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Abstract
Hand gesture recognition (HGR) plays a pivotal
role in natural and intuitive human-computer inter-
actions. Recent HGR methods focus on recogniz-
ing gestures from vision-based images or videos.
However, vision-based methods are limited in rec-
ognizing micro hand gestures (MHGs) (e.g., pinch
within 1cm) and gestures with occluded fingers.
To address these issues, combined with the elec-
tromyography (EMG) technique, we propose Be-
yondVision, an EMG-driven MHG recognition sys-
tem based on deep learning. BeyondVision con-
sists of a wristband-style EMG sampling device
and a tailored lightweight neural network BV-Net
that can accurately translate EMG signals of MHGs
to control commands in real-time. Moreover, we
propose a post-processing mechanism and a weight
segmentation algorithm to effectively improve the
accuracy rate of MHG recognition. Subjective and
objective experimental results show that our ap-
proach achieves over 95% average recognition rate,
2000Hz sampling frequency, and real-time micro
gesture recognition. Our technique has been ap-
plied in a commercially available product, intro-
duced at: https://github.com/tyc333/NoBarriers.

1 Introduction
Hand gesture recognition (HGR) is a longstanding task
in machine learning [Mohamed et al., 2021][Guo et al.,
2021][Rawat et al., 2023][Wu et al., 2023]. Existing HGR
methods are mainly divided into two classes: vision-based
methods (e.g., [Shamayleh et al., 2018]) and wearable-
device-based methods (e.g., [Das et al., 2017; Lauss et al.,
2022]). Recently, most HGR literature focus on recognizing
gestures from images or videos sampled by vision sensors,
such as depth cameras [Zengeler et al., 2018] and RGB cam-
eras [Zhu et al., 2023].

However, as shown in Figure 1, the vision-based HGR
methods are typically limited in finger occlusion, and are in-
sensitive to micro hand gestures (MHGs) (e.g., pinch within

∗The corresponding author.

Figure 1: Top and middle: vision-based HGR methods cannot ac-
curately recognize gestures with occluded fingers (e.g., the top views
are the same when the thumb is moving). Bottom: vision-based
methods are insensitive to MHG (e.g., pinch within 1cm), especially
recognizing whether two fingers are in contact. Unlike visual repre-
sentation, the corresponding EMG signals are changing significantly
(red boxes).

1cm, fingers touching each other) [Ling et al., 2020]. In fact,
MHGs are even more effective than large-amplitude gestures,
in human-computer interactions. First, MHGs reduce user
fatigue and are less physically demanding, which is vital in
prolonged interactions. Second, MHGs are more natural and
intuitive like human daily behaviors, which improves the user
experiences.

To address the issues of finger occlusion and MHG insen-
sitivity, combined with the electromyography (EMG) tech-
nique [Merletti and Farina, 2016; Eddy et al., 2023] that mea-
sures the muscle’s electrical activities during movement, we
propose BeyondVision, an EMG-driven micro HGR system
based on deep learning. Compared with vision-based meth-
ods, our EMG-driven method directly captures the underly-
ing muscle activities of MHGs, which is not affected by fin-
gers’ view angle and occlusion. Compared with EMG-based
HGR methods, traditional literature (e.g., Ninapro [Atzori
and et al., 2015]) typically employs the general EMG gesture
databases, and focuses on large-amplitude gestures without
involving MHG recognition. In contrast, our BeyondVision
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is a novel method proposed to implement EMG-driven MHG
recognition. Although Meta shows a demo video of similar
techniques [Facebook, 2021], they have not released any aca-
demic literature or completed product.

BeyondVision consists of a wristband-style EMG sam-
ple device, and a corresponding lightweight convolutional
neural network (CNN) BV-Net. The device samples 16-
channel EMG signals in 2000Hz, and supports the effective
implementation of MHGs. The BV-Net is designed to ac-
curately translate EMG signals to control commands in real-
time. Subjective and objective experimental results show that
our approach achieves over 95% average recognition rate,
2000Hz sampling frequency, and real-time gesture recogni-
tion.

To summarize, our main contributions are three-fold:

• We propose BeyondVision, a novel EMG-driven hand
gesture recognition approach that is sensitive to MHGs
and without influence by occluded fingers.

• We propose a wristband-style device that samples EMG
signals in 2000Hz, and propose a BV-Net that effec-
tively translates EMG signals to control commands in
real-time. Moreover, we propose a weight segmentation
(WS) algorithm that significantly improves the recogni-
tion accuracy.

• Experiments show that BeyondVision can achieve an
impressive average accuracy rate of over 95%, and is ef-
fective in MHGs recognition, which satisfies the basic
requirements of human-computer interaction, and has
the potential for further commercial application.

2 Related Work
Below we summarize the most related studies that involve
three main topics, vision-based HGR, gesture interaction by
wearable devices, and EMG-based gesture interaction.

2.1 Vision-based Hand Gesture Recognition
Machine learning techniques have been widely adopted for
gesture and action recognition, such as support vector ma-
chines [Dardas and Georganas, 2011], artificial neural net-
works [Singha and et al., 2015], and hidden Markov models
[Moni and Ali, 2009].

Recently, supervised learning has been the most com-
monly used technique that employs labeled data to train the
models. The initial experiments involved 2D CNNs [Yu et
al., 2021] for extracting spatial features from frames, and
incorporating temporal elements through additional optical
flow streams or temporal pooling layers. Subsequently, 3D
CNNs [Tran et al., 2018; Hara et al., 2018; Ur Rehman
et al., 2021], and two-stream models [Zhao et al., 2017;
Zhu et al., 2019], were developed to capture both spatial and
temporal aspects simultaneously, using three-dimensional fil-
ters. These 3D CNNs, compared to the 2D versions, can
hierarchically process temporal information throughout the
network. RNNs, particularly Long Short-Term Memories
(LSTMs) [Tsironi et al., 2017; Obaid et al., 2020] have shown
effectiveness in integrating temporal data, especially for se-
quential data. However, gesture recognition based on vision

Figure 2: (a) Tomo based on Electrical Impedance Tomography
(EIT). (b) BeamBand based on ultrasonic beamforming. (c) SensIR
based on near-infrared sensing. (d) Z-ring based on bio-impedance.
(e) DualRing based on inertial measurement units (IMUs). (f) Spar-
seIMU based on IMUs.

increasingly relies on more data with higher resolution and
more complex algorithm architecture, requiring more com-
putational resources.

Compared with vision-based methods, our EMG-driven
method is more effective for recognizing MHGs and gestures
with occluded fingers.

2.2 Gesture Interaction by Wearable Devices
Some studies focus on using optical sensing to identify micro
gesture recognition, such as ultrasonic [Zhang et al., 2018a],
infrared [McIntosh and et al., 2017; Yeo et al., 2019], and
various sensors [Esposito et al., 2020].

BeamBand [Iravantchi et al., 2019] is a wrist-worn sys-
tem using ultrasonic beamforming for hand gesture sensing,
achieving 94.6% accuracy in recognizing a six-class gesture
set at 8 FPS. It employs an array of ultrasonic transducers for
acoustic interrogation of the hand’s surface geometry. Dual-
Ring [Liang et al., 2021], a novel ring-based input device,
records hand and finger movements with 94.3% accuracy
for 10 gestures, utilizing two inertial measurement unit rings
and a circuit to measure thumb and index finger impedance.
The Z-Ring [Waghmare et al., 2023], facilitates gesture input
and object detection using bio-impedance sensing. However,
these methods may encounter difficulties and general wearing
is cumbersome, limiting the degree of freedom of fingers, for
example when hand occlusion occurs due to holding objects.

As shown in Figure 2, compared with existing methods
based on wearable devices, our device is more convenient.
Moreover, our method achieves higher recognition accuracy
and supports a greater number of gesture classes (as shown in
Section 4.2 and Table 3).

2.3 EMG-based Gesture Interaction
EMG traditionally rooted in medical diagnostics, has seen
its applications burgeon into a myriad of domains in recent
decades. One of the most profound applications of EMG is
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Figure 3: System overview. Given a micro hand gesture G, our method BeyondVision is modeled as a function Φ to recognize G and predict
a corresponding control command C = Φ(G).

its integration into Prosthetic Control. As highlighted by En-
glehart and Hudgins [Englehart and Hudgins, 2003], EMG
signals have been pivotal in the real-time control of multi-
functional prosthetic devices. These range from traditional
machine learning algorithms such as support vector machines
[Chen and Zhang, 2019] and hidden Markov models [Wen et
al., 2021], to more recent deep learning techniques includ-
ing CNNs [Zhai et al., 2017] and recurrent neural networks.
Atzori et al. [Atzori et al., 2014] undertook a detailed com-
parison of these classifiers, emphasizing the superior perfor-
mance of deep learning methodologies.

Following the first commercial EMG device proposed
[Rawat et al., 2016], EMG-driven systems become a viable
option in human-computer interaction. Subsequently, many
studies apply EMG technique to various control scenarios,
including prosthetic control [Parajuli et al., 2019], sign lan-
guage recognition [Khomami and Shamekhi, 2021], gaming
interactions [Karolus et al., 2022], and so on. With this
framework [Eddy et al., 2023], EMG-based control is gaining
increasing attention within the human-computer interaction
community.

However, existing EMG-based literature does not involve
MHG recognition. Although Meta Reality Lab shows a demo
video of similar techniques [Facebook, 2021], they have not
released any academic literature or completed product.

Figure 4: (a) In BeyondVison, the EMG sampling device Φd is de-
signed to collect 16 channels of EMG signals, and the detailed demo
is in the video of our supplementary material. (b) Φd samples EMG
signals from the distal end of the forearm, near the wrist area, which
benefits sampling signals without environmental constraints. (c) In
Φd, the sampling patches are designed for a series of muscle tissues,
including 14 muscles and 2 nerves.

3 Method
3.1 Overview
Given a micro hand gesture G, our method BeyondVision is
modeled as a function Φ to recognize G and predict a corre-
sponding control command C = Φ(G).

Figure 3 shows the pipeline of our BeyondVision Φ. First,
according to a user input MHG G [Figure 3(a)], a wristband-
style device Φd samples the 16 channels EMG signals S =
Φd(G) [Figure 3(b)]. Then, as shown in Figure 3(c), in a de-
signed pre-processing mechanism Φpr, we eliminate the in-
valid signals while enhancing the valid signals, and output an
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Figure 5: Top: Original EMG signal. Middle: After eliminating
noise by a high-pass filter. Bottom: After processing by RMG algo-
rithm.

optimized signal S′=Φpr(S). Next, as shown in Figure 3(d),
in a designed WS algorithm, we segment EMG spectrum to a
fragment sequence {S′

n}(n=1, 2, ..., n), and predict two se-
quences of gesture classes {Cn} and probabilities {Pn} by
a designed lightweight BV-Net Φn [Figure 3(e)], formulated
as Cn, Pn=Φn(S′

n). Finally, utilizing a weight-based gesture
evaluation [Figure 3(f)], we obtain the final control command
C [Figure 3(g)].

We will detail the EMG sampling device Φd, the pre-
processing mechanism Φpr, the prediction CNN Φn, and the
WS algorithm in Section 3.2, Section 3.3, Section 3.4, and
Section 3.5 respectively.

3.2 EMG Sampling Device
As shown in Figure 4, in BeyondVison, the EMG sampling
device Φd is designed to collect 16 channels of EMG signals
S, according to an input user MHG G.

For the device Φd, we employ two ADS1299 chips [Gao,
2023] to sample 16-channel EMG signals, and each chip
manages 8 channels with a frequency of 2000Hz and a res-
olution of 24 bits. As shown in Figure 4(c), in Φd, the 16
channels correspond to a series of muscle tissues, including
14 muscles and 2 nerves[Liu et al., 1997]. The meaning of
each abbreviation is shown in Table ??.

3.3 Pre-processing Mechanism
In the pre-processing stage Φpr, following the sampled EMG
signals S, our goal is to eliminate the noise and enhance
the valid signals, and finally output the optimized signal
S′=Φpr(S).

First, as shown in Figure 5 middle, we eliminate the noise
in S by a 10Hz high-pass filter. Then, as shown in Figure 5
bottom, S′ is computed by a root mean square (RMG) algo-
rithm, defined as

S′ =

√
1

n
[(S0)2 + (S1)2 + ...+ (Sn)2], (1)

where n=16 and S0 to Sn is corresponding to the 16 channels
EMG signals.

Figure 6: Network architecture of our BV-Net.

3.4 Network Architecture
We propose a BV-Net Φn to translate gesture EMG to con-
trol command. As shown in Figure 6(a), Φn is a lightweight
CNN architecture that introduces two tailored modules, EMG
Block and CBM [Figure 6(c)]. As shown in Figure 6(b)
EMG Block is based on shuffleNet [Zhang et al., 2018b;
Albawi et al., 2017]. The architecture adopts two new oper-
ations, pointwise group convolution, and channel shuffle, to
reduce computation costs while maintaining accuracy. CBM
consists of convolutional layers, batch normalization layer
[Gustineli, 2022], and Mish operation represented as

Mish(x) = x× tanh(ln(1 + ex)), (2)

where x is the input of the Mish operation Mish( ).
We adopt the focal loss L for our network, defined as

L = −
n∑

i=1

yi(1− Pi)
α log(Pi) + λ

∑
k

θ2k, (3)

where n=13, yi is the label in a one-hot vector form. Pi is the
predicted probability for class Ci. α is the focusing parameter
of focal loss, λ is the regularization coefficient, and

∑
k θ

2
k

represents the L2 norm of the model weights.
We modify the focal loss function to increase the contri-

bution from hard-to-classify EMG signal, and improve the
model robustness. With the inclusion of L2 regularization,
the gradient of L with respect to the model’s weights is mod-
ified. The gradient descent update rule for a weight θk is
defined as

θk = θk − η

(
∂

∂θk
L

)
(4)

where η is the learning rate. The partial derivative of the reg-
ularized L for θk includes the additional term due to L2 reg-
ularization, defined as

∂

∂θk

(
−

13∑
i=1

yi(1− ŷi)
γ log(ŷi)

)
+ 2λθk, (5)
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where Eq.(5) ensures that the model not only focuses on the
difficult examples but also preserves simplicity and general-
ization capability.

3.5 Weight Segmentation Algorithm
Since EMG signals are represented as long spectrums, ac-
curately predicting gestures from the entire spectrum is dif-
ficult. Therefore, we propose a WS algorithm module to
further improve the recognition accuracy. As shown in Fig-
ure 3(e), our proposed WS algorithm Φws consists of two
modules, attention-based spectrum segmentation and weight-
based gesture evaluation.

Attention-based spectrum segmentation. As shown
in Algorithm 1, first, employing an attention window, we
segment the EMG spectrum S′ into a fragment sequence
S′={S′

0, S
′
1, ..., S

′
n}. Then, we input each fragment in S′ to

Φn, and predict the corresponding gesture class sequence C,
and classification probability sequence P .

Weight-based gesture evaluation. Following the pre-
dicted C and P , we compute the final MHG class C as shown
in lines 7 to 16 of Algorithm 1. In Algorithm 1, S′ is the
optimized EMG signals produced by Φpr, w is the attention
window size, s is stride, and t is the count of spectrum frag-
ments in a gesture group. In lines 10 to 12, we compose t
spectrum fragments to a gesture group. In line 13, the weight
scoreW(Gi) of gesture group Gi is computed by

W(Gi) =
1

|Gci |
∑

Cj∈Gc
i

Pi · ξ(Ci), (6)

where |Gci | indicates the cardinal of sequence Gci , and |Gci | =
t. Let ϱi indicates the gesture class with the highest propor-
tion in Gci , the function ξ(Cj) returns 1 (or -1) if Cj is in (or
in not in) ϱi. Finally, we output the final MHG class C that
corresponds to the class of gesture group with the maximum
weight.

Algorithm 1 Weight segmentation algorithm

Input: S′, w, s, t
Output: C

1: // Attention-based Spectrum Segmentation
2: {S′

0, S
′
1, ..., S

′
n} ← S′(w, s) ;

3: for each S′
n in S′(w, s) do

4: Cn, Pn ← Φn(S′
n) ;

5: Get C ← {C0, C1, ...Cn} ; // gesture class
6: Get P ← {P0, P1, ...Pn} ; // probability
7: // Weight-based Gesture Evaluation
8: for each ci in C do
9: Gci ,G

p
i ,W ← ∅ ;

10: Gci ← {Ci, Ci+1, ..., Ci+t} ;
11: Gpi ← {Pi, Pi+1, ..., Pi+t} ;
12: Gi ← {Gci ,G

p
i } ; // gesture group

13: Compute the weight scoreW(Gi) by Eq.(6). ;
14: AddW(Gi) intoW ;
15: Compute the maximum weightWmax inW ;
16: C ← gesture class corresponding toWmax;

Figure 7: Widely used large-amplitude gestures. (a) Digits ’1’ to
’10’ from American Sign Language. (b)Wristwhirl Gesture. (c)
Tomo set is underscored in green and Six-Axis set is underscored
in purple (note four gestures are shared).

Figure 8: Beyond Vision Gesture Set.

4 Experiments
Below we first introduce our dataset, and then evaluate our
method in accuracy, application, and user study.

4.1 Dataset
Gesture definition. As shown in Figure 8, we selected
several common gesture data sets [Valli and Lucas, 2000;
Gong and et al., 2016; Zhang and Harrison, 2015; Iravantchi
et al., 2019] with large action amplitude that are not natural
micro gestures. Therefore, we put forward our MHGs, ac-
tions, and corresponding commands.

Collection. We collect data from 20 participants, including
12 males and 8 females. Each participant underwent roughly
500 data collection sessions, with each session lasting 10 sec-
onds. Following data processing and filtering, we allocate
one-ninth of the total data as our test set. Each category has at
least 5,000 samples, with certain categories containing up to
approximately 12,000 samples. The diverse samples ensure
our dataset is both comprehensive and robust for our evalua-
tion purposes.

Data augmentation. We develop a data augmentation
technique designed for EMG datasets. First, to resist un-
expected or atypical noises, white Noise Integration is em-
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Gesture Accuracy Recall F1 score

None 0.9265 0.9305 0.9283
Index pinch 0.8940 0.9065 0.8876
Middle pinch 0.9302 0.9610 0.9454
Ring pinch 0.9391 0.9465 0.9428
Little pinch 0.9858 0.9589 0.9721
Thumb push 0.9759 0.9315 0.9208
Index push 0.9914 0.9310 0.9602
Middle push 0.9592 0.9955 0.9770
Ring push 0.9713 0.9779 0.9746
Little push 0.9817 0.9907 0.9862
Slide up 0.9422 0.9893 0.9652
Slide down 0.9166 0.9943 0.9318
Slide left 0.9855 0.8924 0.8716
Slide right 0.9934 0.9892 0.9913
Average 0.9566 0.9568 0.9467

Table 1: Accuracy of our method.

ployed to simulate the varied noise spectra commonly en-
countered in empirical EMG recordings, and the introduced
white noise follows the Gaussian distribution [Pellegrino et
al., 2022]. Second, we multiply signal amplitudes with ran-
dom scaling factors in [0.8, 1.2]. This processing is designed
to capture the natural variability in signal amplitudes that are
caused by various intensities of muscle contractions among
different individuals [Grebenyuk, 2022].

4.2 Accuracy of MHG Regonition
Different MHG regonition. We evaluate the accuracy of rec-
ognizing different MHGs using 9000 samples containing 14
classes of MHGs. Experimental results as shown in Table ??,
our method can achieve considerable recognition rates for dif-
ferent MHGs. Specifically, our average accuracy is 95.66%,
the high accuracy is achieved with the slide right gesture at
99.34%, index push at 99.14%, and slide left at 98.55%. The
lowest accuracy is achieved with the index pinch gesture at
89.40%.

Influence of WS algorithm. Utilizing 500 MHG samples
collected from 20 volunteers, we evaluate the influence of
the WS algorithm on accuracy. Experimental results show
that the WS algorithm can improve 2.67% average accuracy.
Therefore, our designed WS algorithm is effective for im-
proving recognition accuracy.

4.3 Comparison with Other Methods
First, we compare our BeyondVision with ViT-HGR [Mon-
tazerin et al., 2022] which is the state-of-the-art method for
EMG data analysis. For fair comparison, we train ViT-HGR
by our proposed dataset, and ViT-HGR achieves an accuracy
of 76.4%. In contrast, our algorithm achieved an accuracy of
95.7%. Particularly for micro gestures such as slide up and
slide down, ViT-HGR typically has recognition rates of only
30% to 50%, our results consistently reach a good level.

Methods Modality Gesture Accuracy Handle MHG
SensIR Infrared 12 classes 93.3% %

Z-Ring Impedance 10 classes 93.0% %

Tomo Impedance 5 classes 86.5% %

BeamBand Ultrasonic 9 classes 90.2% %

ViT-HGR EMG 14 classes 76.4% %

Ours EMG 14 classes 94.3% ✓

Table 2: Comparison with other methods

Figure 9: BeyondVision applied in Subway Surfer Game.

Then, we compare BeyondVison with other wearable
methods, including SensIR [McIntosh and et al., 2017], Z-
Ring [Waghmare et al., 2023], Tomo [Zhang and Harrison,
2015], and BeamBand [Iravantchi et al., 2019]. The sum-
marized comparison results are shown in Table ??, and our
method achieves the highest average accuracy. Moreover, Be-
yondVison outperforms other methods in three aspects. First,
we can support more number of gesture classes. Second,
as shown in Figure 7, compared with related methods using
large-amplitude gestures, our used MHGs are more natural,
comfortable, and effortless. Third, as shown in Figure 2, the
wearable device of our method is the most convenient.

4.4 Real-world Application
As shown in Figure 9, we conduct an experiment using the
widely played Subway Surfer game to evaluate our real-time
recognition efficiency. Subway Surfer requires quick and ac-
curate gesture inputs, which makes it a suitable platform to
evaluate our technology. The game operations include four
key commands: left swipe, right swipe, jump, and crouch.
Our approach can effectively map these game commands to
intuitive MHGs, that is, using the thumb and the first two
joints of the index finger. The experiment shows that users
can effectively operate the game by BeyondVision (we show
the detailed experiment processing in the demo video of our
supplementary materials).

Moreover, Figure 10 shows some application samples of
our designed MHG control command of Human-Computer
interaction, including clicking or releasing a button, moving
and dragging the cursor, inputting special commands, and so
on. Each of the above control functions has been tested and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6049



Figure 10: Demonstration of MHGs applied to human-computer in-
teraction

Figure 11: Results of our user study.

verified on a real machine.

5 User Study
To subjectively evaluate the performance of BeyondVision,
we invited 20 volunteers to conduct a user study. Each volun-
teer is asked to score 1 to 10 for our designed items, and the
scores are directly proportional to user satisfaction. We con-
duct an introductory session on BeyondVision’s functions, a
three-day field test of the device, and a post-use interview to
gather feedback on usability, comfort, and functionality.

Figure 11 shows the box chat of our study results. The user
study indicates a positive reception for BeyondVision, high-
lighted by its ease of use (7.85), effective gesture recognition
(8.45), and competitive edge (7.85). While overall satisfac-
tion is high (7.45), initial impressions (4.48) and learning cost
(2.4) suggest areas for potential improvement. Experimen-
tal results show that our system is user-friendly and performs

competitive results.

6 Discussion and Limitation
Device parameter. Our device weighs 70g, and has
a 500mAh battery, 3-hour operational time, and 24-hour
standby time. Our processing is performed on a computer,
and the device transmits EMG to the computer via WiFi.

Application. Our BeyondVision supports 14 classes
of MHSs, and satisfies the basic requirements of human-
computer interaction, which has the potential to be applied
to AR, VR, and other related areas. Moreover, BeyondVision
can also be applied in combination with vision-based meth-
ods to complement each other.

Generalization. An important area of future work is
improving our system’s generalization ability, especially in
zero-shot learning scenarios. This involves developing meth-
ods that allow gesture recognition systems to accurately in-
terpret and respond to unseen gestures or signals without di-
rect training. This aims to elevate the system’s adaptability
and ensure its reliable performance across a diverse range of
novel and challenging environments, broadening its applica-
bility and effectiveness.

Limitation. Our EMG-driven method is significantly dif-
ferent from vision-based methods. Specifically, vision-based
methods are static-oriented, that is, a hand command can be
recognized when a hand gesture matches the predefined ap-
pearance. In contrast, the EMG-driven methods are dynamic-
oriented, that is, if hands do not move, muscles will not pro-
duce obvious EMG signals, and thus our method can only
recognize moving hands or fingers.

7 Conclusion
In this paper, we propose BeyondVision, an EMG-driven
HGR system that can accurately translate EMG signals to
control commands, which is sensitive to MHGs and with-
out influence by occluded fingers. BeyondVision, we pro-
pose a user-friendly wristband-style EMG sampling device
and tailor a lightweight network BV-Net with a WS algo-
rithm, which effectively improves the user experiences and
recognition accuracy. Subjective and objective experimental
results show that our approach achieves a 95% average recog-
nition rate, 2000Hz sampling frequency, and real-time gesture
recognition, which can support commercial applications.
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