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Abstract
Accurately predicting antibody-antigen binding
residues, i.e., paratopes and epitopes, is crucial
in antibody design. However, existing meth-
ods solely focus on uni-modal data (either se-
quence or structure), disregarding the complemen-
tary information present in multi-modal data, and
most methods predict paratopes and epitopes sep-
arately, overlooking their specific spatial interac-
tions. In this paper, we propose a novel Multi-
modal contrastive learning and Interaction infor-
mativeness estimation-based method for Paratope
and Epitope prediction, named MIPE, by using
both sequence and structure data of antibodies and
antigens. MIPE implements a multi-modal con-
trastive learning strategy, which maximizes rep-
resentations of binding and non-binding residues
within each modality and meanwhile aligns uni-
modal representations towards effective modal rep-
resentations. To exploit the spatial interaction in-
formation, MIPE also incorporates an interaction
informativeness estimation that computes the esti-
mated interaction matrices between antibodies and
antigens, thereby approximating them to the ac-
tual ones. Extensive experiments demonstrate the
superiority of our method compared to baselines.
Additionally, the ablation studies and visualiza-
tions demonstrate the superiority of MIPE owing to
the better representations acquired through multi-
modal contrastive learning and the interaction pat-
terns comprehended by the interaction informative-
ness estimation.

1 Introduction
An antigen (Ag) is a typical protein that elicits an immune re-
sponse in the human body, while antibodies (Ab) are flexible
Y-shaped proteins [Graves et al., 2020]. The antigen inter-
acts with the antibody and then initiates immune responses.
As shown in Figure 1, these binding residues on antibodies
and antigens are known as paratopes and epitopes [Garcı́a-
Sánchez et al., 2023], respectively. The identifying epitopes

Epitope
Paratope

Figure 1: The interaction map between HexaBody-CD38 Fab and
CD38 (PDB: 8BYU).

help to construct epitope-based antibodies while confirming
paratopes allows precise mutation of binding regions, opti-
mizing properties like affinity [Rangel et al., 2022]. Tradi-
tionally, researchers employed wet experiments such as X-ray
crystallography, nuclear magnetic resonance spectroscopy,
and cryoelectron microscopy for identifying paratopes and
epitopes [Schotte et al., 2003; Bax and Grzesiek, 1993;
Zhou, 2008]. However, these approaches are often costly,
time-consuming, and struggle to cope with the scale of
rapidly emerging high-throughput data [Dutta et al., 2015].

Due to the special structure of antibodies, CDR regions
are more prone to conformational changes, resulting in more
complex interaction patterns, and the general methods for
proteins cannot perform well on paratope and epitope pre-
diction. In recent years, plenty of computational methods
have been developed for paratope and epitope prediction.
These methods are roughly classified into three categories:
machine learning-based methods, deep learning-based meth-
ods, and pre-trained language model-based methods. The ma-
chine learning-based methods [Olimpieri et al., 2013; Daber-
daku and Ferrari, 2018] extracted the hand-crafted features
of antibodies and antigens, and fed the features into classi-
fiers (e.g., SVM, random forest) to predict paratopes and epi-
topes. The deep learning-based methods [Deac et al., 2019;
Xu and Zhao, 2022] utilize multi-layer neural networks, in-
cluding convolutional neural networks (CNNs), and equivari-
ant graph neural networks (EGNNs), to extract representa-
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tions from input data. Currently, pre-trained language models
(PLMs) like ESM-1b, and ProtTrans are trained on extensive
protein sequences across various downstream tasks, including
the paratope and epitope prediction [Clifford et al., 2022].

The existing methods have made great progress in paratope
and epitope prediction. However, given the specificity of
antibodies, the prediction of paratopes and epitopes still
faces many challenges. In particular, the scarcity of labeled
paratopes and epitopes is always a problem to be solved, pos-
ing a challenge in extracting abundant information from lim-
ited data. Additionally, paratope and epitope prediction con-
tains three tasks: single paratope/epitope prediction, and joint
paratope-epitope prediction. However, existing methods usu-
ally focus on one of them and do not consider all three tasks.

Multi-modal information from sequences and structures
could provide richer complementary knowledge on limited
data. Effectively leveraging the multi-modal information of
antibodies and antigens may improve paratope and epitope
prediction, but still remains challenging. Antibodies (anti-
gens) have multiple paratopes (epitopes), leading to poten-
tial binding with different counterparts. However, existing
methods extract representations solely from antibodies (anti-
gens) to predict paratopes (epitopes), but they fail to ex-
ploit the information on how epitopes are specifically bound
to paratopes, especially in single paratope/epitope predic-
tion. Therefore, incorporating the antibody-antigen interac-
tion information into models could further enhance the per-
formances of paratope and epitope prediction.

To address these challenges, we propose a novel Multi-
modal contrastive learning and Interaction informativeness
estimation-based method for Paratope and Epitope predic-
tion, named MIPE. Specifically, we introduce multi-modal
contrastive learning (CL) to effectively integrate the modal
information from sequences and structures. Within each
modality, we deploy the intra-CL to maximize representa-
tions of binding and non-binding residues; between different
modalities, we deploy the inter-CL to align uni-modal repre-
sentations towards effective modal representations, reducing
the impact of noise. Furthermore, we devise a knowledge-
driven module named interaction informativeness estimation,
which utilizes multi-head attention layers to compute the at-
tention matrices for antibodies and antigens, aiming to cap-
ture the specific interaction patterns between them.

In summary, the main contributions of this paper are de-
scribed as follows:

• We introduce a multi-modal contrastive learning strategy
that learns the representation of paratopes and epitopes
by applying intra-CL and inter-CL to multi-modality se-
quence and structure data.

• We devise an interaction informativeness estimation to
approximate the estimated matrix to the actual antibody-
antigen interaction map, which guides the model to learn
the specific patterns of the antibody-antigen interactions.

• Extensive experiments show that MIPE achieves com-
petitive performance in paratope and epitope prediction,
and also results in promising performance even utilizing
AlphaFold2-generated structures as substitutes for real
structures which are unavailable.

2 Related Work

For the paratope and epitope prediction, existing computa-
tional methods focus on three tasks: single paratope pre-
diction, single epitope prediction, and joint paratope-epitope
prediction. For instance, Parapred [Liberis et al., 2018] em-
ploys the CNN and BiLSTM networks and integrates fea-
tures from both the local residue domain and the entire anti-
body sequence for paratope prediction. Paragraph [Chinery
et al., 2022] utilizes EGNNs to extract 3D representations
of the antibody’s CDR regions for paratope prediction. For
single epitope prediction, NetBCE [Xu and Zhao, 2022] ex-
tracts sequence features of antigens and employs BiLSTMs
and CNNs to learn the representations to predict epitopes.
BepiPred-3.0 [Clifford et al., 2022] leverages ESM-2 to ob-
tain sequence representation of antigens and subsequently
employs various classifiers (e.g., FFNN and CNN) for epitope
prediction. For joint paratope-epitope prediction, [Honda et
al., 2020] proposed a cross-attention network to encode both
the antigen and antibody sequences. Epi-EPMP [Del Vecchio
et al., 2021] designed a graph attention neural network, in-
corporating the encoding of the structural graphs of both the
antibody and antigen. In general, an ideal prediction method
is deemed to perform well on all three tasks.

Although existing methods produce good performances,
they typically concentrate on uni-modal data (sequences or
structures) while overlooking the information across multi-
modal data. Studies have shown that multi-modal data
can offer complementary information [Rahate et al., 2022],
and such multi-modal based approaches have been success-
fully applied in various fields, e.g., drug-target interaction
and protein-protein interaction [Zhang and Kabuka, 2019;
Xia et al., 2023; Wang et al., 2024]. To fill the gap, we
propose a multi-modal contrastive learning strategy for the
sequence-structure modality fusion to learn better representa-
tion for the paratope and epitope prediction.

As mentioned above, the antibody-antigen interactions re-
flect how paratopes and epitopes are bound, which could
benefit the paratope and epitope prediction, but such ex-
plicit interaction information hidden in the known antigen-
antibody complexes has not been exploited in the previous
studies [Honda et al., 2020; Del Vecchio et al., 2021]. More-
over, the lack of explicit binding information from structures
may undermine the performance of the prediction model and
also hinder the model from proficiently analyzing the inter-
action patterns. To address this issue, we present an in-
teraction informativeness estimation strategy to facilitate the
model’s learning of interaction patterns, guided by the actual
antibody-antigen interaction map.

3 Methodology

In this section, we first formulate the problem of paratope
and epitope prediction. Subsequently, we introduce the com-
ponents of the proposed method MIPE, which includes multi-
modal encoders, multi-modal contrastive learning, and inter-
action informativeness estimation, as illustrated in Figure 2.
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Figure 2: The overview of our proposed MIPE. The yellow part is the multi-modal encoders, the green part is the multi-modal contrastive
learning, the red part is the interaction informativeness estimation, and the gray part is the prediction.

3.1 Problem Formulation
An antibody or antigen in the antibody-antigen complex can
be represented as a sequence-structure tuple (S,C). S =
[si]

M
i=1 stands for the residue arrangements where si is the

type of residue i, and C = [ci]
M
i=1 stands for the backbone co-

ordinates where ci is a Cartesian coordinate of the Cα atom
in residue i. Binding residues are determined by identify-
ing residues within a Euclidean distance threshold between
the antibody and the antigen, and paratopes/epitopes refer to
binding residues on the antibody/antigen.

Given a set of known antibody-antigen complexes, we can
obtain the dataset containing sequence and structure data of
antibodies and antigens, the annotated paratopes and epi-
topes, and the interaction map. The objective of our study is
to train a model using the dataset and then apply it to predict
paratopes and epitopes of new antibodies and antigens.

3.2 Multi-Modal Encoders
To build our model, the first step is to characterize the se-
quences and structures of antibodies and antigens, by using a
sequence encoder and a structure encoder.

For sequences, we initialize them as residue-type features
(one-hot encoding with 20 dimensions): xs ∈ RM×20. Then,
we implement the sequence-based encoder to obtain the em-
bedding from xs, formalized as follows:

hs = Fs(x
s) (1)

where Fs consists of a pre-trained network[Rives et al., 2021;
Olsen et al., 2022], a dilated convolutional neural network[Yu
and Koltun, 2016], and a recurrent network[Huang et al.,
2015] consecutively.

For structures, we build the structure encoder as follows.
First, we construct a 3D graph based on residue coordinates
and add three different types of edges to the graph. If the se-
quential distance between the i-th residue and the j-th residue
is below a predefined threshold dseq , the edge between these
two residues is considered a sequential edge. If the Euclidean
distance between two residues is smaller than a threshold
dradius, the edge between them is regarded as the radius
edge. To ensure the density of spatial edges is comparable
among different graphs, for each residue, si, the k residues
with the smallest Euclidean distances to it are considered its
K-nearest neighbors, and the edges between them are consid-
ered as K-nearest neighbor edges. Herein, we set dseq = 3,
dradius = 10Å, K = 8. For each node in the graph, we
construct an initial 62-dimensional physicochemical feature:
xc ∈ RM×62 (see details in Appendix 1). Following [Zhang
et al., 2022], we employ the equivariant graph convolutional
layers to learn and update the graph:

hl+1, sl+1 = EGCL[hl, sl, E ] (2)

where l denotes the number of layers. h = {hc
1, ..., h

c
M}

represents the set of node embeddings, which are initialized
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with xc. s = {s1, ..., sM} is the set of residue coordinates.
E = (eij), eij denotes the feature of the edge between node
i and j. Finally, we apply an MLP over the updated embed-
dings of all nodes to produce the output embeddings for the
residues of antibodies and antigens.

3.3 Multi-Modal Contrastive Learning
After encoding sequences and structures, it becomes crucial
to fuse their embeddings for the paratope and epitope predic-
tion. Mutual information (MI) offers an effective measure for
assessing nonlinear dependencies between variables, which
compels the alignment of modal data and facilitates the shar-
ing of crucial information [Liu et al., 2023]. Along this line,
we bring in contrastive learning (CL) to align sequences and
structures by maximizing their MI in the embedding space
[Zhu et al., 2023]. Specifically, we devise the multi-modal
CL strategies with intra-CL and inter-CL, as follows:
Intra-CL. To better discriminate residues between binding
and non-binding in both sequences and structures, it is desir-
able for the binding residues to cluster together while being
distant from non-binding ones in the embedding space. To
do so, in a given antibody/antigen with length M , we define
the binding residue i as the anchor, another binding residue j
as the positive instance, and the non-binding residue k is re-
garded as a negative instance. Then, we maximize the MI be-
tween binding residues while minimizing the MI between the
binding and non-binding residues at the sequence and struc-
ture levels. The objective of intra-CL is to minimize the fol-
lowing InfoNCE-based [Chen et al., 2020] loss function:

Lintra = − 1

M

M∑
i=1,j ̸=i

(
log

E(hs
i , h

s
j)∑M

k=1 1[k ̸=i]E(hs
i , h

s
k)

+log
E(hc

i , h
c
j)∑M

k=1 1[k ̸=i]E(hc
i , h

c
k)

) (3)

where hs
i /hc

i represent the sequence/structure representation
of residue i (refers to the anchor), j means the residue in-
dices consistent with the label of residue i; 1[k ̸=i] ∈ {0, 1}
is an indicator function evaluating to 1 if k ̸= i; E(·, ·) is the
cosine similarity function with the temperature coefficient to
measure the MI score between two variables.
Inter-CL. To acquire dependable multi-modal representa-
tions of antibodies/antigens, it is preferable to reduce the
prediction bias in different modalities and strengthen their
consistency. Inspired by [Zou et al., 2023], we bring in an
inter-CL to encourage modalities with both correct uni-modal
predictions to share a stronger correspondence. Specifically,
for the learned sequence and structure representations of
residues, we utilize two pre-trained probabilistic discrimina-
tors for calculating their pseudo labels:

psi = fs(hs
i ), pci = f c(hc

i ). (4)

where fs/f c is the sequence-based/structure-based discrim-
inator (see details in Appendix 1), psi /pci stands for the ob-
tained pseudo labels of residue i.

If the obtained labels of both sequence and structure (psi ,
pci ) are consistent with the original labels, corresponding hs

i

and hc
i are regarded as positive pairs, forming the set of all

positive pairs (denoted as P). If the obtained labels of both
sequence and structure are inconsistent with the original la-
bels, they are defined as negative pairs, denoted as N. Ad-
ditionally, when only one of the predicted binding labels is
consistent with its original label, these two modal representa-
tions are defined as a semi-positive pair S. The objective is to
minimize the following loss function:

Linter = −log

∑
i∈P,SE(hs

i , h
c
i )∑

j∈BE(hs
j , h

c
j)) +

∑
i,j∈B∧i̸=j E(hs

i , h
c
j))
(5)

where B = P ∪ S ∪ N. In addition to N, different modal
embeddings of distinct residues need to separate their repre-
sentations; therefore, when i ̸= j, they are also considered
negative pairs.

Above inter-CL can optimize the similarity of positive and
semi-positive pairs toward a higher value while optimizing
the similarity of negative pairs toward a smaller value. The
reason behind this design is twofold: (1) for samples with
incorrect predictions in both modalities, we aim to enhance
the dissimilarity between their uni-modal representations to
obtain more complementary representations; (2) for samples
with mutually exclusive predictions, we encourage the align-
ment of ineffective modality with the effective one by lever-
aging uni-modal predictions as supervision signals.

Furthermore, we fuse the sequence and structure represen-
tations through point-wise addition:

h = hs ⊕ hc (6)

3.4 Interaction Informativeness Estimation
How epitopes are specifically bound to paratopes is a cru-
cial question overlooked by existing research. Therefore, in-
corporating the interaction between antibodies and antigens
could further enhance the performances of paratope and epi-
tope prediction. Here, we design an interaction informative-
ness estimation (IIE) to incorporate the interaction maps into
the model prediction.

First, we deploy the transformer encoder to estimate in-
teraction maps between antibodies and antigens from the
learned representations [Vaswani et al., 2017]. The estimated
matrix A can be defined by the following cross-attention
layer:

A = softmax

(
QKT

√
d

)
V (7)

where the antibody (or antigen) representations of sequence
and structure are integrated as the query Q = hab (or Q =
hag), the antigen (or antibody) representations serve as the
key and value K = V = hag (or K = V = hab), d de-
notes the representation dimension of residues. After that,
we can obtain the antibody-oriented and antigen-oriented at-
tention matrices: Aab ∈ RM×N and Aag ∈ RN×M , where
Aab(i, j)/Aag(i, j) represents the binding score between the
i-th residue on the antibody/antigen and the j-th residue on
the antigen/antibody.

Both Aab and Aag encapsulate the estimated antibody-
antigen interaction matrix. Our objective is to approximate
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these two estimated matrices towards the actual antibody-
antigen interaction map, facilitating the model in capturing
specific interaction patterns and thereby enhancing overall
performance. This process enables the model to learn and
represent the complexities inherent in antibody-antigen inter-
actions more effectively. With the actual antibody-antigen in-
teraction map Â ∈ RM×N , we minimize their distance by the
following BCE loss:

LIIE = −
(
Â logAab + (1− Â) log (1−Aab) +

Â logAT
ag + (1− Â) log

(
1−AT

ag

)) (8)

3.5 Prediction and Model Training
For paratope and epitope prediction, the embedding of each
residue on the antibody and antigen (hab and hag) derived
from the transformer encoders are individually inputted into
MLP-based predictors Fab and Fag . These predictors assess
the probability of a residue being the paratope/epitope:

ŷab = Fab(hab), ŷag = Fag(hag) (9)
The supervised loss of the paratope prediction can be formu-
lated as follows:

Lab = − 1

M

M∑
i=1

(yabi log (ŷabi) + (1− yabi) log (1− ŷabi))

(10)
where yabi indicates the ground-truth label of the i-th residue
of the antibody. Similarly, the loss for the epitope prediction
is defined as Lag .

By combining the loss functions for Intra-CL, Inter-CL,
IIE, the paratope prediction, and the epitope prediction, the
overall objective function for model training is defined as:

L =αLCL + βLIIE + γ(Lab + Lag). (11)
where α, β, γ represents a hyperparameter to balance the con-
tributions of different tasks.

4 Experiments
4.1 Experimental Settings
Datasets. From the publicly accessible Structural Antibody
Database (SAbDab), we collected a total of 7571 antibody-
antigen complexes, with the sequence data in FASTA format
and structural data in PDB format. Following previous stud-
ies [Pittala and Bailey-Kellogg, 2020], we used CD-HIT [Li
and Godzik, 2006] to remove high-homology antibody and
antigen sequences with the thresholds of 95% and 90% se-
quence identity, respectively. Subsequently, we excluded an-
tibodies and antigens with any residue type rather than 20
naturally occurring types. Finally, we compiled a dataset con-
sisting of 626 binding antibody-antigen pairs, including their
sequences, structures, and corresponding interaction maps.
Noteworthy, antibodies primarily bind to antigens through
their CDR regions. Most researchers use Euclidean distance
to define paratopes and epitopes, and we follow the usual way
in our dataset: within the CDR regions/antigen, a residue is
labeled as a paratope/epitope if the Euclidean distance be-
tween its backbone atom and any backbone atom on the other
antigen/CDR regions is less than 4.5 Å.

Baselines. We compared our MIPE with the following
methods for the paratope and epitope prediction at three dif-
ferent tasks. For the single paratope prediction, the Parapred
[Liberis et al., 2018], AG-Fast-Parapred [Deac et al., 2019],
PECAN [Pittala and Bailey-Kellogg, 2020] and Paragraph
[Chinery et al., 2022] are listed as the baselines. For the sin-
gle epitope prediction, we took BepiPred-3.0 [Clifford et al.,
2022], NetBCE [Xu and Zhao, 2022] and PECAN [Pittala
and Bailey-Kellogg, 2020] as the baselines. PesTo [Krapp et
al., 2023] is a method used to predict protein binding sites and
is applicable to both the single prediction task for paratopes
and epitopes. Additionally, for the joint paratope-epitope pre-
diction, we leveraged the [Honda et al., 2020] and Epi-EPMP
[Del Vecchio et al., 2021] as the compared methods.
Evaluation metrics. We randomly split the dataset, allocat-
ing 90% binding antibody-antigen pairs for cross-validation
(CV) and reserving the remaining 10% for an independent
test set. For the CV set, we implemented the 5-fold CV. Fur-
thermore, we performed independent testing, in which the
model was trained on the CV set and evaluated on the sep-
arate and previously untouched independent test set. Fol-
lowing previous studies, we employed three evaluation met-
rics to evaluate the performance of paratope and epitope pre-
diction. Due to the class imbalance in binding and non-
binding residues, the area under the precision-recall curve
(AUPR) is the primary metric for measuring the predictive
performance. We also reported the metrics, such as the
area under the receiver operating characteristic curve (AUC)
and the Matthews correlation coefficient (MCC), consistent
with prior research, to facilitate the comparisons. Notably,
the reported values are aggregated across five random seeds.
Details about the datasets, baselines, metrics, and imple-
mentations can be found in Appendix 2. Our code, data,
and appendix are available on GitHub (https://github.com/
WangZhiwei9/MIPE)

4.2 Performance Comparison
Table 1 shows the performances of MIPE and baselines in
three tasks of the paratope and epitope prediction. To im-
plement different tasks, we simultaneously train these com-
ponents and two distinct predictors for joint paratope-epitope
prediction, while separately training these components and a
predictor for single paratope/epitope prediction. The results
indicate the following observation: (1) For the single paratope
prediction, our MIPE outperforms these baselines by an av-
erage of up to 7.1% in terms of AUC and 2.0%-12.9% in
AUPR and produces slightly lower MCC than PECAN. (2)
For the single epitope prediction, we observed a decline in
overall performance compared to paratope prediction. In-
deed, compared to antibodies, sequences and structures of
antigens are more variable, and make the epitope predic-
tion much more difficult [Akbar et al., 2021]. Nevertheless,
our method still produces satisfying results. Compared to
the sequence-based approaches BepiPred-3.0 and NetBCE,
MIPE surpasses them by 0.7% and 7.8% in AUC, respec-
tively. Compared with the structure-based methods PECAN
and PesTo, MIPE improves AUC scores by 1.2% and 21.5%.
(3) For the joint paratope-epitope prediction, our method pro-
duces the best performance in terms of all metrics, particu-
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Task Method
Paratope Epitope

AUC AUPR MCC AUC AUPR MCC
Parapred 0.868±0.002 0.652±0.002 0.503±0.001 - - -
AG-Fast-Parapred 0.883±0.004 0.612±0.003 0.548±0.003 - - -

Single PECAN 0.915±0.000 0.713±0.001 0.558±0.001 - - -
Paratope Paragraph 0.927±0.000 0.650±0.000 0.488±0.001 - - -

Prediction PesTo 0.856±0.001 0.721±0.001 0.433±0.003 - - -
MIPE 0.927±0.000 0.741±0.000 0.554±0.001 - - -
MIPE (AlphaFold2) 0.910±0.000 0.723±0.000 0.531±0.001 - - -
BepiPred-3.0 - - - 0.774±0.001 0.395±0.004 0.292±0.002
NetBCE - - - 0.845±0.000 0.517±0.000 0.239±0.002

Single PECAN - - - 0.637±0.001 0.201±0.004 0.150±0.003
Epitope PesTo - - - 0.840±0.000 0.437±0.002 0.247±0.002

Prediction MIPE - - - 0.852±0.000 0.504±0.000 0.225±0.002
MIPE (AlphaFold2) - - - 0.842±0.001 0.450±0.002 0.213±0.003

Joint [Honda et al., 2020] 0.854±0.002 0.670±0.002 0.489±0.004 0.593±0.006 0.240±0.04 0.077±0.004
Paratope-Epitope Epi-EPMP 0.878±0.000 0.712±0.003 0.493±0.002 0.720±0.002 0.254±0.002 0.114±0.006

Prediction MIPE 0.894±0.000 0.738±0.000 0.531±0.003 0.815±0.000 0.422±0.001 0.235±0.006
MIPE (AlphaFold2) 0.863±0.000 0.694±0.000 0.508±0.003 0.795±0.000 0.320±0.001 0.204±0.005

Table 1: Comparison results of MIPE and baselines on three tasks. Note that the highest score in each column is in bold and the second-best
score is underlined. ’-’ represents that the method is unsuitable for the current task.

larly excelling in predicting epitopes. Compared to [Honda
et al., 2020] and Epi-EPMP, our MIPE exceeded their per-
formance in the epitope prediction by 9.5% and 22.2% in
AUC, 16.8% and 18.2% in AUPR, and 12.1% and 15.8% in
MMC. But joint paratope-epitope prediction underperforms
compared to single paratope/epitope prediction, which is be-
cause the joint prediction needs the simultaneous training loss
of two predictors designed for paratopes and epitopes, while
single paratope/epitope prediction only one loss needs to be
considered. Simultaneously constraining two distinct types
of losses poses a challenge for the model, leading to perfor-
mance degradation. (4) It’s worth noting that compared to the
general protein binding site prediction method, PesTo, MIPE
achieved better performance in both single paratope and sin-
gle epitope predictions. In summary, MIPE demonstrates su-
periority over the baseline methods for all three tasks, show-
ing great promise for paratope and epitope prediction.

In practical use, the structures of antibodies and antigens
are not always available, primarily due to the costs of ex-
perimental acquisition, which hinder the model from pre-
dicting binding residues for the new antibodies and anti-
gens. Fortunately, recent years have witnessed the success of
AlphaFold2, which can generate structures from sequences.
Herein, we use the AlphaFold2-generated structures in the
prediction process. As illustrated in Table 1, MIPE (Al-
phaFold2) with the generated structures still produces com-
petitive performances in terms of various metrics compared
to the baselines for three tasks and performs slightly lower
than the vanilla MIPE, indicating that our model can be ap-
plicable to new antigens and antibodies without structures.

4.3 Ablation Study
To illustrate the necessity of each module, we conducted sev-
eral comparisons between MIPE and its variants:

• MIPE (w/o CL) that removes the multi-modal con-
trastive learning module.

• MIPE (w/o IIE) that removes the interaction informa-
tiveness estimation module.

• MIPE (w/o CL & IIE) that removes both the multi-
modal contrastive learning and interaction informative-
ness estimation modules.

• MIPE (w/o Sequence) that removes the sequence input.

• MIPE (w/o Structure) that removes the structure input.

Figure 3 indicates the comparisons of MIPE and its vari-
ants in joint paratope-epitope prediction (additional ablation
processes can be found in Appendix 3). When removing the
multi-modal contrastive learning (w/o CL), we observed a de-
cline in all metrics. Similarly, the exclusion of both the se-
quence and structure encoder (w/o Sequence and w/o Struc-
ture) also resulted in a decrease across all metrics. These find-
ings underscore the significance of leveraging multi-modal
data and aligning them through contrastive learning. Addi-
tionally, the results from the variant MIPE (w/o IIE) indicate
that utilizing the interaction informativeness estimation mod-
ule to differentiate between binding and non-binding residues
significantly contributes to the predictive performance, even
in the absence of complex information. As anticipated, the
performance of MIPE experienced a substantial drop when
both the multi-modal contrastive learning and informative-
ness estimation modules were removed (w/o CL & IIE).
Overall, the above results emphasize the critical role played
by these components in enhancing the model’s effectiveness.

To assess the efficacy of our proposed multi-modal CL and
IIE, we performed t-SNE visualizations. Previous experi-
ments have shown that our model exhibits a favorable distinc-
tion between binding and non-binding residues on antibod-
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Figure 3: Results of MIPE and its variants in joint paratope-epitope
prediction.

ies/antigens, which is also reflected in the ability to discrim-
inate these sites on each antibody/antigen effectively. Here,
we randomly select an antigen and utilize t-SNE to visual-
ize its embedding after the sequence encoder, structure en-
coder, multi-modal CL, and IIE. We utilize the Silhouette
Coefficient (SC) to assess the clustering effectiveness of dif-
ferent embeddings. As shown in Figure 4, initially scattered
embeddings after sequence and structure encoders gradually
differentiate between binding and non-binding residues af-
ter multi-modal and IIE. Meanwhile, the enhanced SCs also
affirm the modules’ capability to extract reliable representa-
tions and discern binding and non-binding residues.

4.4 Antibody-Antigen Binding Analysis
To further test our model’s capability of capturing effective
antibody-antigen interaction patterns, we randomly selected
two antigen-antibody complexes (PDB: 3KR3, PDB: 7KQ7)
from the PDB database as references, and employed MIPE to
predict the corresponding binding residues. We visualized the
actual and predicted antibody-antigen interaction maps using
PyMOL. As shown in Figure 5, the left panel represents the
results of the Fab antibody and insulin-like growth factor-II
receptor [Dransfield et al., 2010], with 39 experimental val-
idated binding pairs of paratopes and epitopes, and MIPE
could correctly predict 24 pairs, achieving a recall score of
64%. Additionally, the right panel denotes the results of the
Fab antibody and the Interleukin-21 receptor [Campbell et al.,
2021]. MIPE predicts 23 pairs out of 38 true pairs, yielding
a recall score of 61%. The results show that MIPE can effec-
tively capture the interaction patterns between antibodies and
antigens, providing reliable information for the prediction.
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Figure 4: The t-SNE visualization for the embeddings after sequence
encoder (a), structure encoder (b), multi-modal CL (c), and interac-
tion informativeness estimation (d).

Recall = 64%

PDB: 3KR3 PDB: 7KQ7

Recall = 61%

Figure 5: The binding visualization for antibodies and antigens, with
residues from antibodies highlighted in blue and residues from anti-
gens in red. Reference binding residues are represented by lines,
while predictive binding residues are indicated by sticks. Examples
of the predictive interactions are plotted in dotted lines with yellow
color.

5 Conclusion

In this paper, we propose a multi-modal contrastive learn-
ing and interaction informativeness estimation-based method
MIPE, which uses both sequence and structure data for
paratope and epitope prediction. Specifically, the multi-
modal contrastive learning strategy is designed to maximize
representations of binding and non-binding residues within
each modality and meanwhile align uni-modal representa-
tions towards effective modal representations. Moreover,
the interaction informativeness estimation module incorpo-
rates the interaction maps from the known complexes into the
model and learns the specific patterns of interactions to en-
hance the performances. Experimental results demonstrate
the effectiveness of MIPE and the importance of the above-
mentioned components.
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paratope prediction using graph neural networks with min-
imal feature vectors. Bioinformatics, 39(1):btac732, 11
2022.

[Clifford et al., 2022] Joakim Nøddeskov Clifford, Mag-
nus Haraldson Høie, Sebastian Deleuran, Bjoern Peters,
Morten Nielsen, and Paolo Marcatili. Bepipred-3.0: Im-
proved b-cell epitope prediction using protein language
models. Protein Science, 31(12):e4497, 11 2022.

[Daberdaku and Ferrari, 2018] Sebastian Daberdaku and
Carlo Ferrari. Antibody interface prediction with
3D Zernike descriptors and SVM. Bioinformatics,
35(11):1870–1876, 11 2018.

[Deac et al., 2019] Andreea Deac, Petar VeliČković, and
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GonĂ§alo J. L. Bernardes, Stefano Ricagno, Ju-
dith Frydman, Michele Vendruscolo, and Pietro Sor-
manni. Fragment-based computational design of anti-
bodies targeting structured epitopes. Science Advances,
8(45):eabp9540, 2022.

[Rives et al., 2021] Alexander Rives, Joshua Meier, Tom
Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi
Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma, et al.
Biological structure and function emerge from scal-
ing unsupervised learning to 250 million protein se-
quences. Proceedings of the National Academy of Sci-
ences, 118(15):e2016239118, 2021.

[Schotte et al., 2003] Friedrich Schotte, Manho Lim, Timo-
thy A. Jackson, Aleksandr V. Smirnov, Jayashree Soman,
John S. Olson, George N. Phillips, Michael Wulff, and
Philip A. Anfinrud. Watching a protein as it functions
with 150-ps time-resolved x-ray crystallography. Science,
300(5627):1944–1947, 2003.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems,
30, 2017.

[Wang et al., 2024] Yongkang Wang, Xuan Liu, Feng
Huang, Zhankun Xiong, and Wen Zhang. A multi-modal
contrastive diffusion model for therapeutic peptide gener-
ation. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(1):3–11, Mar. 2024.

[Xia et al., 2023] Xiaoqiong Xia, Chaoyu Zhu, Fan Zhong,
and Lei Liu. MDTips: a multimodal-data-based

drug–target interaction prediction system fusing knowl-
edge, gene expression profile, and structural data. Bioin-
formatics, 39(7):btad411, 06 2023.

[Xu and Zhao, 2022] Haodong Xu and Zhongming Zhao.
Netbce: an interpretable deep neural network for accurate
prediction of linear b-cell epitopes. Genomics, Proteomics
& Bioinformatics, 20(5):1002–1012, 10 2022.

[Yu and Koltun, 2016] Fisher Yu and Vladlen Koltun. Multi-
scale context aggregation by dilated convolutions. In
Yoshua Bengio and Yann LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings, 2016.

[Zhang and Kabuka, 2019] Da Zhang and Mansur Kabuka.
Multimodal deep representation learning for protein in-
teraction identification and protein family classification.
BMC bioinformatics, 20(16):1–14, 2019.

[Zhang et al., 2022] Zuobai Zhang, Minghao Xu, Ar-
ian Rokkum Jamasb, Vijil Chenthamarakshan, Aurelie
Lozano, Payel Das, and Jian Tang. Protein representation
learning by geometric structure pretraining. In First Work-
shop on Pre-training: Perspectives, Pitfalls, and Paths
Forward at ICML 2022, 2022.

[Zhou, 2008] Z Hong Zhou. Towards atomic resolution
structural determination by single-particle cryo-electron
microscopy. Current opinion in structural biology,
18(2):218–228, 2008.

[Zhu et al., 2023] Ye Zhu, Yu Wu, Kyle Olszewski, Jian
Ren, Sergey Tulyakov, and Yan Yan. Discrete Contrastive
Diffusion for Cross-Modal Music and Image Generation,
February 2023.

[Zou et al., 2023] Heqing Zou, Meng Shen, Chen Chen,
Yuchen Hu, Deepu Rajan, and Eng Siong Chng.
Unis-mmc: Multimodal classification via unimodality-
supervised multimodal contrastive learning. arXiv preprint
arXiv:2305.09299, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6061


	Introduction
	Related Work
	Methodology
	Problem Formulation
	Multi-Modal Encoders
	Multi-Modal Contrastive Learning
	Interaction Informativeness Estimation
	Prediction and Model Training

	Experiments
	Experimental Settings
	Performance Comparison
	Ablation Study
	Antibody-Antigen Binding Analysis

	Conclusion

