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Abstract

Existing efforts on human tracking using wireless
signal are primarily focused on constrained scenar-
ios with only a few individuals in empty spaces.
However, in practical unconstrained scenarios with
severe interference and attenuation, accurate multi-
person tracking has been intractable. In this paper,
we propose NeuralTBD, utilizing the capability of
deep models and advancement of Tracking-Before-
Detect (TBD) methodology to achieve accurate hu-
man tracking. TBD is a classical tracking method-
ology from signal processing accumulating mea-
surement in time domain to distinguish target traces
from interference, which however relies on hand-
crafted shape/motion models, impeding efficacy in
complex indoor scenarios. To tackle this challenge,
we build an end-to-end learning-based TBD frame-
work leverages the advanced modeling capabilities
of deep models to significantly enhance the perfor-
mance of TBD. To evaluate NeuralTBD, we col-
lect an RF-based tracking dataset in unconstrained
scenarios, which encompasses 4 million annotated
radar frames with up to 19 individuals acting in
6 different scenarios. NeuralTBD realizes a 70%
improvement in performance compared to conven-
tional TBD methods. To our knowledge, this is the
first attempt dealing with RF-based unconstrained
human tracking. The code and dataset will be re-
leased.

1 Introduction

Passive human tracking which predicts multiple target trajec-
tories without requiring body-worn sensors, is one of the most
fundamental yet challenging topics in wireless sensing [Thor-
mann et al., 2018; Zhang et al., 2019a; Zhang et al., 2019b;
He et al., 2020]. Previous efforts employ thresholding on sig-
nal measurement to maintain high tracking accuracy. How-
ever, hard-thresholding presents severe performance degrada-
tion encountering complex indoor scenarios. Higher thresh-
old leads to increased number of false alarms, referring
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Figure 1: Comparisons of TBD method and our proposed Neu-
ralTBD. Each column depicts the RGB view, RF heatmap, TBD
output, and NeuralTBD output sequentially. The top row illustrates
tracking results in constrained scenes (a single person in an obstacle-
free space), where both TBD and our proposed NeuralTBD perform
well. The bottom row illustrates tracking results in unconstrained
scenes (multiple individuals acting in an obstacle-rich space), where
TBD demonstrates significant performance degradation and Neu-
ralTBD maintains consistent accuracy as constrained scenarios.
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to false positive tracks, while lower threshold leads to the
loss of true positives. To resolve this problem, researchers
adopted classical tracking-before-detect (TBD) method to ag-
gregate information of data sequence to distinguish targets
from interference [Grossi et al., 2013; Jiang er al., 2017,
Zhou et al., 2019].

TBD accumulates trace-level measurement from trace pro-
posals, and detects true target trajectory according to hand-
crafted shape/motion model. With deliberately designed
model, TBD can accurately distinguish target trajectories
from false alarms. As depicted in Figure 1, in constrained sce-
narios involving a few individuals moving in empty spaces,
TBD achieves satisfying detection/tracking accuracy. How-
ever, in practical unconstrained scenarios involving signifi-
cant human targets acting randomly in the space with various
obstacles, TBD suffers from performance degradation. This
is due to the fact that TBD relies on handcrafted signal model,
which is difficult to handle time-varying distribution of tar-
get reflections in complex indoor scenarios. To address this
problem, we build an end-to-end learning based TBD model
which utilizes strong modeling capability of deep models to
further unleash the power of TBD. This involves resolving
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two key challenges.

The primary challenge is how to achieve TBD through
deep models. To aggregate temporal information, our Neu-
ralTBD learn to accumulate inter-frame information with the
help of trace center supervision, and then predicts trace off-
sets at each position to inference trace proposals. Specifically,
Neural TBD first extracts frame-wise deep features to adapt to
the time-varying reflection distribution and motion pattern of
targets. After that, it predicts per-pixel probabilities for trace
centers and temporal offset sequences to generate trace pro-
posals. Final traces are then extracted by filtering out false
positives from these proposals.

The second challenge lies in the absence of a public dataset
for unconstrained indoor human tracking. The main reason is
that RF signal is not human readable and hard to annotate,
especially in scenes with severe interference. To address this,
we present the RF-UNIT (RF-based Unconstrained Indoor
Tracking) dataset. It contains 4,030,880 radar heatmaps
(about 56 hours) collected under 6 different office scenes with
at most 19 individuals performing daily life activities. To al-
leviate the workload of manual labeling, we design an anno-
tation algorithm, utilizing well-developed vision-based meth-
ods to annotate RF heatmaps. This allows us to generate full
tracking annotations for the RF-UNIT dataset. We believe
that the release of RF-UNIT would encourage more innova-
tions on RF-based sensing. The main contributions of this
paper can be summarized as follows:

1. To the best of our knowledge, we are the first to tackle
the RF-based human tracking problem under uncon-
strained indoor scenarios. By leveraging the advance-
ment of deep models and TBD, we expand the scope of
RF-based tracking and provide novel insights of aggre-
gating target information for real-world applications.

2. We propose Neural TBD, which is a brand-new learning-
based tracking-before-detect framework, utilizing deep
models to adapt to time-varying target reflection distri-
bution while preserving the temporal information aggre-
gation capabilities of TBD. NeuralTBD realizes a 70%
improvement in performance compared to conventional
TBD methods.

3. We present the RF-UNIT dataset, which encompasses
million-level radar heatmaps of at most 19 individuals
in multiple different scenarios. To our knowledge, RF-
UNIT is the first fully-annotated large-scale RF dataset
for indoor human tracking in unconstrained indoor sce-
narios.

2 Related Works

2.1 Tracking-Before-Detect

In contrast to detect-then-track techniques that typically
impose frame-wise detection on input data to determine
the presence of target and then perform tracking. Track-
Before-Detect (TBD) methods engage with either raw data
or minimally processed data and output target trajectories.
TBD methods can be classified into single-frame recursive
TBD (SFR-TBD) method and multi-frame TBD (MF-TBD)
method.

SFR-TBD methods estimate target states at each time step
by sequentially predicting and updating intermediate parame-
ters which are then used to construct target trajectories. Typ-
ical algorithms include particle filters [Garcia-Fernandez et
al., 2013], histogram-PMHT [Davey, 2014], and random fi-
nite set algorithms [Hoseinnezhad et al., 2012]. MF-TBD
[iang et al., 2017; Zhou et al., 2019] methods accumulate
target energy along physically feasible trajectories between
multiple consecutive frames achieving superior tracking per-
formance under interference. Typical MF-TBD approaches
include the Hough transform [Moyer ef al., 20111, maximum
likelihood probabilistic data association (ML-PDA) [Ciuonzo
et al., 2014], velocity matched filtering [Zhou and Wang,
2019], and dynamic programming (DP) [Zhang et al., 2021].

Despite yielding promising results, TBD methods still lack
robustness in handling complex scenarios due to handcrafted
shape/motion model priors, resulting in degraded perfor-
mance in unconstrained indoor tracking scenarios.

2.2 Learning-Based Tracking

Existing learning-based tracking algorithms can be classified
into separate detection and embedding (SDE) style and joint
detection and embedding (JDE) style. SDE algorithms [Wo-
jke et al., 2017; Wojke and Bewley, 2018] separates the tasks
into detection and embedding, while JDE models [Zhang et
al., 2020b] learning detection and embedding simultaneously
within a shared neural network. Building upon high-accuracy
detectors, such as [Ren et al., 2017; Redmon et al., 2016;
Zhu et al., 2020], SDE style algorithms dominate learning-
based tracking. Both SDE and JDE style tracking meth-
ods fundamentally follow the tracking by detection pipeline
which highly relies on the performance of detectors.
Although remarkable results have been achieved by
learning-based tracking methods, directly adopt them into our
situation is infeasible. Specifically, in unconstrained human
tracking scenarios using RF signals, severe interference lead
to significant false alarms which pose challenges in frame-
wise detection of targets. Therefore, we proposed to utilize
the advancement of TBD and the strong modeling capabil-
ity of deep models to aggregate temporal information and
achieve accurate tracking in unconstrained scenarios.

2.3 RF-Based Dataset

To advance the development of learning-based approaches in
wireless sensing, efforts has been made in building RF dataset
of various applications. Examples include object detection
[Caesar er al., 2020; Wang et al., 2021b], action recognition
[Singh er al., 2019; Sengupta et al., 2020], pose/mesh pre-
diction [Sengupta er al., 2020; Xue et al., 2021; Chen et al.,
2022; Wu et al., 2022], gait [Meng er al., 2020], gesture [Pali-
pana et al., 2021], and rehabilitation [An and Ogras, 2021;
An et al., 2022]. Existing RF dataset focused on constrained
scenarios involving limited number of individuals perform-
ing scheduled actions in an empty space without obstacles.
However, things are different in practical unconstrained in-
door sensing situation. The presence of dozens of individuals
and obstacles poses great challenges in sensing tasks.

To facilitate the development of learning-based methods in
unconstrained scenarios, we collect RF-UNIT, which as we
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Figure 2: The architecture of NeuralTBD. NeuralTBD consists of three components: feature extraction module, temporal accumulation
module and trace regression module. Firstly, the feature extraction module extracts frame-wise features from RF heatmaps to fit targets’
shape/motion model. Secondly, the temporal accumulation module fuses temporal information to generate temporal accumulated features.
Finally, the trace regression module inference trace proposals followed by thresholding to filter out false alarms and outputs final traces. As
shown in this figure, our accumulated heatmap Y clearly depicts the positions of targets that are difficult to distinguish in the input heatmaps.

know is the first large-scale RF datasets for unconstrained in-
door human tracking scenarios. RF-UNIT dataset comprises
4,030,880 radar heatmaps collected under six office scenes
with at most 19 individuals, each paired with corresponding
tracking annotations. We hope RF-UNIT can offer valuable
insights for designing RF-based deep learning models.

3 NeuralTBD

As depicted in Figure 2, NeuralTBD is an end-to-end, three-
stage, learning-based TBD framework that comprises a fea-
ture extraction module, a temporal accumulation module, and
a trace regression module. It takes RF heatmap sequence of
input and fits targets’ shape/motion model with feature ex-
traction module. And then, it utilizes temporal accumulation
module to aggregate temporal information and further aug-
ment targets features. At last, it adopts trace regression model
to predict trace proposals followed by thresholding to elimi-
nate false positives and produce final tracking results. In the
following subsections, we provide an in-depth exploration of
each components.

3.1 Feature Extraction

The biggest problem brought by interference in wireless sens-
ing is multi-path effect, which is a fundamental and challeng-
ing problem in RF-based sensing applications. It becomes
more challenging in unconstrained scenarios (involving mul-
tiple individuals acting in an obstacle-rich space), where the
reflections from multi-paths can be stronger than that from
targets. There are generally two kinds of multi-path interfer-
ence, static multi-paths and dynamic multi-paths, with dif-
ferent characteristics. Static multi-paths refer to reflections
from stationary objects in the environment, whereas dynamic
multi-paths are caused by the movement of individuals, as de-
picted in Figure 3. To alleviate static multi-paths, we leverage
the distinct characteristics of reflected signals from moving
targets and static objects in the time domain.

Dynamic Multipath
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o
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Figure 3: Illustration of the static and dynamic multi-path effect in
unconstrained indoor environment. Static multi-path is caused by
stationary objects in the environment, such as workstations, com-
puters, and other items. Dynamic multi-path is caused by human
activities and motion occlusions.

Concretely, the reflections from moving individuals vary
over time, while the reflections of static multi-paths remain
consistent. Assuming we have a heatmap sequence S’ =
{s;}, where t is the time index, we can remove static multi-
paths by subtracting consecutive frames in time, as repre-
sented in the following equation:

S = {st|st = 541 — s4}- (1)

On the other hand, signals to and from targets may be oc-
cluded, refracted and scattered by other moving objects in
unconstrained scenarios, leading to significant alterations in
the distribution of reflections. This presents a formidable
challenge for TBD methods in accurately identifying tar-
get traces due to limited modeling capability of handcrafted
shape/motion priors. To overcome this challenge, we propose
to utilize the modeling capability of deep models to adapt to
the dynamic changes of targets’ reflections.

Specifically, given an input heatmap sequence S €
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Dataset Scene n-frames annotation modality max n-subs/frame  application
mRI indoor 160k 2D/3D keypoints, categories camera, depth, IMU, radar 1 indoor sensing
MARS indoor 40k 2D/3D keypoints, categories radar 1 rehabilitation
mmPose indoor 40k 2D/3D keypoints, categories radar 1 indoor sensing
mmBody indoor 200k 3D keypoints 3D keypoints, mesh 1 indoor sensing
mmActivity indoor 16k categories radar 1 indoor sensing
mmMesh indoor 3k 3D keypoints, categories camera, radar 1 indoor sensing
mmGait indoor 1080k 2D point-wise, track id radar 5 gait
HuPR indoor 14k 2D/3D keypoints radar, camera 1 indoor sensing
Radar Scenes outdoor 23k 2D point-wise, track id, categories radar, camera 7 autonomous driving
CRUW outdoor 396k heatmap, categories radar 5 autonomous driving
HIBER indoor 800k 2D/3D keypoints radar, camera 2 pose
RF-UNIT(Ours) indoor 4030k 2D bbox, track id radar 19 indoor sensing

Table 1: RF-based Dataset Comparisons

RIXWXT 'we adopt a multi-layer convolution network with

skip connections as backbone extractor E, producing frame-

wise features h; € R% * % *C for each frame s¢, where R
is the down-sampling ratio. These features are then passed
through a compression network C, which transforms high-
dimensional but sparse features into low-dimensional and
dense features to condense target information and outputs a
compressed feature sequence H'. Therefore, our feature ex-
traction module can be represented as

hy = E(St)7 ()
H' = {hj|h; = C(ly),t =0,...,T}. 3)

3.2 Temporal Accumulation

Besides the dramatic changes in the target’s reflections, se-
vere dynamic multi-paths also result in significant false
alarms with identical reflection distributions as targets, mak-
ing them difficult to distinguish.

As the number of individuals increases, the occlusion and
refraction of signal is increased due to mutually interference
between moving individuals which introduces greater noise
and intensifies the false-alarms issues. The main difference
between true targets and false alarms is their continuity over
time. Concretely, target positions change continuously due
to limited moving speed. However, the positions of false
alarms undergo rapid and erratic variations, influenced by the
arrangement of objects within the environment.

TBD aggregates temporal information to distinguish tar-
get measurement from noise. Inspired by that, we propose
a learning based temporal aggregation module to amplify
target feature and suppress noise. Our temporal accumula-
tion module comprises a temporal accumulator T'A and a
propose head P. The temporal accumulator integrates tar-
get information over an extended time period through multi-
ple Long-Short-Term-Memory (LSTM) layers. The propose
head employs multiple convolution layers to predict a confi-
dence map, indicating potential trace centers.

Specifically, given the compressed feature sequence H’,
we first pass it through T'A followed by mean operation
across LSTM layers to obtain temporal-fused sequence fea-

tures Y. To supervise the temporal accumulation and target
augmentation process of T' A, we introduce propose head P,

generating a confidence heatmap Y € R%*%. Each Yw,y =

1 corresponds to a potential trace center, while Yz,y =0
represents the background. Meanwhile, we put each scaled
Ho W
ground-truth trace centers onto a heatmap ¥ € [0,1]7* &
using a Gaussian kernel followed by the element-wise maxi-
mum between any overlapped gaussians.
Our temporal accumulation module can be represented as

Y' = Mean(TA(H")), 4)
Y =P@Y). Q)

To address the significant imbalance between the number
of positive and negative samples, we take the focal loss, noted
as L, as training objective of P.

To recover the discretization error caused by the output

stride R, we additionally predict an offset O € RE*xx2
for each candidate trace center. The training objective of off-
set prediction can be expressed as

1 ~
Lo:ﬁgnoc—OcHQ. (6)

By supervising the confidence map Y generated by TP
with ground-truth confidence maps Y, the temporal accumu-
lation module will learn to distinguish regions containing tar-
get motions from those not by aggregating and augmenting
target information in time domain.

3.3 Trace Regression

Build upon the temporally aggregated features, we are able to
inference per-position trace proposals using trace regression
module. Our trace regression module composed of multiple
convolution layers, to predict the positional offset relative to

trace center at each timestamp. Specifically, our trace regres-

xC as in-

sion head takes compressed features Y € REX®
put, predict positional offsets Q € R%* % *T*2 for traces
centered at each position at each timestamp, where 7" denotes
the length of input sequence, and the last dimension indicates
horizontal and vertical offsets, respectively. We adopt L1 loss
as training objective of trace regression module, denoted as
L,. After training is finished, we threshold trace proposals ac-
cording to predicted confidence scores to remove false alarms
and output target traces.
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Figure 4: Data samples of our collected RF-UNIT dataset. The first row demonstrates the RGB images of six office scenarios. The second
row illustrates corresponding RF heatmaps and tracking annotations. Each frame spans a spatial region of 9m x 10m. Our dataset consists
of different number of individuals and obstacles leading to severe interference.
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Figure 5: Statistics for the ratio of frame-level static and dynamic
human targets in six environments. In practical office scenarios, in-
dividuals typically remain in one position for most of the time.
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Figure 6: Statistics for the number of individuals in each scene ex-
pressed as ratios. Predominantly, the frames contains between 6
to 15 individuals. Notably, the maximum number of individuals
reaches 19, surpassing the counts observed in other RF datasets.
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The overall objective is formulated as follows:
L=L.+L,+L,. @)

Leveraging the modeling capacities of deep model and the
advancement of TBD, NeuralTBD learn to aggregate tempo-
ral information to overcome the severe interference without
handcrafted efforts, and effectively predict target traces.

4 Dataset

Learning-based methods show promise to outperform tradi-
tional methods but are often limited by substantial data needs.
While many RF-based datasets have been introduced , they
typically cover a narrow range of scenarios with few human
subjects, leaving a gap in data for unconstrained indoor envi-
ronments.

Addressing this, we introduce RF-UNIT, a large-scale RF
dataset for human tracking in diverse, unconstrained indoor
settings. RF-UNIT comprises 4,030,880 radar frames from
six office environments and includes scenes with up to 19 in-
dividuals, surpassing other public datasets that typically con-
tains only single individual. We provide an extensive com-
parison with other RF datasets in Table 1. As can be seen in
Figure 4, RF-UNIT is specifically tailored for real-world of-
fice environments, featuring a variety of obstacles and materi-
als, including wood and metal, that affect signal propagation
and cause notable interference. We detail individual counts
per scene in Figure 6 as well as dynamic/static counts per
scene in Figure 5. Most of the heatmaps in RF-UNIT con-
tains 5-15 individuals. RF-UNIT stands as the first dataset
of million-level scale for multi-person RF tracking in uncon-
strained scenarios.

We will introduce the hardware setup, data collection, data
processing and automatic annotation methods next.

4.1 Hardware Settings

We use a TI MMWCAS-RF-EVM FMCW radar with 12
transmitters and 16 receivers offering 1.4-degree horizon-
tal resolution, working at 77GHz and 1.23GHz bandwidth,
mounted at 2.2m height. To minimize human annotation ef-
forts, we employ an 18-node Raspberry Pi camera network,
calibrated with Zhang’s 2000 algorithm [Zhang, 2000], to au-
tomatically annotate data aided by vision-based techniques.
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4.2 Data Collection

Deploying the well-calibrated multi-camera system in new
environments can be highly time-consuming. To build a di-
verse dataset efficiently, we re-positioned our radar within a
pre-setup scene, simulating varied RF environments and re-
ducing the time-intensive deployment of multi-camera sys-
tem. We leveraged NTP for millisecond-level synchroniza-
tion between the radar and camera systems, with TCP for
timestamp signal exchanges. With the cameras running at
10 fps and the radar at 20 fps, we conducted 112 data collec-
tion from six unique locations at different time of a day, each
lasting 30 minutes. The total collection spans 36 days.

4.3 Data Processing

We perform signal processing algorithm to transform RF sig-
nals captured by FMCW radars into heatmap sequences. In-
spired by [Zhang et al., 2018; Zhang et al., 2019b; Zhang et
al., 2021], we compensate the phase shift and combine the
signals of different antennas and frequencies, which coher-
ently superimposes the signals from specific locations while
suppressing the signals from other locations. In our track-
ing situation, we mainly concern about signals on horizontal
plane. Specifically, RF signals from a specific location (z, y)
can be extracted using the following equation:

K M

, jor dm)famy)
Shm*(z?yvt) = Z Z Ak m,t € koo (8)

k=1m=1

where a denotes the amplitude of signal, sy, ,, ; denotes the
k-th sample of FMCW sweep on the m-th antenna at time
t, Mg is the signal wavelength of the k-th sample, d,,(z,y)
denotes the round-trip distance from the transmitting antenna
to location (z,y) and back to the receiving antenna.

4.4 Automatic Annotation

The massive collection of over 4 million RF frames, coupled
with the severe interference encountered in unconstrained en-
vironments, makes manual annotation a daunting and time-
consuming task.

To deal with this problem, we developed an automatic an-
notation algorithm composed of three key stages: camera-
specific head detection, cross-camera triangulation, and clus-
tering. Concretely, we employed YOLOv4 [Bochkovskiy et
al., 2020], trained on the crowd-human dataset, for head de-
tection in footage from each camera. The centers of these de-
tections are projected as rays emitting from respective cam-
eras. By solving intersection points of rays from different
cameras, we are able to estimate 3D human positions. Lastly,
we refine these estimates by applying mean-shift clustering to
mitigate noise followed by a Kalman Filter to construct tar-
get trajectories. We conduct manual annotation corrections to
uphold the precision of the tracking annotations.

As shown in Figure 4, our dataset is collected under uncon-
strained practical indoor office scenarios, encompassing chal-
lenging situations, such as diverse obstacles, varying numbers
of people (up to 19), overlapping between targets, and com-
plex human activities. We believe our RF-UNIT dataset will
aid in the advancement of learning-based methods of wireless
sensing.
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Method AP} MOTA?MOTP, IDF1t IDP{ IDRf
MTrack 0378 0.031 0715 0.112 0333 0.068
ME-TBD 0.521 0.130 0.861 0.151 0423 0.092
MKCF-TBD  0.333 0.031 0.867 0071 0.410 0.039
RODNet* 0.842 0349 0475 0271 0383 0213
Ours 0.885 0.420 0465 0.448 0.586 0.372

* indicates this method is followed by Kalman Filter.

Table 2: Comparisons between ours and baseline methods

| NeuralTBD

SEQ LEN ‘ 6 12 24 48 ‘ 6 12 24 48

TA | v v v v
AP T 0.447 0.458 0.455 0.445 | 0.852 0.871 0.885 0.872
MOTA 1 | 0.088 0.087 0.102 0.095 | 0.254 0.341 0.420 0.398
MOTP | | 0.427 0.429 0.430 0.431 | 0.509 0.475 0.465 0.420
IDF1 1 0.152 0.211 0.268 0.342 | 0.246 0.323 0.448 0.533
IDP 1t 0.348 0.427 0.493 0.582 | 0.342 0.459 0.586 0.670
IDR T 0.099 0.143 0.190 0.250 | 0.196 0.257 0.372 0.462

Table 3: Ablation Experiments

5 Experiments

5.1 Implementation Details

In this section, we present the evaluation results of Neu-
ralTBD on RF-UNIT dataset. We first preform group-wise
shuffle on RF-UNIT and divide data into train, validation,
and test subset, following 8:1:1 ratio. All evaluations are re-
ported on test sets. NeuralTBD is designed to deal with RF
heatmap sequence within a fixed time-window. Therefore,
we adopt sliding window strategy to deal with long sequence.
At each step of this process, we retain trace results that ex-
hibit a higher confidence score and/or a lower Intersection
over Union (IoU) with pre-existing traces, ensuring both ac-
curacy and minimal redundancy. We employ the Adam opti-
mizer with initial learning rate of 1.0x 102 and weight decay
of 0.05. During the training process, we adopt a step-based
learning rate decay strategy. All experiments are conducted
on a single NVIDIA A100 GPU with a batch size of 16.

5.2 General Performance

To showcase the performance of our NeuralTBD on the
RF-UNIT dataset, we conducted comparative experiments
against baseline methods, including both TBD and learning
based methods:

e MF-TBD [Grossi et al., 2013]: MF-TBD associates
CFAR segmentation results across frames according to
IoU and shape similarity to propose traces. And then it
retains those with trace energy higher than a threshold.

* MKCF-TBD [Zhou et al., 2019]: MKCF-TBD im-
proves MF-TBD using kernel methods which better
models target distribution of reflections.

* MTrack [Zhang et al., 2020a]: MTrack is a graph-based
TBD method. It constructs a directed graph based on
CFAR segmentation results and subsequently solves for
the shortest path to accomplish tracking tasks.
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NeuralTBD

RODNet

MKCF-TBD MTrack

MF-TBD

Figure 7: Qualitative results of comparisons. The boxes indicate the endpoints of traces, while the curves represent traces from the recent
past. Our proposed NeuralTBD achieves higher detection/tracking precision and recall. It maintains traces for extended periods, whereas
other methods mostly report trace fragments. NeuralTBD reports fewer false alarms. This exemplifies the significant improvement brought

by combining learning-based and TBD.

* RODNet [Wang et al., 2021al: RODNet is a learning-
based radar object detection method. We performs
kalman filter on the detection results of RODNet to out-
put trace predictions.

Table 2 shows that our NeuralTBD significantly outperforms
traditional methods, achieving a higher AP of 0.885, com-
pared to the substantially lower scores of MF-TBD (0.521),
MKCF-TBD (0.333), MTrack (0.378), and RODNet (0.842).
These results underline the limitations of conventional TBD
techniques in detecting human targets indoors.

Furthermore, our method achieves a substantially higher
IDF1 score of 44.8%, exceeding other methods. This signi-
fies that Neural TBD undergoes fewer trace mismatches and
ID switches when processing long sequences. In addition,
the MOTA value of 0.420 illustrates that Neural TBD provides
superior target-locating capabilities. These metrics highlight
the efficacy and advancement of our learning-based TBD ap-
proach.

The qualitative results in Figure 7 further demonstrate the
advantages of our method over baseline approaches. Base-
lines exhibit substantially more false alarms, with long target
traces fragmented into shorter segments. In contrast, our ap-
proach produces fewer false alarms and successfully tracks
targets over extended periods. This highlights the effective-
ness of our method in leveraging deep models’ robust repre-
sentational capabilities to differentiate targets from noise and
clutter. Moreover, it fully capitalizes on the benefits of TBD
to accomplish long-term tracking in unconstrained settings.

5.3 Ablation Study

In this subsection, we provide ablation results on temporal
accumulation module (denoted as TA) and on different input
sequence length. Refer to Table 3 for the detailed experimen-
tal outcomes.

Temporal Accumulation Module
To assess the effectiveness of temporal accumulation mod-
ule, we substituted it with CFAR segmentation followed by
kalman filter to inference trace proposals, while keeping the
other modules unchanged.

The experimental results demonstrate a substantial de-
crease in performance when the temporal accumulation mod-
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ule is omitted for all input sequence lengths. In particular,
the AP score drops from 0.885 to 0.455, and the MOTA value
decreases from 0.420 to 0.102 with an input sequence of 24
frames. This underscores the significant enhancement in trace
localization achieved through temporal accumulation. Over-
all, these outcomes validate the effectiveness of our Neu-
ralTBD approach.

Time Domain Analysis
Constrained by hardware limitations, our NeuralTBD accu-
mulates information within a fixed time window, termed the
accumulation window, to predict target motions. To further
analyze the impact of the accumulation window length, we
conduct experiments varying the input sequence duration. As
shown in Table 3, NeuralTBD exhibits significant perfor-
mance gains as the input sequence lengthens. For example,
when the input sequence increases from 6 to 24 frames, the
AP, MOTA, and IDF1 values rise from 0.852, 0.254, 0.246 to
0.885, 0.420, 0.448, respectively. This implies longer accu-
mulation windows yield enhanced tracking accuracy.
However, NeuralTBD experiences a performance bottle-
neck once the sequence surpasses 24 frames. We assume this
relates to the long-term modeling capacity of NeuralTBD.

6 Conclusion

This study explores human tracking of unconstrained indoor
environments, introducing NeuralTBD which builds a brand-
new learning-based TBD framework, utilizing strong model-
ing capability and advancement of TBD to aggregate tem-
poral information and address multi-path effects. To train
NeuralTBD, we also collected RF-UNIT, the first large-scale
public RF dataset for unconstrained indoor human tracking,
comprising 4 million heatmaps with at most 19 individuals
collected from six different scenarios. NeuralTBD realizes a
70% improvement in performance compared to conventional
TBD methods. RF-UNIT as well as Neural TBD are valuable
resources for propelling RF-based tracking and downstream
applications, empowering the community to develop robust
solutions for practical wireless settings. The dataset and code
will be public.
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