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Abstract
Early predicting the onset of a disease is critical
to timely and accurate clinical decision-making,
where a model determines whether a patient will
develop the disease n hours later. While deep
learning algorithms have demonstrated great suc-
cess using multivariate irregular time-series data
such as electronic health records (EHRs), they of-
ten lack temporal robustness due to data scarcity
problems becoming more prominent at multilevel
as n increases. At event-level, the decreasing num-
ber of available events per trajectory increases un-
certainty in anticipating future disease behavior. At
trajectory-level, the scarcity of patient trajectories
limits diversity in the training population, hinder-
ing the model’s generalization. This work intro-
duces Multi-TA, a multilevel temporal augmenta-
tion framework that leverages BERT-based tempo-
ral EHR representation learning and a unified data
augmentation approach, effectively addressing data
scarcity issues at both event and trajectory levels.
Validated on two real-world EHRs for septic shock,
Multi-TA outperforms mixup and GAN-based state-
of-the-art models across eight prediction windows,
demonstrating its temporal robustness. Further, we
provide in-depth analyses on data augmentation.

1 Introduction
A disease progression model (DPM) aims to estimate how
a target disease would progress over time based on histor-
ical data such as multivariate time-series electronic health
records (EHRs) [Mould, 2012]. One important purpose of
DPM is to detect diseases as early and accurately as possible
since robust and accurate early prediction can assist timely
clinical interventions [Zhou et al., 2013; Li et al., 2015;
Che et al., 2015; Choi et al., 2016; Choi et al., 2017a] and re-
duce the risk of mortality as well as the burden on patients and
the healthcare system [Kumar et al., 2006; Wang et al., 2014].
While recent deep learning-based early prediction models
have demonstrated great success by utilizing RNNs, CNNs,
or Transformers [Lipton et al., 2015; Birkhead et al., 2015;
Choi et al., 2016; Esteban et al., 2016; Luo et al., 2020;
Rasmy et al., 2021; Yang et al., 2021], one of the major
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Figure 1: The Problem. Lack of Temporal Robustness. Task Setup
(Left) and Simulation Result with LSTM (Right)

shortcomings of the existing approaches is that they do not
perform consistently well on EHRs as n increases (i.e. trade-
off between earliness and accuracy) [Achenchabe et al., 2021;
Bondu et al., 2022]. In this work, we refer to such phenomena
as the lack of temporal robustness.

Typically, EHRs contain patient trajectories, which are rep-
resented by a single hospital visit by an inpatient: a visit is a
series of events recorded at irregular times; an event consists
of a set of data entries (e.g. measurements of vital signs)
collected during a certain period of time. As shown in Fig-
ure 1 (left), our goal is to predict whether a patient will de-
velop a disease n hours later by leveraging the patient’s EHRs
in the observation windows until n hours before the onset
of the disease or the end of the sequence. Figure 1 (right)
shows that as we increase n from 6 to 48 hours, the early
prediction performance (red line) deteriorates as observed in
other previous works [Lin et al., 2019; Zhang et al., 2019;
Khoshnevisan and Chi, 2021]. It is primarily caused by the
fact that as n increases, data scarcity problems become more
prominent, due to the patient behavior of visiting a hospi-
tal when their symptoms become noticeable. More specifi-
cally, we identified two levels of data scarcity: the event-level
scarcity, decreasing number of events per trajectory (green
line in Figure 1) make it more difficult for models to predict
the following behavior of diseases or relevant medical sig-
nals within the hold-off n hours window. The trajectory-level
scarcity refers to as n increases, the number of patient trajec-
tories decreases (blue line) and causes insufficient diversity in
the training population to learn possible variations of disease
progression across patients.

In this work, we propose a temporal EHRs augmentation
(Multi-TA) framework. Figure 2 shows that Multi-TA con-
sists of two key components, one per source of scarcity: (1)
Representation learning module (left) is designed to address
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[CLS] Temp=N WBC=N [SEP] SBP=VLSBP=L [4-HR]

[CLS] Temp=H WBC=N [SEP] Temp=NDBP=H [3-HR]

𝑥

𝑥′!

𝑥′"

…

Data Augmentation𝑥! = 𝒢(𝑥, 𝜃)

…

…

…

Step 1: Event-level Augmentation Step 2: Trajectory-level Augmentation

Figure 2: Framework Overview. Multi-TA learns temporal relationship between abstracted medical entries utilizing masked language mod-
eling G (left) and augments patient trajectories by transforming original samples with G and optimal transformation level θ (right)

event-level scarcity by acquiring knowledge about the tempo-
ral dynamics of events or patient health status within the hold-
off window and fill in the missing pieces; (2) Data augmen-
tation module (right) is devised to address trajectory-level
scarcity. By leveraging the representation learning module
(G) and optimizing the level of data transformation (θ) within
a regular training process, the module generates synthetic
trajectories that are realistic but extreme for the prediction
model in a way that the model can learn sufficient variations
of disease progression and become temporally robust.

We validate Multi-TA on the task of septic shock early pre-
diction due to its critical significance in healthcare and its
difficulty. However, our framework is generalizable to di-
verse tasks involving multivariate irregular time-series data,
particularly those facing challenges similar to EHRs. Sepsis,
a life-threatening medical condition resulting from a dysreg-
ulated body response to infection, can lead to the most se-
vere complication known as septic shock, characterized by
high mortality rates and prolonged hospitalization [Singer et
al., 2016]. Timely treatment is crucial, as each hour’s de-
lay in antibiotic administration increases the mortality risk
by 8% [Kumar et al., 2006]. Additionally, sepsis, with di-
verse etiologies like cancer, presents a wide range of syn-
dromes, and different patient groups may exhibit distinct
symptoms [Tintinalli et al., 2011]. Our study, utilizing real-
world data from two US medical systems, demonstrates that
Multi-TA can enhance the temporal robustness of early pre-
diction models. There have been a few lines of research that
aim to improve the robustness of prediction models. One uti-
lizes EHR representation learning models trained with large-
scale unlabeled data [Li et al., 2020; Rasmy et al., 2021;
Pang et al., 2021] while the other employs data augmentation
to address the data scarcity problem from the root by generat-
ing extra labeled data [Esteban et al., 2017; Che et al., 2017;
Baowaly et al., 2019; Poulain et al., 2022]. However, to our
knowledge, no prior work has attempted to unify both worlds
for one goal - that is, combining temporal knowledge learned
from representation learning with synthetic samples gener-
ated from data augmentation to improve temporal robustness.

To summarize, our contributions are: (1) By tackling two
levels of data scarcity inherent in EHRs, Multi-TA can build
effective early prediction models that are more temporally

robust; (2) By integrating a pretrained EHR representation
model into the data augmentation process, Multi-TA gener-
ates realistic but challenging synthetic time-series data that
directly improve temporal robustness; (3) Multi-TA outper-
forms the baselines on two real-world EHR datasets with var-
ious settings for an extremely challenging task.

2 Proposed Method
Problem Description Our dataset, denoted as Dtrain =
{(x1,y1), ..., (xN ,yN )}, captures inpatient visits from N
different patients, where each visit corresponds to a patient
trajectory. The data comprises multivariate irregular time se-
ries, with each visit xk being a sequence of events: xk =
{x1

k, ...,x
Tk

k }, where xt
k denotes patient’s records at times-

tamp t and Tk is the number of events in k-th visit, which
varies across different visits. Each xt

k ∈ RS represents med-
ical data entries collected from clinical measurements at each
event, with S being the number of entries. For each visit
xk, we have an associated output label yk = {1, 0}, indicat-
ing septic shock or non-septic shock, respectively. In addi-
tion to the labeled dataset, we leverage an unlabeled dataset
Dunlabeled = {x1, ...,xM} for representation learning. This
dataset consists of hospital visits that have not been anno-
tated due to budget constraints. The primary objective in early
prediction is to learn a prediction function F over Dtrain that
best approximates an unknown function f : X → Y , where
X represents the true distribution over the entire population.
However, when there exists insufficient amount of patient tra-
jectories (small N ) in Dtrain or scarce number of events (Tk)
that represents each trajectory, it would be difficult to approx-
imate f and temporal robustness cannot be guaranteed.

2.1 Multi-TA: Temporal EHRs Augmentation
We propose Multi-TA, a framework that combines represen-
tation learning and data augmentation to address two types of
data scarcity. Specifically, as described in Figure 2, Multi-
TA consists of two stages: (1) Learning EHR representa-
tions, which learns the temporal interaction between events
within both observation and hold-off window to address
event-level data scarcity; (2) Augmenting patient trajec-
tories, which generates sufficiently different synthetic time-
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series sequences using constrained worst-case optimization to
address trajectory-level data scarcity.

Learning EHR Representations
The goal of this stage is to fill the missing knowledge in
the training dataset Dtrain caused by the event-level scarcity.
Given that the events within a hold-off window are unknown
(refer to Figure 1), the training dataset cannot hold any infor-
mation from that specific time period, potentially leading to
uncertain predictions. In this stage, we utilize the unlabeled
dataset Dunlabeled, which spans both observation and hold-off
windows, to broaden our knowledge and tackle the event-
level scarcity.
Step 1: Temporal Abstraction Inspired by [Sohn et al.,
2020], we first convert multivariate irregular EHRs into se-
quences of high-level interval-based concept representations
using temporal abstraction [Shahar, 1997], to reduce the ran-
dom noise inherent in EHRs and implicitly alleviate the ef-
fect of irregular time intervals and missing values while pre-
serving temporal information. Specifically, clinical measure-
ments included in the events within each 60 minutes inter-
val are aggregated, and as a result, a visit x = {x1, ..., xt}
composed of t events is transformed into x = {x′1, ...x′k} in
which k < t and x′ = {w1, ...wl} is a list of temporally or-
dered l abstracted tokens representing a patient health status
within each time interval. A token w can be seen as a word
concatenating a feature F (e.g., temperature, blood pressure,
white blood cell count, etc.) and its state, namely, discretized
value V (e.g., low, normal, high, etc.). For example, a token
“SystolicBP=H” indicates a certain symptom where systolic
blood pressure maintained as high during the time interval.
In sum, a visit x can be seen as a document consisting of k
events, and an event x′ can be considered as a sentence with
l abstracted tokens. The difference between a document in
natural language and our visit in EHRs is that ours involves
temporal information: (1) temporally ordered token based on
the measurement start and end times of each token and (2)
time gaps between two consecutive events (x′k−1, t-hours,
x′k), which could infer hidden knowledge with regard to the
progression of a target disease.
Step 2: EHR Representation Learning Based on the sim-
ilarity between our data and texts in natural language, we
adopt the original BERT [Devlin et al., 2019] architecture to
pretrain EHR representations G. We leverage its ability to un-
derstand the context within given sequences, but further, we
inject our task-specific temporality into the model. First, we
utilize the order of temporally sorted tokens as input to posi-
tion embeddings to better understand how tokens temporally
interact in terms of disease progression. Note that the mea-
surement start and end times can be additionally incorporated
in the embeddings, but in this work, we only capture the tem-
poral order. Second, motivated by previous works [Nguyen
et al., 2017; Pang et al., 2021] and to fully incorporate tem-
poral aspects of our sequences, we introduce an additional
special token ([t-HR]) which represents time intervals be-
tween consecutive events. Features (e.g., vital signs) in EHRs
are measured irregularly based on their needs and clinicians
make such decisions to effectively diagnose patients’ condi-
tions and keep track of disease trajectory. That being said,

by incorporating time intervals into model training, learned
representations could embrace useful information regarding
clinicians’ practice of measuring patients’ conditions. We ex-
pect that this would play an important role in understanding
the temporal relations between tokens within a visit and ben-
efit the self-attention process inside the BERT framework. In
sum, our temporality-injected BERT (t-BERT) utilizes visit-
level input sequences (see Figure 2) that contain (1) the tem-
poral order of each token, which helps the model understand
temporal interactions relevant to disease progression, and (2)
time gap information between consecutive events, which pro-
vides implicit information about patient health status to learn
effective EHR representations. Lastly, we inherit “masked
language modeling” procedure from the original BERT pa-
per [Devlin et al., 2019] in which the authors mask some per-
centage of the input tokens at random and then predict those
masked tokens based on the encoder output.

Augmenting Patient Trajectories
The second stage of Multi-TA aims to provide sufficient vari-
ations of disease progression to a prediction model by aug-
menting patient trajectories in Dtrain. Motivated by a tex-
tual data augmentation work [Sohn and Park, 2022], Multi-
TA generates synthetic visit sequences that can overcome
trajectory-level scarcity with two key steps (see Algorithm 1):
(1) constrained worst-case data transformation (lines 5-8),
which generates sufficiently different synthetic samples by
controlling local changes to a set of selective tokens within
a trajectory; (2) robust risk minimization (line 9-11), which
interchangeably incorporates newly generated synthetic sam-
ples into training.

Step 1: Constrained Worst-Case Data Transformation
To provide sufficient variations to a prediction model, we
leverage the masked language modeling (MLM) objec-
tive [Devlin et al., 2019] for data augmentation, which gen-
erates variants of a given sentence by masking and predicting
a subset of tokens. However, Multi-TA further optimizes this

Algorithm 1: Trajectory-level Augmentation
Input: Training data Dtrain = {xi, yi}ni=1, pretrained EHRs

model G, prediction model F , model weightsW ,
loss function L, learning rate η

Parameters : Sampling probability p, transformation level
θ, upper bound U

Output: Prediction model F with trained weightsW
1 Randomly initialize model weightsW;

2 while termination criterion not met do
3 Select a random sample pair (x, y) from Dtrain;

4 With probability p:
5 Initialize θ0 ← 0;
6 for i ∈ {1, ..., N} do
7 max

θ
L(y,F (G(x, θi))), θ ≤ U

8 xθ∗ ← G(x, θ∗)
9 W ←W − η∇WL(y,F(xθ∗))

10 With probability 1− p:
11 W ←W − η∇WL(y,F(x))
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type of local change with a special parameter, transformation
level θ that controls the number of tokens and which tokens
to transform. By controlling such components, Multi-TA can
generate sufficiently different samples, which can mitigate
the data scarcity problem. As per line 7 in Algorithm 1, we
aim to estimate an optimal θ that can maximize the given pre-
diction model’s loss under the upper bound U . This is to gen-
erate specific synthetic samples that can maximize the diver-
sity of training dataset at a maximum capacity without any
harm (e.g., not flipping its class label). Given the importance
of each token in predicting a target disease is different (e.g., a
serious condition ”WBC=VeryHigh” primarily contributes to
the septic shock diagnosis, while other tokens are less impor-
tant factors), we carefully select tokens to transform aligning
with our objective. Specifically, as our goal is to generate
a sufficiently different samples with a minimum number of
transformations, we select tokens that contribute the most to
the target class prediction to quickly maximize the loss value.
Note that by selecting the most contributing tokens, instead of
the least contributing ones, we can achieve our goal by trans-
forming a minimum number of tokens, and this can prevent
the model to generate clinically infeasible samples. Since the
MLM predicts a masked token based on its context, if there
exist a large number of masked tokens and only a few real
tokens are left in context, it would be difficult to reconstruct
and form a realistic sequence. However, it is non-trivial to di-
rectly calculate token-level contribution scores as EHRs are
a multilevel structure similar to documents and we apply se-
quential model such as LSTM on top (one cell per event) and
tBERT on the second level. Figure 3 illustrates our prediction
model and the way to calculate token-level contributions in
two steps. First, we determine visit-level contribution scores
using gradient attribution [Simonyan et al., 2014], that is, cal-
culating the gradient per event and normalize across events to
identify top θ ∗ n events in terms of the score, where n is the
number of event in a visit. Second, once target events are se-
lected, we use the attention scores of tokens with respect to a
special token ([CLS]) as contribution scores, within each se-
lected event. As the [CLS] token contains all information col-
lected from other tokens in a sequence and the token is often
used as input for various classification tasks, we assume that
the attention scores would represent the contribution level of
tokens. Based on the per event token-level scores, we select
top θ ∗ l contributing tokens per event where l is the number
of tokens in an event. Once the tokens in the chosen events
are replaced with [MASK] tokens and all the events in a visit
are concatenated to form a visit sequence, a pretrained repre-
sentation model G predicts the tokens based on the context to
generate a realistic visit sequence. At the end of the process,
the transformed sequence with the estimated theta is added to
the training dataset to update the model weights.

Step 2: Robust Risk Minimization Multi-TA actively and
interchangeably generates informative samples and uses them
to strengthen a prediction model during each epoch of train-
ing. Specifically, this step is analogous to the regular stochas-
tic gradient descent of any differentiable prediction models
(lines 9 and 11). Given either the original training samples
or transformed samples and their corresponding class labels,
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Figure 3: Mechanism of Transformation Function G
Notes: θ determines which tokens to transform (C: [CLS], S: [SEP])

Multi-TA updates the model parameters W based on the gra-
dient computed and the learning rate η.

3 Experiment Setup
3.1 Two EHR Datasets
We utilize two real-world EHR datasets collected from
210,289 and 106,844 adult patient visits to Christiana Care
Health System (CCHS) and Mayo Clinic (Mayo), respec-
tively. Both datasets comprise 2.5 years (07/2013-12/2015)
of anonymized and institutional review board (IRB)-approved
EHRs. From the total population, 52,919 visits and 4,224,567
events are selected as our study population to only include the
patients with suspected infection, based on the rules designed
by the two leading clinicians with extensive experience. Time
irregularity and data sparsity are the two major challenges in-
herent in our datasets. In the study population, time intervals
vary from 0.94 seconds to 64.38 hours due to the different
measuring frequencies of features, and this causes data spar-
sity where on average more than 80% of the values are miss-
ing. The EHRs from two hospital systems differ in several
ways, but the distinct measuring frequencies make the most
difference in learning temporal dynamics of EHRs. Com-
pared to Mayo, where the majority of measurements (82%)
are carried out within every 1 hour, CCHS measures less fre-
quently - i.e. more distributed time intervals: 1-hour (39%),
2-hour (20%). In addition, to ensure a balanced dataset and
avoid bias, we truncated samples from the negative class
(non-septic shock) at each prediction hour. We opted not
to utilize ICU benchmark datasets such as MIMIC-III and
PhysioNet based on our preliminary experiments, which re-
vealed no performance deterioration over time (AUC: 0.961
for 24-hour prediction, 0.980 for 48-hour) and demonstrated
near-perfect performance. We believe that this is because of
MIMIC-III’s higher-quality continuous monitoring, typical of
ICUs, which introduces a different type of problem.

3.2 Model Evaluation
We validate our framework in two stages: comparing t-BERT
with three representation models for multivariate time-series
EHRs, and assessing Multi-TA against mixup and GAN-based
augmentation methods. We utilize LSTM for prediction, ex-
cept with CEHR-GAN-BERT, due to its ability to capture
long-term dependencies.

Task Setup Our task involves predicting the onset of septic
shock in a patient m hours after receiving their last n hours of
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Setting Model Accuracy Precision Recall F1-Score AUC
CCHS EHR 0.706(±.027) 0.706(±.021) 0.705(±.044) 0.705(±.031) 0.777(±.044)
+ RL MuLan 0.748(±.017) 0.739(±.026) 0.769(±.040) 0.753(±.018) 0.832(±.020)

BERT 0.789(±.030) 0.771(±.039) 0.826(±.020) 0.797(±.023) 0.870(±.013)
t-BERT (Ours) 0.821(±.021) 0.825(±.017) 0.816(±.041) 0.820(±.025) 0.900(±.009)

CCHS EHR+mixup 0.727(±.033) 0.737(±.035) 0.711(±.097) 0.720(±.047) 0.796(±.037)
+ DA t-BERT+M.Mixup 0.797(±.025) 0.784(±.032) 0.824(±.057) 0.802(±.028) 0.884(±.029)

t-BERT+GAN 0.829(±.018) 0.800(±.055) 0.888*(±.066) 0.838(±.012) 0.829(±.019)
Multi-TA (Ours) 0.837*(±.010) 0.828*(±.033) 0.854(±.039) 0.840*(±.009) 0.909*(±.008)

MAYO EHR 0.697(±.049) 0.682(±.043) 0.729(±.144) 0.697(±.079) 0.768(±.055)
+ RL MuLan 0.680(±.016) 0.648(±.028) 0.774(±.081) 0.703(±.024) 0.759(±.022)

BERT 0.771±.017) 0.744(±.026) 0.820(±.077) 0.778(±.027) 0.852(±.021)
t-BERT (Ours) 0.789(±.015) 0.769(±.028) 0.820(±.054) 0.792(±.019) 0.869(±.013)

MAYO EHR+mixup 0.689(±.038) 0.705(±.084) 0.668(±.081) 0.679(±.025) 0.770(±.031)
+ DA t-BERT+M.Mixup 0.774(±.016) 0.755(±.038) 0.808(±.041) 0.779(±.007) 0.857(±.006)

t-BERT+GAN 0.782(±.026) 0.759(±.051) 0.825(±.047) 0.789(±.020) 0.783(±.026)
Multi-TA (Ours) 0.801*±.010) 0.777*(±.010) 0.836*(±.016) 0.806*(±.011) 0.871*(±.012)

Table 1: Model Performance for 48 Hours Early Prediction
Notes: Best results for section are in bold and the best overall results
have asterisk. (RL: representation learning, DA: data augmentation)

medical records. Here, m ranges from 6 to 48 hours, based on
input from clinicians. Shock visits are aligned to their initial
onset, while non-shock visits are truncated accordingly. Non-
shock visits are further balanced to match the length distri-
bution of shock visits. Given sepsis’s rapid progression, our
analysis focuses on the initial five days of patient records.

Representation Models (1) EHR, raw (continuous) EHRs
with the expert rule-based imputation [Kim and Chi, 2018];
(2) MuLan [Sohn et al., 2020], Skipgram-based static model
which takes temporally abstracted visit sequences without
time gap information; (3) BERT [Li et al., 2020], BERT-
based contextualized model which takes MuLan’s input; (4)
t-BERT (Ours), BERT-based model that incorporates task-
specific temporal information into training.

Data Augmentation Models (1) mixup [Zhang et al.,
2018], linear interpolation-based augmentation; (2) Mani-
fold Mixup (M.Mixup) [Verma et al., 2019], variation of
mixup, which combines intermediate vector representations;
(3) CEHR-GAN-BERT (GAN) [Poulain et al., 2022], GAN-
based data augmentation approach which utilizes EHR rep-
resentation model CEHR-BERT [Pang et al., 2021]. For a
fair comparison, we substituted t-BERT for CEHR-BERT; (4)
Multi-TA (Ours), our proposed EHRs augmentation algo-
rithm which controls transformation level to generate suffi-
ciently different but informative samples to predictions.

Evaluation Strategy We measure model temporal robust-
ness using two evaluation methods: (1) Raw prediction per-
formance is evaluated using five metrics (accuracy, precision,
recall, F1-score, and AUC) with a focus on F1 and AUC
due to their balanced measure; (2) For lower-bound perfor-
mance, we identify the lowest performance across all predic-
tion hours, denoted as -LB. A more temporally robust model
exhibits higher lower-bound performance. In addition, we re-
port the mean and standard deviation of model performance
from six experimental trials (three repetitions for two-fold
stratified cross-validation) with critical differences [Benavoli
et al., 2016] between models. Hyperparameters, such as p
and U , are chosen based on the validation performance.

Evaluation Sets (Regular vs. Robust) We use two test sets
to gauge the model’s sensitivity to changes in training data
size. “Regular” is a commonly used test set for early predic-
tion, in which the numbers of patients in training, validation,
and test sets decrease as prediction hour n increases. “Ro-

bust” uses the same group of patients across varying predic-
tion hours for model evaluation, in which only the number of
training and validation data changes.

4 Result and Discussion
We present two experimental results. 48 hours early predic-
tion reveals the model’s static robustness while 6-48 hours
prediction uncovers the temporal robustness of the model.

4.1 48 Hours Early Prediction
Representation Models Table 1 (RL sections) shows the
performance for four representation models. Firstly, BERT
consistently outperforms EHR and MuLan on every metric
across both datasets, with approximately a 10% increase in
F1 and AUC for both (9.3% of AUC increase in CCHS). This
demonstrates BERT’s effectiveness in learning contextual-
ized and subtle information inherent in EHRs. Moreover, our
proposed t-BERT outperforms BERT and exhibits lower vari-
ance across metrics and datasets, except for recall in CCHS.
This suggests that incorporating time intervals into training
enhances understanding of temporal dynamics in patient tra-
jectories. Notably, the performance improvement from BERT
to t-BERT is more pronounced in CCHS (AUC increase: 3%
in CCHS, 1.7% in Mayo), indicating that t-BERT may be
more effective on more irregularly measured EHRs.

Data Augmentation Models Table 1 (DA sections) reveals
the experiment result for four data augmentation models.
Data augmentation models shows mixed results when com-
pared to their counterparts, either EHR or t-BERT. While
mixup applied to EHR slightly improves the model perfor-
mance (AUC increase: 1.9% in CCHS, 0.2% in MAYO),
M.Mixup and GAN applied to t-BERT rather degrade the per-
formance in most cases. We hypothesize that this under-
performance is derived from their architectural design in
which (1) they generate intermediate latent vector represen-
tations for augmentation, which may only contain condensed
information instead of actual visit sequences; (2) they gener-
ate representations without conditioning on class labels and
regardless of prediction objective. Furthermore, GAN does
not capture temporal dependencies between events due to the
lack of LSTM layer and rather depends on its BERT model
to capture the information. On the other hand, our proposed
Multi-TA consistently outperforms the other models across
all metrics and datasets except for recall in CCHS, where
GAN performs the best with 88.8%. Further, Multi-TA shows
smaller variance than others, demonstrating its robustness to
the data changes. This validates the efficacy of optimizing
transformation levels in relation to a target prediction task.

4.2 6-48 Hours Early Prediction
Representation Models Figure 4 shows the model perfor-
mance (F1) in the robust setting across varying hold-off win-
dow sizes, ranging from 6 to 48 hours at 6-hour intervals.
The plots exhibit consistent patterns across both datasets: (1)
t-BERT outperforms baseline models across different hours,
except for 18 hours with Mayo data; (2) t-BERT maintains
stable performance from 6 to 48 hours, showing minimal per-
formance decline and indicating robustness to training data
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Setting Model F1 AUC F1-LB AUC-LB
CCHS EHR 0.762(±.016) 0.831(±.020) 0.705(±.031) 0.777(±.044)
+ Regular MuLan 0.803(±.008) 0.879(±.006) 0.753(±.018) 0.832(±.020)
+ RL BERT 0.838(±.006) 0.909(±.006) 0.791(±.020) 0.868(±.022)

t-BERT (Ours) 0.851(±.007) 0.925(±.005) 0.821±.016) 0.894±.008)
CCHS EHR+mixup 0.772(±.040) 0.846(±.041) 0.720(±.047) 0.796(±.037)
+ Regular t-BERT+M.Mixup 0.846(±.043) 0.915(±.035) 0.802(±.028) 0.876±.011)
+ DA t-BERT+GAN 0.844(±.005) 0.836(±.005) 0.812(±.012) 0.796(±.033)

Multi-TA (Ours) 0.867*(±.005) 0.936*(±.004) 0.833*(±.018) 0.907*(±.007)
CCHS EHR 0.744(±.020) 0.823(±.026) 0.705(±.031) 0.777(±.044)
+ Robust MuLan 0.782(±.014) 0.864(±.008) 0.753(±.018) 0.832(±.020)
+ RL BERT 0.819(±.009) 0.898(±.009) 0.792(±.021) 0.873(±.020)

t-BERT (Ours) 0.836(±.008) 0.915(±.005) 0.822(±.016) 0.897(±.008)
CCHS EHR+mixup 0.744(±.020) 0.832(±.030) 0.720(±.047) 0.796(±.037)
+ Robust t-BERT+M.Mixup 0.823(±.025) 0.902(±.024) 0.801(±.034) 0.878(±.010)
+ DA t-BERT+GAN 0.817(±.013) 0.818(±.010) 0.775(±.046) 0.798(±.027)

Multi-TA (Ours) 0.848*(±.008) 0.926*(±.004) 0.834*(±.021) 0.911*(±.006)
MAYO EHR 0.736(±.023) 0.784(±.021) 0.697(±.023) 0.727(±.019)
+ Regular MuLan 0.765(±.004) 0.816(±.005) 0.703(±.024) 0.759(±.022)
+ RL BERT 0.810(±.007) 0.876(±.003) 0.779(±.011) 0.845(±.010)

t-BERT (Ours) 0.814(±.005) 0.883(±.004) 0.779(±.005) 0.849(±.013)
MAYO EHR+mixup 0.743(±.048) 0.796(±.046) 0.679(±.025) 0.756(±.036)
+ Regular t-BERT+M.Mixup 0.821(±.045) 0.884(±.040) 0.779(±.007) 0.855(±.008)
+ DA t-BERT+GAN 0.807(±.004) 0.794(±.004) 0.771(±.027) 0.772(±.018)

Multi-TA (Ours) 0.829*(±.008) 0.891*(±.003) 0.790*(±.018) 0.865*(±.005)
MAYO EHR 0.701(±.031) 0.768(±.028) 0.666 (±.045) 0.740(±.030)
+ Robust MuLan 0.736(±.009) 0.801(±.007) 0.703(±.024) 0.759(±.022)
+ RL BERT 0.782(±.013) 0.860(±.006) 0.768(±.011) 0.838(±.004)

t-BERT (Ours) 0.790(±.013) 0.869(±.006) 0.767(±.011) 0.849(±.007)
MAYO EHR+mixup 0.706(±.017) 0.777(±.022) 0.679 (±.025) 0.763(±.060)
+ Robust t-BERT+M.Mixup 0.795(±.031) 0.868(±.032) 0.767(±.014) 0.836(±.010)
+ DA t-BERT+GAN 0.770(±.006) 0.769(±.012) 0.742(±.012) 0.753(±.012)

Multi-TA (Ours) 0.803*(±.011) 0.875*(±.004) 0.779*(±.020) 0.851*(±.006)

Table 2: Model Performance for 6-48 Hours Early Prediction
Notes: Best results for section are in bold and the best overall results
have asterisk. (RL: representation learning, DA: data augmentation)

scarcity. Similar to 48-hour prediction, the biggest perfor-
mance gap is observed between EHR/MuLan and BERT, em-
phasizing the importance of capturing contextual information
in EHRs. The consistent improvement from BERT to t-BERT
reveals the significance of incorporating time gap signals to
comprehend temporal dynamics of disease trajectories. Ta-
ble 2 (RL sections) presents detailed model performance for
both settings and lower-bound metrics that measure the worst
performance over time. Firstly, compared to the regular set-
ting, the robust setting exhibits slightly lower performance.
We hypothesize that the patient group in the robust setting
may pose greater challenges possibly due to vague symptoms.
Secondly, t-BERT consistently performs better with CCHS
across all metrics, as observed in Figure 5. This underscores
the significance of modeling time irregularity in disease early
prediction and highlights the effectiveness of our proposed
t-BERT. Lastly, t-BERT outperforms other models in all set-
tings including robust and lower-bound metrics, establishing
it as the most temporally-robust among RL models.
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Figure 4: F1-Scores for EHR Representation Models

6 12 18 24 30 36 42 48
Hours

0.68

0.72

0.76

0.80

0.84

0.88

F1
-S

co
re

CCHS (Robust)

Multi-TA (Ours)
t-BERT (Ours)
t-BERT+M.MixUp
t-BERT+GAN
EHR+mixup

6 12 18 24 30 36 42 48
Hours

0.68

0.72

0.76

0.80

0.84

0.88

F1
-S

co
re

MAYO (Robust)

Figure 5: F1-Scores for Data Augmentation Models

2 4 6 8
REGULAR AUC

REGULAR F1

ROBUST AUC

ROBUST F1

Dataset=ALL, 6-48 Hours Early Prediction

Multi-TA (Ours)
t-BERT+M.Mixup
t-BERT (Ours)
t-BERT+GAN
BERT
MuLan
EHR+mixup
EHR

Figure 6: Critical Differences Between Models
Notes: Models with no statistical difference (P≥.05) are linked.

Data Augmentation Models Figure 5 compares F1-scores
for data augmentation models in the robust setting, where
Multi-TA demonstrates more stable and superior performance
over time compared to others. Specifically, GAN exhibits un-
stable performance, degrading even with more training data
(as hour n decreases), highlighting its ineffectiveness in en-
suring temporal robustness. M.Mixup produces relatively sta-
ble predictions and performs better than t-BERT on Mayo,
but its inconsistent performance across varying prediction
hours and datasets suggests sensitivity to changes. In con-
trast, Multi-TA consistently improves performance over time
with its target-oriented sample generation, even when n is
large and training data is the scarcest. Table 2 (DA sections)
underscores the temporal robustness of the four data augmen-
tation models. Across eight prediction hours, Multi-TA out-
performs other models consistently, with higher lower-bound
scores (F1-LB and AUC-LB), indicating greater reliability,
especially for early prediction tasks. Finally, Figure 6 demon-
strates that Multi-TA significantly outperforms other models.

4.3 Analysis of Data Augmentation
Quantity of Data Multi-TA determines optimal data aug-
mentation levels. Unlike methods that assumes more ran-
dom data enhances model performance, our approach aug-
ments training data specifically tailored to the current model
by adding fewer samples. Specifically, a sampling probabil-
ity p in Algorithm 1 controls the augmented dataset size ef-
ficiently. Figure 7 addresses the question of “how many new
samples are sufficient?” and demonstrates that excessive data
addition (≥ 0.25) rather harms performance.

Quality of Data Multi-TA optimizes the quality of aug-
mented data by determining the optimal transformation level
θ to maximize diversity. For example, larger θ values in-
dicate more extensive token transformation, increasing dis-
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Figure 8: Analysis of Data Transformation

tance from the original sample. Figure 8 (left) displays the
distributions of estimated θ values for both datasets, which
are neither uniform nor skewed, showing Multi-TA’s ability
to adaptively set transformation levels for target datasets and
prediction models, unlike fixed or random approaches.
Transformation, Where? By design, Multi-TA transforms
most contributing time steps within a visit. Figure 8 (right)
shows the distribution of the indices of transformed time steps
on its x-axis, and we denote the most recent time step as 0. As
expected, the results show that more recent time steps (which
are close to 0) were transformed more, indicating that they
contributed more to predictions and increasing diversity.

5 Related Work
Representation Learning for EHRs Given the signifi-
cance of contextualized vector representations, [Richard-
son et al., 2020; Tonelli et al., 2018], BERT [Devlin et al.,
2019] has gained widespread adoption for EHRs, including
variants like BEHRT [Li et al., 2020] incorporating patient
ages to imply temporal code orders, G-BERT [Shang et al.,
2019] enhancing clinical context with a graph neural network,
Med-BERT [Rasmy et al., 2021] utilizing domain-specific
pretraining and a large dataset (20M patients), and CEHR-
BERT [Pang et al., 2021], akin to our t-BERT, training a tem-
poral BERT with visit type prediction and time-indicative to-
kens. Despite these advancements, prior works may not ef-
fectively capture rapid disease progression like sepsis due to
discrete and coarse-grained medical codes [Lee et al., 2020],
nor address temporal robustness in early prediction tasks.
While recent advances in Large Language Models (LLMs)
offer promising capabilities for learning representations from
medical corpora [Singhal et al., 2023], their application to
specialized tasks like septic shock prediction remains limited.
Data Augmentation for EHRs While time-series data aug-
mentation shows promise [Wen et al., 2021; Iglesias et al.,

2023], deep learning-based methods for healthcare prediction
remain limited. Firstly, simple yet effective linear interpola-
tion techniques like mixup [Zhang et al., 2018] and Manifold
Mixup [Verma et al., 2019] can augment both continuous and
discrete inputs by combining a pair of training samples, and
the generated samples act as a regularization that enhances
model robustness. Secondly, GAN-based approaches are di-
vided into two groups: (1) generation-focused models for pre-
serving privacy in data [Mogren, 2016; Choi et al., 2017b;
Esteban et al., 2017; Yoon et al., 2019; Baowaly et al., 2019;
Li et al., 2021]; (2) prediction-focused model with semi-
supervised learning [Che et al., 2017; Yu et al., 2019;
Cui et al., 2020], but both approaches have not shown their
effectiveness in improving temporal robustness for early dis-
ease prediction. CEHR-GAN-BERT [Poulain et al., 2022]
shares similarities with our approach by integrating a EHR
representation model with a discriminator for robust predic-
tions. However, it lacks capturing temporal dependencies and
generates only unlabeled vector representations.

6 Limitations and Future Work
Time Complexity Multi-TA’s iterative transformation pro-
cess increases training time. Training for 48-hour early pre-
diction spans around 3-min for EHR, 7-min for t-BERT, and
100-min for Multi-TA. We expect enhanced efficiency with
parallel processing like distributed optimization.
BERT as a Transformation Function When the majority
of tokens in a visit is masked, it is challenging for BERT to
fill in the spots due to the lack of context. However, we ex-
pect that causal language models such as GPTs can address
this issue and generate more diverse and creative patient tra-
jectories.
Comparison with Existing Approaches Multi-TA has not
yet been comprehensively compared to other existing meth-
ods for septic shock prediction or handling time gap informa-
tion [Ma et al., 2020; Wei et al., 2023]. We plan to conduct
further experiments to facilitate a comparative analysis.
Binary Prediction We followed established literature
precedents [Gao et al., 2022; Yang et al., 2023; Fleuren et al.,
2020; Yan et al., 2022], which use binary prediction models
with manually designated windows up to 48-hour. Yet, we
admit that a regression model capable of predicting the exact
onset hour would significantly benefit healthcare providers.

7 Conclusion
Accurate early disease predictions face challenges due to in-
herent data scarcity at trajectory and event levels. This paper
introduces Multi-TA, a unified temporal augmentation frame-
work, which addresses these challenges by integrating EHR
representation learning with data augmentation. Multi-TA
mitigates event-level scarcity by learning temporal dynamics
from unlabeled events and enhances trajectory diversity by
generating new samples via constrained worst-case transfor-
mations. Experiment results on two real-world EHR datasets
reveal the temporal robustness of Multi-TA compared to var-
ious state-of-the-art models, affirming its efficacy in improv-
ing early prediction for enhanced clinical decision-making.
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