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Abstract
As the latest development of asset pricing research,
how to use machine learning to improve the per-
formance of factor models has become a topic of
concern in recent years. The variability of the in-
stantaneous macro environment brings great diffi-
culties to quantitative investment, so the extended
factor model must learn how to self-adapt to ex-
tract the macro pattern from the massive stock vol-
ume and price information, and how to continu-
ously map the extracted macro pattern to the stock
investment is also an open question. To this end, we
propose the first continuous regime-based dynamic
factor model, RSAP-DFM, which adaptively ex-
tracts continuous macroeconomic information and
completes the dynamic explicit mapping of stock
returns for the first time through dual regime shift-
ing, while the adversarial posterior factors effec-
tively correct the mapping deviation of prior fac-
tors. In addition, our model integrates an innovative
two-stage optimization algorithm and normally dis-
tributed sampling, which further enhances the ro-
bustness of the model. Performance on three real
stock datasets validates the validity of our model,
which exceeds any previous methods available.

1 Introduction
Asset pricing, a central topic in modern financial research,
seeks to explain the cross-sectional differences in the ex-
pected returns of different assets. Influenced by the Capi-
tal Asset Pricing Model (CAPM) [Sharpe, 1964], the Fama-
French three-factor model ushers in the era of factor mod-
eling. This approach conceptualizes stock excess returns as
combinations of multiple factor-based returns, with these fac-
tors symbolizing distinct sources of excess returns. However,
the traditional static factor exposure is now being reevaluated
in favor of dynamic models, acknowledging time-varying
influences on investment performance [Stock and Watson,
2011]. Unlike linear factor models, machine learning can use
multi-layer nonlinear networks, offering a more robust frame-
work for capturing complex financial relationships.
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Given the above advantages, the application of machine
learning to the prediction of cross-sectional expected excess
returns becomes the focus of academic attention. Existing
studies transfer machine learning methods such as tree model
[Chen and Guestrin, 2016], time series model [Sutskever et
al., 2014], graph model [Velickovic et al., 2017], and at-
tention model [Ding et al., 2020] to stock prediction prob-
lem. Although the performance is improved, interpretabil-
ity remains a challenge. To further describe the interdepen-
dence between intertemporal stock features, researchers de-
velop some machine learning models specifically for finan-
cial markets [Lin et al., 2021a; Xu et al., 2021b]. Compared
to these model-free approaches, machine learning technol-
ogy also offers an entirely new perspective on traditional dy-
namic factor models (linear relationship), which dynamically
learn factor exposures and factors returns in different peri-
ods [Kelly et al., 2019; Uddin and Yu, 2020; Gu et al., 2021;
Duan et al., 2022].

However, we believe that two unresolved issues remain.
Firstly, in the current complex and volatile economic envi-
ronment, the key to the success of the investment model is
whether it can judge the macroeconomic state in time and
integrate it into the investment decision. Existing machine
learning and dynamic factor models struggle to encapsulate
this characteristic effectively. [Wei et al., 2023] introduces
an innovative concept of hierarchical market states, yet the
approach of broadly categorizing economic features into dis-
crete market states and employing black-box integration ap-
pears somewhat imprecise. Secondly, traditional data-driven
factor construction is polluted by the low signal-to-noise ratio
of stock data, making predicting returns accurately difficult.

In this paper, we propose a Regime-Shifting Adaptive
Posterior Dynamic Factor Model for stock returns prediction
called RSAP-DFM. In our approach, we reshape the rela-
tionship between factor construction, factor return, and factor
exposure. We leverage a multi-head attention mechanism to
dynamically generate and sample factors from normal dis-
tributions. These factors are crucial components within our
dynamic factor model (DFM), which is instrumental in pre-
dicting stock returns. To enhance the precision of current fac-
tor state identification, we have introduced a novel regime
recognition method that is applied distinctively to factor re-
turns and factor loadings. Specifically, we employ a ”jumping
encoder” to capture the influence of macroeconomic states
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derived from historical stock time series data on factor re-
turns. Additionally, a ”loading encoder” characterizes the in-
fluence of these macro states on factor loadings and idiosyn-
cratic returns. Furthermore, we have devised an innovative
bilevel optimization algorithm for constructing posterior fac-
tors through adversarial learning, which enhances the robust-
ness of the factor constructions and optimizes their predictive
returns. Our findings substantiate the superior performance of
RSAP-DFM compared to alternative baseline methods. The
contributions of our paper are as follows:

1. We propose a stock returns prediction framework named
RSAP-DFM, which discards the artificial factor construc-
tion process by constructing factors sampled from the normal
distribution and posterior factors constructed by adversarial
learning. To the best of our knowledge, we are the first to
propose gradient-based posterior factor construction and op-
timize it in a bilevel form.

2. To the best of our knowledge, in a neural-network train-
ing framework, we propose a dual regime shifting structure
and apply it in DFM, which is the first to describe explicitly,
rather than in a black box, how macroeconomic state affects
stock returns; furthermore, we are also the first to perform
regime shifting in continuous rather than discrete intervals.

3. We conduct a comprehensive array of experiments em-
ploying real stock market data. Experiments on datasets from
the A-share market demonstrate our achievement of an un-
precedented state-of-the-art (SOTA) performance, thus sur-
passing prior benchmarks.

2 Related Works
2.1 Deep Learning in Technical Analysis
Since Alexnet [Krizhevsky et al., 2012] proves the power of
neural networks, the development and application of deep
learning have surpassed imagination. In stock prediction,
technical analysis, as a core area, is particularly suitable for
the application of deep learning models. Technical analy-
sis uses only numerical characteristics of stocks and mar-
kets as data. [Selvin et al., 2017] uses RNN [Rumelhart
et al., 1986], LSTM [Hochreiter and Schmidhuber, 1997],
and CNN-sliding window for stock price prediction. Using
LSTM as the backbone like [Nelson et al., 2017], [Zhang et
al., 2017] also proposes a high-frequency trading prediction
model using only historical data.

Based on traditional neural network models, more ad-
vanced neural networks have been developed for stock fore-
casting. The improvement of classical deep learning models
specific to the stock market becomes an essential direction
of technical analysis, such as adversarial LSTM [Qin et al.,
2017], multi-scale Gaussian prior Transformer [Ding et al.,
2020], and adaptive RNN [Du et al., 2021]. How to better
analyze the volume and price information and correlation re-
lationship of the stock market becomes another major direc-
tion for predicting returns. Existing studies use hypergraph
ranking method [Sawhney et al., 2021], instance-wise graph-
based method [Xu et al., 2021a], optimal transport [Lin et al.,
2021b], and adaptive long-short pattern transformer [Wang et
al., 2022] to deeply characterize the stock information and
relationship. However, research addressing regime switch-

ing via deep learning methodologies remains limited. [Mari
and Mari, 2023] only focuses on energy commodity prices,
while [Wei et al., 2023] learns the hierarchical latent space
by using a moving-average online learning algorithm to iden-
tify discrete market institutions. Different from any regime
switching approach, we believe that market regime shifts in
continuous intervals and maps explicitly.

2.2 Factor Model
Following the traditional definition, the factor model here
only refers to a model in which stock returns are a linear com-
bination of exposure returns on each factor. Traditional fac-
tor models in finance have progressed from the single market
factor in CAPM [Sharpe, 1964] through Ross’s development
of the Arbitrage Pricing Theory [Ross, 2013] and the expan-
sion to multi-factor models like the Fama-French three-factor
model [Fama and French, 1992] and the Carhart four-factor
model [Carhart, 1997]. The latest factor model has developed
hundreds of factors, forming the famous ”factor zoo”.

In dynamic factor models, factors and factor exposures
vary over time and are typically derived from individual char-
acteristics. Dynamic factor models are originally proposed by
Geweke [Geweke, 1977] as a time-series extension of cross-
sectional factor models; for a detailed explanation and col-
lection of traditional dynamic factor models, see [Stock and
Watson, 2011]. However, the dynamic factor model has lim-
itations in that it relies on complex statistical techniques for
factor construction, while machine learning can obscure these
methods as a black box. Unlike the linear assumption of In-
strumented Principal Components Analysis (IPCA) [Kelly et
al., 2019], [Gu et al., 2021] models factor exposures as flex-
ible nonlinear functions of covariates. Furthermore, [Lin et
al., 2021a] proposes a risk factor model to better explain the
variance of stock returns, and [Wei et al., 2022] proposes
a deep multi-factor model to build a dynamic and multi-
relational stock graph in a hierarchical structure. The latest
research is [Duan et al., 2022], which considers using varia-
tional autoencoders to model noise based on [Gu et al., 2021].
However, existing factor models are limited to wrapping each
step of the traditional factor model in machine learning rather
than incorporating new ideas into model design.

3 Preliminaries
In this section, we briefly introduce the dynamic factor model
as a backbone, then define regime shifting and introduce our
problem.

To broadly convey this concept, we consistently utilize the
notation and problem definition outlined below. In the com-
plete set Ω, there are a total of T subsets {xt, rt} sorted in
chronological order: Ω = {{x1, r1}, . . . , {xT , rT }} where
t = 1, . . . , T is the total number of trading days in the data
set. xt ∈ RNt×B×F denotes F features (such as price,
volume, text-data) of Nt stocks in past B time-steps, and
rt ∈ RNt denotes the future returns of Nt cross-sectional
stocks. The goal of this type of problem is to predict cross-
sectional future returns through current characteristics, which
can be summarized as follows:

r̂t = f(xt). (1)
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3.1 Dynamic Factor Model
To fulfill the objective mentioned above, it is imperative to
provide the reader with a comprehensive understanding of
the dynamic factor model. A typical representation of the
dynamic factor model is formulated as follows:

r̂t = αt +
K∑

k=1

β
(k)
t λ

(k)
t + εt, (2)

where rt = (yt+1 − yt)/yt ∈ RNt denotes the future 1-day
returns of Nt stocks at time step t, and yt ∈ RNt denotes the
price at time step t, which can be represented by a variety of
prices, such as the opening price, the closing price, or the vol-
ume weighted average price (VWAP). αt ∈ RNt denotes the
vector of stock idiosyncratic returns, βt ∈ RNt×K denotes
the factor exposure, λt ∈ RK denotes the return vector of K
factors. εt denotes the idiosyncratic noises, with E(εt) = 0.

When it comes to applying machine learning to the dy-
namic factor model, the common practice is to fit an unknown
prediction function f to a large amount of data and predict the
intertemporal return using the historical data of the stock. The
historical data of the stock determines all the parameters of f :

r̂t = f(xt) = α(xt) + β(xt)λ(xt). (3)

3.2 Our Problem
Definition 1. The market environment, also known as the
regime, changing within the continuous interval [a, b] is de-
fined as regime shifting.

Different from the regime switching which changes in the
discrete interval {a, a1, ...bn−1, b}, we believe that the regime
change is in a continuous interval rather than several fixed dis-
crete regimes. This dimension helps illuminate the complex
correlation between economic dynamics and stock return.

Compared with the traditional dynamic factor model, we
introduce our new dynamic factor model by dual dynamic
regime shifting:

r̂ = f(x) = α(x,m) + β(x,m)λ(x,m), (4)

where m denotes regime shifting features. In RSAP-DFM,
m can be adaptively extracted from the cross-sectional stock
features. To avoid notational confusion, we ignore the sub-
script t in the following pages because our goal is to predict
cross-sectional returns, and each prediction will involve only
a subset of Ω.

4 Methodology
In this section, we elaborate on our Regime-Shifting Adap-
tive Posterior Dynamic Factor Model (RSAP-DFM) frame-
work. Figure 1 is the illustration of our RSAP-DFM frame-
work. In this section, we first show how the feature extractor
works for stock hidden states and macro regime embeddings
and present a dual-encoder to handle dual regime-shifting fea-
tures (4.1). Then, we describe our prior factor encoder based
on a multi-head attention mechanism to encode factors with
regime-shifting jumping (4.2). With regime-shifting loading,
we describe our dual dynamic factor model for stock predic-
tion, which combines neural networks to coordinate α, β, and

factors (4.3). After that, we introduce factor posterior follow-
ing the idea of adversarial learning to further modify factor
selection and factor return (4.4). At last, we introduce dual
tasks as a bilevel form and present an innovative two-stage
optimization method for training (4.5).

4.1 Feature Embedding Extractor
Stock Feature Construction
Future stock returns can be predicted by features constructed
from stock time series data. We utilize a GRU model to ex-
tract hidden stock features from x:

zt = σ (Wzx+Uzht−1 + bz) ,

rt = σ (Wrx+Urht−1 + br) ,

h̃t = tanh (Whx+Uh (rt ⊙ ht−1) + bh) ,

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t,

(5)

where ⊙ is Hadamard product, W∗ and U∗ are trainable
weights and biases. In the following section, we use e to
refer to ht.

Dual-Regime-Shifting Encoder Structure
Regime shifting in the dynamic factor model, in our perspec-
tive, assumes a dual role. Firstly, it influences the overall
market’s returns, thereby impacting factor returns. Secondly,
it exerts varying degrees of influence on returns of individual
stocks, consequently altering the factor exposure of stocks.

To avoid providing additional information and thus making
the model incomparable, we dynamically extract macroeco-
nomic features from the stock hidden features e:

m = ϕDM(e), (6)

where m ∈ RM denotes M regime shifting features.
Regime Shifting Jumping Encoder. When we choose
macroeconomic features m, capturing their temporal patterns
is not needed; we just need to know the current regime and
characterize how the regime affects the return of each fac-
tor. Therefore, after extracting relatively low-dimensional
features, the regime shifting jumping encoder ϕRJ must have
components to further project into K-dimensional space:

hrj = LeakyReLU(wrjm+ brj),

erj = ϕrj
pj(h

rj),
(7)

where erj ∈ RK , K is the number of factors.
Regime Shifting Loading Encoder. Similar to ϕRJ, our
regime shifting loading encoder ϕRL also adopts a similar
architecture. Note that the purpose of introducing macroe-
conomic features into the model is to characterize regime
shifting in terms of factor loading, so ϕRL will output lα
and lβ . But unlike ϕRJ, ϕRL shows the different effects of
regime shifting on the factor loadings of different stocks, so
ϕRL needs to introduce the individual features of the stock:

mrl = LeakyReLU(wrl
1m+ brl

1),

hrl = LeakyReLU(wrl
2(m

rl, e) + brl
2),

lα = ϕα
pj(h

rl), lβ = ϕβ
pj(h

rl).

(8)

where lα ∈ RN denotes regime shifting on the α loading,
lβ ∈ RN×K denotes regime shifting on the β exposure.
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Figure 1: Our RSAP-DFM Framework

4.2 Multi-Head Attention-Based Factor Encoder
To enhance the model’s resilience, we incorporate a varia-
tional encoder that introduces stochasticity into factor returns,
thus rendering them as random variables conforming to a nor-
mal distribution. Prior factor encoder ϕprior extracts prior fac-
tors λprior from hidden features of stocks without revealing
future information.

We divide the ”factor mining” process into two perspec-
tives: factor construction and factor return. In traditional fac-
tor investing, each factor reflects a risk premium in the mar-
ket, and the factor construction is usually constructed man-
ually, while the factor return is obtained by using the cross-
sectional order of the factor values to build a long-short com-
bination and there is no relationship between the two.

The ϕprior we design incorporates both factor construc-
tion and factor return: a multi-headed attention mechanism
characterizes factor construction and partial factor return; a
regime shifting factor encoder characterizes the other part of
factor returns from an unbiased global perspective:

[µprior,σprior] = ϕprior(e,m)

:= πprior(ϕatt(e), ϕRJ(m)).
(9)

Formally, ϕatt stitches multiple attention heads together:

k(i) = wkeye
(i),v(i) = wvaluee

(i),

a
(i)
att =

max
(
0, qk(i)

∥q∥2·∥k(i)∥2

)
∑N

i=1 max
(
0, qk(i)

∥q∥2·∥k(i)∥2

) ,
hatt = φatt(e) =

N∑
i=1

a
(i)
att v

(i),

hmulti = Concat([hatt1 , ...,hattK ]).

(10)

Then we merge factor construction with factor return through
πprior to form an end-to-end factor coding process without the

hand-made construction part:

[µprior,σprior] = πprior(hmulti, e
rj),

λprior ∼ N (µprior, diag(σ2
prior)).

(11)

4.3 Dual Dynamic Factor Model
Now that we have explained in detail how to output the opti-
mal prior factors of a dynamic factor model, let us take an-
other look at our problem (4), then reconstruct the model
based on the known prior factors:

r̂ = ϕDDF(e,m,λ) = α(e,m) + β(e,m)λ. (12)

Alpha Layer. In the Alpha layer, we generate idiosyncratic
returns denoted as α, which are derived from latent fea-
tures e. It’s posited that α follows a Gaussian distribution,
characterized as α ∼ N

(
µα, diag

(
σ2
α

))
. Here, the mean

µα ∈ RN and the standard deviation σα ∈ RN are produced
by a distribution network πα := [µα,σα]:

h(i)
α = LeakyReLU

(
wαe

(i) + bα

)
,

µ(i)
α = wαµh

(i)
α + bαµ ,

σ(i)
α = Softplus

(
wασ

h(i)
α + bασ

)
,

(13)

where h
(i)
α ∈ RH denotes the hidden space.

Beta Layer. Beta Layer is tasked with calculating factor ex-
posure β ∈ RN×K which is a linear mapping from the latent
features e:

β(i) = φβ(e
(i)) = wβe

(i) + bβ . (14)

Regime Shifting. Here, we present the dual dynamic factor
model. We believe that regime shifting can be reflected in fac-
tor exposure and stock idiosyncratic returns, where macroe-
conomic information is explicitly mapped into dynamic fac-
tor model. Since market information represented by regime
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shifting is also dynamic, we name the model the dual dy-
namic factor model. We take the form of factor loadings (or
”element-wise multiplication”):

ϕDDF(e,m,λ) = lαα(e) + lββ(e)λ. (15)

Consequently, the output of the dual dynamic factor model,
denoted as r̂ ∈ RN , is also governed by a Gaussian distribu-
tion, specifically r̂(i) ∼ N (µ

(i)
r ,σ

(i)
r ), where

µ(i)
r = l(i)α µ(i)

α +
K∑

k=1

l
(i,k)
β β(i,k)µ

(k)
prior,

σ(i)
r =

√√√√(l(i)2α σ
(i)2
α +

K∑
k=1

l
(i,k)2

β β(i,k)2σ
(k)2

prior

)
.

(16)

4.4 Adaptive Factor Posterior Module
The gradient-based factor posterior absorbs the idea of adver-
sarial learning [Goodfellow et al., 2014] and adds an adaptive
perturbation to the data in a batch to form adversarial fac-
tors λG ∈ RK during each iteration training. We construct a
perturbation such that applying it causes the most significant
change in the prediction compared to the perturbation of the
same size and approximate the predicted returns formed by
λG and future returns, thus enhancing the robustness of prior
factors.

By calculating the MSE loss between predicted returns r̂
and returns r, and calculating the gradient of the loss with
respect to λprior, the adaptive perturbation is constructed:

λG = λprior + ϵ
g⋆

∥g⋆∥
, g⋆ =

∂l (r, r̂)

∂λprior
. (17)

4.5 Our Algorithm
Our basic idea is to construct the model training as a bilevel
optimization form by introducing a posterior factor to con-
struct an adaptive auxiliary training task to improve the per-
formance of the main task. The basic principle of our algo-
rithm is that both the main task and the auxiliary task can
share parameters. Following the thought of traditional fi-
nance, it is a natural choice to separate factor construction
and factor model optimization. We split the model parame-
ters into two parts so that there are two sets of parameters that
can be learned alternately:

minθDLM (x, r; θ∗C , θD) ; s.t.,

θ∗C = argmin
θC

1

|Ωtr|
∑

(x,r)∼Ωtr

E ℓA(x, r; θC , θD). (18)

where Ωtr denotes the training part of Ω, θC denotes the
parameters of factor construction part, θD denotes the param-
eters of dual dynamic factor model part, LM denotes the loss
function of the main task,ℓA denotes the loss function of the
auxiliary task on data (x, r).

Intuitively, we hope that this auxiliary task can promote the
performance of our model on the main task. Here, we choose
gradient-based posterior factors to participate in the construc-
tion of auxiliary tasks to construct more robust factors so as
to minimize the loss of the model on the main task.

Algorithm 1 Optimization Algorithm

Input: Training epochs E; update iterations I; training
dataset Ωtr = {Ω1

Batch, ...,Ω
Ntrain

Batch };
Parameter: Model parameters θC ,θD;
Output: Trained model parameters θC ,θD;

1: for e← 1 : E do
2: Randomly Sample Ωa

Batch from Ω, batch size B1
equals to stock num of Ωa

Batch;
3: Randomly Sample Ωb

Batch from Ω, batch size B2
equals to stock num of Ωb

Batch;
4: for i← 1 : I do
5: For each (x, r) ∈ Ωa

Batch, calculate the loss of aux-
iliary task:
LA =

∑
(x,r)∼Ωa

Batch
ℓA(x, r; θC , θD);

6: Update θC : θC ← θC − (η1/B1)∇θCLA;
7: For each (x, r) ∈ Ωb

Batch, calculate the loss of main
task:
LM =

∑
(x,r)∼Ωb

Batch
ℓM (x, r; θC , θD);

8: Update θD: θD ← θD − (η2/B2)∇θDLM;
9: end for

10: end for
11: return θC ,θD

Our approach is shown in Algorithm 1. The training pro-
cess consists of E epochs: in the inner layer, we fix θD and
optimize θC on the auxiliary task; On the outer layer, opti-
mize θD on the main task by fixing θC . Such algorithm set-
ting can be generalized, but in this experiment, the main task
loss and auxiliary task loss are respectively:

ℓM = MSE (r̂, r) ,

ℓA = MSE (ϕDDF(e,m,λG), r) + MSE (r̂, r) .
(19)

5 Experiments
In this section, we compare our framework with other ma-
jor related works and verify the effectiveness, state-of-the-
art, and robustness of our framework through multiple ex-
periments. The following five questions are explored in the
following experiments:

Question 1: Does our model outperform current state-of-
the-art models in stock prediction?

Question 2: Can bilevel optimization promote the perfor-
mance of our model?

Question 3: Is dual regime-shifting architecture useful for
improving performance?

Question 4: Is the posterior factor we designed better than
the previous methods?

Question 5: Can our model’s superior prediction perfor-
mance generate superior investment performance?

5.1 Experiment Setting
Setting Details. We evaluate the performance of our RSAP-
DFM model on China’s A-share market, which is split
into a training period (2008.01-2014.12), a validation period
(2015.01-2016.02), and a test period (2017.01-2020.08). Our
stock features come from Alpha360 on the Qlib platform
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Baselines

XGBoost[Chen and Guestrin, 2016] A scalable end-to-end tree boosting method.
LightGBM[Ke et al., 2017] A boosting decision tree, with gradient-based one-side sampling and exclusive feature bundling.
MLP A non-linear factor model with multilayer perceptrons, with an LSTM model to extract hidden features from temporal features.
Transformer[Ding et al., 2020] A stock return prediction framework with the transformer architecture.
ALSTM[Qin et al., 2017] A variant of LSTM, which adds an attention mechanism to automatically learn and focus on the information at critical moments.
GATs[Velickovic et al., 2017] A graph attention network that treats each stock as a node to specify different weights to different nodes by stacking layers.
AdaRNN[Du et al., 2021] An adaptive RNN which aims to solve the temporal covariate shift problem of time series.
IGMTF[Xu et al., 2021a] An instance-based graph framework to make predictions using the interdependencies of different variables at different time stamps.
TRA[Lin et al., 2021b] A learning algorithm based on optimal transport for learning multiple stock trading patterns.
TCTS[Wu et al., 2021] A sequence learning model combined with a learnable scheduler that adaptively selects auxiliary tasks for training.
FactorVAE[Duan et al., 2022] A dynamic factor model with the variational autoencoder and prior-posterior learning.

Table 1: Baselines compared to RSAP-DFM framework

CSI100 CSI300 CSI500
Model IC ICIR RANK IC RANK ICIR IC ICIR RANK IC RANK ICIR IC ICIR RANK IC RANK ICIR

XGBoost 0.0517 0.3096 0.0547 0.3744 0.0517 0.4642 0.0596 0.5696 0.0517 0.4642 0.0596 0.5696
LightGBM 0.0502 0.3211 0.0595 0.3858 0.0560 0.4703 0.0654 0.5608 0.0555 0.5286 0.0667 0.6554
MLP 0.0413 0.2466 0.0427 0.2676 0.0358 0.2587 0.0427 0.3246 0.0353 0.2754 0.0460 0.4076
Transformer 0.0475 0.2668 0.0578 0.3435 0.0415 0.3094 0.0564 0.428 0.0396 0.3359 0.0533 0.4624
ALSTM 0.0574 0.3340 0.0655 0.3866 0.0658 0.5394 0.0763 0.6231 0.0586 0.5919 0.0671 0.6737
GATS 0.0583 0.3526 0.0678 0.4208 0.0717 0.5655 0.0804 0.6520 0.0680 0.6628 0.0798 0.7931
AdaRNN 0.0657 0.3865 0.0697 0.4222 0.0640 0.5077 0.0769 0.6148 0.0705 0.7104 0.0833 0.8694
IGMTF 0.0622 0.3678 0.0708 0.4352 0.0669 0.5250 0.0765 0.6196 0.0653 0.6025 0.0771 0.7387
TRA 0.0674 0.4157 0.0755 0.4784 0.0638 0.5207 0.0731 0.6084 0.0688 0.7046 0.0788 0.8214
TCTS 0.0593 0.3429 0.0632 0.3738 0.0763 0.6633 0.0806 0.6828 0.0718 0.7294 0.0834 0.8881
FactorVAE 0.0487 0.3084 0.0518 0.3321 0.0528 0.4417 0.0627 0.5350 0.0606 0.5894 0.0736 0.7491

RSAP-DFM 0.0768 0.4260 0.0870 0.4852 0.0855 0.6194 0.0961 0.6849 0.0854 0.7317 0.1025 0.8770

Table 2: Overall prediction performance on CSI100, CSI300 and CSI500

[Yang et al., 2020]. This dataset provides six basic trans-
action information for stocks over the past 60 days, including
opening − high − low − closing prices, volume weighted
average price (VWAP), and trading volume. We set the la-
bel and forecast target as the daily stock return, defined as
rt = (yt+1 − yt)/yt, yt denotes opening price here because
we believe this better captures the hidden information of the
stock’s history and eliminates the interference of unexpected
situations the next day. Since ST stocks are not included, we
set the batch size to a float equal to the number of stocks in-
cluded in the day. We adopt the Pytorch framework to imple-
ment our model and perform all experiments on the NVIDIA
GEFORCE RTX 2080 GPU.

Baselines. We compare our model with the baseline models
in Table 1, which represent the latest related research.

5.2 Overall Performance Evaluation
In this experiment, we verify the performance evaluation of
our RSAP-DFM. To show the superiority of our model’s pre-
diction performance, we use three significant datasets on the
A-share market (CSI100, CSI300, CSI500) and four indica-
tors commonly used in the academic community to describe
comprehensively: the information coefficient (IC), the infor-
mation ratio of IC (ICIR), the rank information coefficient
(Rank IC), the information ratio of RankIC (RANK ICIR).
Table 2 presents our main experimental results. Compared
with the baseline models, RSAP-DFM achieves all-round
leading prediction performance on all three datasets. Surpris-
ingly, the performance on the different datasets validates the
high robustness of RSAP-DFM. Such results fully demon-
strate the effectiveness of our method (Q1).

5.3 Ablation Study
Bilevel Optimization and Auxiliary Task Can Promote
Model Performance
End-to-end optimization (E2E) via neural networks is widely
employed. In the context of our experiments, we seek to val-
idate the efficacy of our novel approach, which centers on
auxiliary task-based bilevel optimization and its capacity to
enhance model performance. We formulate an end-to-end op-
timization strategy as the baseline against which we compare
our proposed method. Furthermore, we propose a model that
removes a posteriori auxiliary task (RS-DFM) as a baseline,
that is, optimizes for central task performance only. As de-
picted in Table 3, our bilevel optimization approach consis-
tently demonstrates its effectiveness in enhancing model per-
formance across diverse factor model configurations. In the
entire Chinese stock market, our method consistently outper-
forms conventional end-to-end optimization techniques (Q2).

Dual Regime-Shifting Architecture Drives Our Model
Better
In this experiment, we will explain the necessity of our model
components. Therefore, we construct three models that mod-
ify some components: DFM represents the dynamic factor
model part, RSAP-DFM(wo-Jump) represents the removal of
the regime-shifting jumping encoder component, and RSAP-
DFM(wo-Load) represents the removal of the regime-shifting
loading encoder component. These models help analyze the
effectiveness of RSAP-DFM components.

As shown in Table 3, the performance of our model is bet-
ter in almost all metrics than that of the model after changing
the components. The following conclusions can be drawn:
1) Compared with models based on only one region shifting
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Model Method IC ICIR RANK IC RANK ICIR

CSI100

RS-DFM E2E 0.0697 0.3713 0.0802 0.4359
RSAP-DFM E2E 0.0761 0.4426 0.0824 0.4800
DFM E2E 0.0752 0.4134 0.0833 0.4735
RSAP-DFM(wo-Jump) Bilevel 0.0743 0.4020 0.0844 0.4782
RSAP-DFM(wo-Load) Bilevel 0.0738 0.4056 0.0861 0.4852
RSAP-DFM Bilevel 0.0768 0.4260 0.0870 0.4852

CSI300

RS-DFM E2E 0.0791 0.5604 0.0945 0.6556
RSAP-DFM E2E 0.0767 0.5698 0.0922 0.6605
DFM E2E 0.0744 0.4941 0.0901 0.5996
RSAP-DFM(wo-Jump) Bilevel 0.0766 0.5502 0.0907 0.6490
RSAP-DFM(wo-Load) Bilevel 0.0773 0.5390 0.0919 0.6321
RSAP-DFM Bilevel 0.0855 0.6194 0.0961 0.6849

CSI500

RS-DFM E2E 0.0761 0.6703 0.0957 0.8285
RSAP-DFM E2E 0.0743 0.6641 0.0903 0.7790
DFM E2E 0.0826 0.7540 0.0967 0.8762
RSAP-DFM(wo-Jump) Bilevel 0.0767 0.6555 0.0970 0.8453
RSAP-DFM(wo-Load) Bilevel 0.0796 0.6932 0.0948 0.8081
RSAP-DFM Bilevel 0.0854 0.7317 0.1025 0.8770

Table 3: Ablation Study

method, RSAP-DFM based on dual regime shifting can bet-
ter capture macro hidden information. 2) RSAP-DFM bet-
ter encodes market information extracted from stock features
and dynamically injects it into the dual dynamic factor model,
providing the model with more robustness and accuracy (Q3).

5.4 Gradient-Based Posterior Factor Construction
Is Better

Considering the large number of stocks in the real market, we
follow the approach by [Gu et al., 2021; Duan et al., 2022]
and use the portfolio returns instead of the returns of individ-
ual stocks, thus building return-based posterior factors.

The steps of this method are as follows: First, construct P
portfolios, and the stock weights of each portfolio are dynam-
ically redistributed according to the stocks’ latent features e.
Second, introduce r and calculate the return of the portfolios
R. Third, dynamically map R to K Gaussian distributions
through a neural network. Last, extract posterior factors λR

from each of K Gaussian distributions:
wp = Softmax(Linear(e, P)),

R = wT
pr,

µpost = wpostR+ bpost,

σpost = log(1 + exp(wpostR+ bpost)),

λR ∼ N (µpost, diag(σ2
post)),

(20)

where
∑N

i=1 w
(i,j)
p = 1, wp ∈ RN×P denotes stock weight

of P portfolios, w(i,j)
p denotes the weight of i-th stock in j-th

portfolio, R ∈ RP denotes the returns of P portfolios.
Based on λG and λR, we use three other auxiliary tasks as

baselines to verify the superiority of our auxiliary tasks:

ℓ1A = KL(Pϕprior(λ|x), Pϕpost(λR|x, r)),
ℓ2A = KL(Pϕprior(λ|x), Pϕpost(λR|x, r))

+ MSE (ϕDDF(e,m,λR), r) ,

ℓ3A = KL(Pϕprior(λ|x), Pϕpost(λR|x, r))
+ MSE (ϕDDF(e,m,λR), r) + MSE (ϕDDF(e,m,λ), r) .

(21)
Table 4 presents a comparative prediction analysis of the

four models. Compared with the existing and popular poste-
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Figure 2: Average Investment Performance

rior factor construction methods, our new gradient-based pos-
terior factor can steadily bring superior performance (Q4).

DataSet Model IC ICIR RANK IC RANK ICIR

CSI100

RSAP-DFM-ℓ1 0.0672 0.3788 0.0734 0.4203
RSAP-DFM-ℓ2 0.0737 0.3980 0.0843 0.4634
RSAP-DFM-ℓ3 0.0645 0.3432 0.0802 0.4394
RSAP-DFM 0.0768 0.4260 0.0870 0.4852

CSI300

RSAP-DFM-ℓ1 0.0757 0.5440 0.0892 0.6466
RSAP-DFM-ℓ2 0.0736 0.5298 0.0882 0.6292
RSAP-DFM-ℓ3 0.0689 0.4741 0.0838 0.5820
RSAP-DFM 0.0855 0.6194 0.0961 0.6849

CSI500

RSAP-DFM-ℓ1 0.0685 0.5934 0.0878 0.7538
RSAP-DFM-ℓ2 0.0760 0.6486 0.0952 0.8133
RSAP-DFM-ℓ3 0.0839 0.7613 0.1008 0.9271
RSAP-DFM 0.0854 0.7317 0.1025 0.8770

Table 4: Posterior Comparison

5.5 Investment Performance
We adopt the most common investment strategy named
Long/Short Strategy to demonstrate our profitability. We rank
prediction scores from highest to lowest and divide them into
five groups, where the first group is assigned to long posi-
tions and the fifth group to short positions, with adjustments
made each trading day. Our model significantly outperforms
the baselines in terms of average cumulative long-short return
and Sharpe ratio across three datasets in Figure 2 (Q5).

6 Conclusion
In this paper, we present RSAP-DFM, a novel adaptive dual
dynamic factor model with regime-shifting and bilevel op-
timization, which can adaptively extract macroeconomic in-
formation into the dynamic factor model in a regime-shifting
manner to improve model performance. The explicit macroe-
conomic information mapping method improves the inter-
pretability of our model and provides a new perspective for
future research. Our model effectively exploits the hidden
features of stock time-series data with the relationship recon-
struction between factor construction, factor return and fac-
tor exposure. We have also verified the effectiveness of our
model in the real stock market. In the future, we plan to fur-
ther verify the universality of our proposed dual regime shift-
ing method and apply it to other methods.
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