.75 100

WangSun Ours Yes 1 0.16 93.33 100
PySINDy No 3 856.47 86.67 92.86

Table 1: The performance of our method compared to the PySINDy
in reconstructing three-dimensional coordinates from videos (see
Appendix Table S3 for comparisons with other methods.)

Lorenz SprottE RayleighBenard

True

• D iscovered 

SprottF NoseHoover Tsucs2 WangSun

Figure 2: Discovered 3D trajectories vs. the ground truth.

4.1 Results
Evaluation metrics. We employ both qualitative and quan-
titative metrics to assess the performance of our method.
Our goal is to identify all equation terms as accurately
as possible while eliminating irrelevant terms (False Posi-
tives) to the greatest extent. The error ℓ2, represented as
||Λid −Λtrue||2/||Λtrue||2, quantifies the relative difference
between the identified coefficients Λid and the ground truth
Λtrue. To avoid the overshadowing of smaller coefficients
when there is a significant disparity in their magnitudes, we
introduce a non-dimensional measure to obtain a more com-
prehensive evaluation.

The discovery of governing equations can be framed as
a binary classification task [Rao et al., 2022], determining
whether a particular term exists or not, given a candidate
library. Hence, we introduce precision and recall as met-
rics for evaluation, which quantify the proportion of cor-
rectly identified coefficients among the actual coefficients,
expressed as: P = ∥Λid ⊙Λtrue ∥0 / ∥Λid ∥0 and R =
∥Λid ⊙Λtrue ∥0 / ∥Λtrue ∥0, where ⊙ denotes element-wise
product. Successful identification is achieved when both the
entries in the identified and true vectors are non-zero.

Discovery results. Based on our evaluation metrics (e.g.,
the ℓ2 error, the number of correct and incorrect equations
terms found, precision, and recall), a detailed analysis of the
experimental results obtained by our method is found in Ta-
ble S3 (without data noise). After reconstructing the 3D tra-
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Figure 3: The influence of noisy and missing data (e.g., random block and fiber missing) on the experimental results, using the sprootF video
data as an example black (other systems can be found in Appendix H). The evaluation metrics include the ℓ2 relative error and the number of
incorrectly identified equation coefficients. We analyzed the effect of (a) noise levels, (b) random block missing rates, and (c) fiber missing
rates, respectively, to test the model’s robustness.

jectories in the world coordinate system, we also compare our
approach with PySINDy [Brunton et al., 2016] as the baseline
model. The library of candidate functions includes combina-
tions of system states with polynomials up to the third order.
The listed results are averaged over five trials. It demonstrates
that our method outperforms PySINDy on each dataset in the
pre-defined coordinate system. The explicit forms of the dis-
covered governing equations for 3D moving objects obtained
using our approach can be further found in Appendix G (e.g.,
Table S2). It is evident from Appendix Table S2 that the dis-
covered equations by our method align better with the ground
truth. We also reconstructed the motion trajectories in a 3D
space using our discovered equations compared with the ac-
tual trajectories under the same coordinate system, as shown
in Figure 2. These two trajectories nearly coincide, demon-
strating the feasibility of our method.

It is noted that we also tested the variations and rotations
of the moving object shapes in the recorded videos (e.g., see
Appendix Figure S2) and found that they have little impact
on the performance of our algorithm, primarily affecting the
tracking efficiency. In fact, encountering noise and situa-
tions where moving objects are occluded during the measure-
ment process can significantly impact our experimental re-
sults. To assess the robustness of our algorithm, we selected
the SprottF instance for in-depth analysis and conducted ex-
periments under various noise levels and different data oc-
clusion scenarios. The experimental results are detailed in
Figure 3. It is seen that our approach is robust against data
noise and missing, discussed in detail as follows.

Noise effect. The Gaussian noise with zero mean and unit
variance at a given level (e.g., 0%, 5%, ..., 30%) is added to
the generated video data. To address the issue of small co-
efficients being overshadowed due to significant magnitude
differences, we use two evaluation metrics in a standardized
coordinate system: the ℓ2 error and the count of incorrectly
identified equation coefficients. Figure 3a showcases our
method’s performance across various noise levels. We ob-
serve that up to a 20% noise interference, our method almost
accurately identifies all correct coefficients of the governing
equation. However, beyond a 30% noise level, our method’s
performance begins to decline.

Random block missing data effect. To evaluate our algo-
rithm’s robustness in the presence of missing data, we con-

Note:

Ground truth: Discovered:

At time t, the object exhibits shape and size: , and at time t + m, it shows:

a

x y

z

b

trajectory

Figure 4: Example of a synthetic dataset simulating real-world sce-
narios. a. An example of the generated video for an object with
an irregular shape undergoing random self-rotational motion and
size variations. The video frames were perturbed with a zero mean
Gaussian noise (variance = 0.01), and a tree-like obstruction was
introduced to further simulate real-world complexity. b. We recon-
structed the 3D trajectory of the observed target under conditions
of occlusion-induced data missing. The shading areas indicate the
regions impacted by the obstruction. Our approach can reconstruct
the 3D point trajectories from sparse observation points, revealing
accurate discovery of the underlying governing equations. Note that
the video file can be found in the supplementary material.

sider two missing scenarios (e.g., the target is blocked in
the video scene), namely, random block missing and fiber
missing (see Appendix Figure S3 for example). Firstly, we
randomly introduce non-overlapping occlusion blocking on
the target in the video during the observation period. Each
block covers 1% of the total time periods. We validate our
method’s performance as the number of occlusion blocks
increases. The “random block rate” represents the over-
all occlusion time as a percentage of the total observation
time. We showcase our algorithm’s robustness by introduc-
ing occlusion blocks that temporarily obscure the moving ob-
ject, rendering it unidentifiable (see Figure 3b). These non-
overlapping occlusion blocks progressively increase in num-
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Conditions Rate (%) Methods Terms False ℓ2 Error
P (%) R (%)Found? Positives (×10−2)

Noise
10 Ours Yes 0 0.77 100 100

Model-A No 1 8.78 90 90

20 Ours Yes 1 2.85 100 100
Model-A No 1 17.79 80 80

10 Ours Yes 0 0.77 100 100
Random Model-A No 3 9.49 75 90

Block 20 Ours Yes 0 2.19 100 100
Model-A No 1 7.67 90 90

10 Ours Yes 0 0.87 100 100
Fiber Model-A No 3 7.88 75 90

Missing 20 Ours Yes 0 1.71 100 100
Model-A No 4 10.79 66.67 80

Table 2: Test results for the ablated model named Model-A (i.e.,
spline + SINDy) under varying noise levels, random block rates,
and fiber missing rates on discovering the SprottF equations.

ber, simulating higher occlusion rates. Remarkably, our al-
gorithm remains highly robust even with up to 50% data loss
due to occlusion.

Fiber missing data effect. Additionally, we conducted
tests for scenarios involving continuous missing data (defined
as fiber missing). By introducing 5 non-overlapping occlu-
sion blocks randomly throughout the observation period, we
varied the occlusion duration of each block, quantified by the
“fiber missing rate” – the ratio of continuous missing data to
the overall data volume. In Figure 3c, we explore the impact
of increasing occlusion duration per block while maintaining
a constant number of randomly selected occlusion blocks. All
results are averaged over five trials. Our model demonstrates
strong stability even when the fiber missing rate is about 20%.

Simulating real-world scenario. Furthermore, we gen-
erated a synthetic video dataset simulating real-world sce-
narios. Here, we modeled the observed object as an irregu-
lar shape undergoing random self-rotational motion and size
variations, as shown in Figure 4a. Note that the size vari-
ations simulate changes in the camera’s focal length when
capturing the moving object in depth. The video frames were
perturbed with a zero mean Gaussian noise (variance = 0.01).
Moreover, a tree-like obstruction was introduced to further
simulate the real-world complexity (e.g., the object might
be obscured during motion) as depicted in Figure 4b. De-
spite these challenges, our method can discover the govern-
ing equations of the moving object in the reference coordinate
system, showing its potential in practical applications. Please
refer to Appendix I for more details.

Overall, our algorithm proves robust in scenarios with un-
expected data noise, multiple instances of data loss, and con-
tinuous data gaps, for uncovering governing laws of dynamics
for a moving object in a 3D space based on raw videos.

4.2 Ablation Study
We performed an ablation study to validate whether the
physics component in the spline-enhanced library-based
sparse regressor module is effective. Hence, we introduced an
ablated model named Model-A (e.g., fully decoupled “spline
+ SINDy” approach). We first employed the cubic splines to
interpolate the 3D trajectory in each dimension and then com-
puted the time derivatives of the fitted trajectory points based
on spline differentiation. These trajectories and the estimated

derivatives are then fed into the SINDy model for equation
discovery. Taking the instance of SprootF as an example, we
show in Table ?? the performance of the ablated model under
varying noise levels, random block rates, and fiber missing
rates. It is observed that the performance of the ablated model
deteriorates in all considered cases. Hence, we can ascertain
that the physics-informed spline learning in the library-based
sparse regressor module plays a crucial role in equation dis-
covery under imperfect data conditions.

4.3 Discussion and Limitations
The above results show that our approach can effectively un-
cover the governing equations of a moving target in a 3D
space directly from a set of recorded videos. The false pos-
itives of identification, when in the presence (e.g., see Ap-
pendix Table S2), are all small constants. We consider these
errors to be within a reasonable range. This is because the
camera pixels can only take approximate integer values, and
factors such as the size of pixels captured by the camera and
the number of cameras capturing the moving object can af-
fect the reconstruction of the 3D coordinates in the reference
coordinate system. The experimental results can be further
improved when high-resolution videos are recorded and more
cameras are used. There is an affine transformation relation-
ship between the artificially set reference coordinate system
and the actual one. Potential errors in learning such a rela-
tionship also lead to false positives in equation discovery.

Despite efficacy, our model has some limitations. The
library-based sparse regression technique encounters a bot-
tleneck when identifying very complex equations black (e.g.,
power or division terms) when the a priori knowledge of the
candidate terms is deficient. We plan to integrate symbolic
regression techniques to tackle this challenge. Furthermore,
the present study only focuses on discovering the 3D dynam-
ics of a single moving target in a video scene. In the future,
we will try discovering dynamics for multiple moving objects
(inter-coupled or independent).

5 Conclusion
We proposed a vision-based method to distill the governing
equations for nonlinear dynamics of a moving object in a
3D space, solely from video data captured by a set of three
cameras. By leveraging geometric transformations in a 3D
space, combined with Rodrigues’ rotation formula and com-
puter vision techniques to track the object’s motion, we can
learn and reconstruct the 3D coordinates of the moving object
in a user-defined coordinate system with the calibration of
only one camera. Building upon this, we introduced an adap-
tive spline learning framework integrated with a library-based
sparse regressor to identify the underlying law of dynamics.
This framework can effectively handle challenges posed by
partially missing and noisy data, successfully uncovering the
governing equations of the moving target in a predefined ref-
erence coordinate system. The efficacy of this method has
been validated on synthetic videos that record the behavior of
different nonlinear dynamic systems. This approach offers a
novel perspective for understanding the complex dynamics of
moving objects in a 3D space. We will test it on real-world
recorded videos in our future study.
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