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Abstract

SE(3) equivariance is a fundamental property that
is highly desirable to maintain in physical dynam-
ics modeling. This property ensures neural out-
puts to remain robust when the inputs are trans-
lated or rotated. Recently, there have been several
proposals for SE(3) equivariant graph neural net-
works (GNNs) that have shown promising results
in simulating particle dynamics. However, exist-
ing works have neglected an important issue that
current SE(3) equivariant GNNs cannot scale to
large particle systems. Although some simple nor-
malization techniques are already in use to stabi-
lize the training dynamics of equivariant graph net-
works, they actually break the SE(3) equivariance
of the architectures. In this work, we first show the
numerical instability of training equivariant GNNs
on large particle systems and then analyze some
existing normalization strategies adopted in mod-
ern works. We propose a new normalization layer
called GEONORM, which can satisfy the SE(3)
equivariance and simultaneously stabilize the train-
ing process. We conduct comprehensive exper-
iments on N -body system simulation tasks with
larger particle system sizes. The experimental re-
sults demonstrate that GEONORM successfully pre-
serves the SE(3) equivariance compared to baseline
techniques and stabilizes the training dynamics of
SE(3) equivariant GNNs on large systems.

1 Introduction
Particle dynamics simulations have recently been success-
fully formulated as geometric graph learning problems.
The message passing mechanism of graph neural networks
(GNNs) [Kipf and Welling, 2017; Hamilton et al., 2017;
Veličković et al., 2018] can effectively capture the inter-
actions between each pair of particles. However, applying
GNNs to particle dynamics modeling poses a special chal-
lenge in preserving physical symmetry biases, particularly
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Figure 1: The illustration of particle dynamics simulations. At time
step T − 1, input particle locations X(T − 1) ∈ R3×N , where
each column xi denotes the 3D coordinate of particle i. Then we
predict next location X(T ) ∈ R3×N at time step T . Note that ∆T
is a pre-defined delta time frame, which determines the time slice to
discretize an inherent continuous trajectory.

the SE(3) transformation (3D rotation and translation) equiv-
ariance. Since it is not feasible to consider all possible 3D
rotations and translations of input systems through data aug-
mentations in continuous space, a promising approach is to
directly incorporate symmetry inductive biases into the de-
sign of the GNN architecture. To achieve SE(3) equivari-
ance in GNN learning mechanisms, several SE(3) equiv-
ariant GNNs [Satorras et al., 2021b; Huang et al., 2022;
Du et al., 2022; Thomas et al., 2018; Fuchs et al., 2020;
Köhler et al., 2020] have been proposed and have shown
remarkable empirical performance. Among these models,
EGNN [Satorras et al., 2021b] is considered the most im-
portant and fundamental equivariant GNN model due to its
simplicity and efficiency. However, the current EGNN is typ-
ically applied to small particle systems (3-5 particles), and it
faces numerical instability issues when trained on larger sys-
tems (50-100 particles), making it impractical for large parti-
cle systems. Specifically, the position update step of EGNN
shown in Eq. 2 can be highly unstable, and this instability be-
comes more severe with deeper models and larger systems.
We illustrate this issue in Figure 2 through n-body system
simulation experiments involving charged particles follow-
ing simple physics rules. To address this issue, some recent
works have employed simple normalization techniques. One
popular strategy is scaling geometric vectors by their norm to
make them unit-length vectors. However, this approach vio-
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Figure 2: The visualization of the numerical instability issue of EGNN. The upper panel shows the training curve of EGNN on n-body system
with N = 20, 50. When the layer depth of EGNN increases from 1 to 10, the numerical explosion occurs (training dynamics becomes
extremely unstable). When the N = 50, the training dynamics becomes unstable even when layer depth is only 5. Note that we do not
draw the training curve of layer depth 10 when N = 50 since the loss value is too large to plot in the figure; The lower panel shows that the
training dynamics becomes increasingly unstable when the size of system becomes increasingly large. Even when the layer depth is only 3,
the numerical explosion will easily occur when the system size goes to N = 100.

lates SE(3) equivariance, although it can stabilize the training
dynamics. In the following sections, we will systematically
analyze the weaknesses of existing approaches. In general,
designing novel SE(3) equivariant normalization layers that
can be easily integrated into current equivariant GNN archi-
tectures is challenging yet necessary. This will pave the way
for training SE(3) equivariant GNNs on large particle system
dynamics.

In this study, we begin by examining various normaliza-
tion strategies. We analyze their properties and shortcom-
ings through theoretical analysis. Following this, we intro-
duce a new normalization layer called GEONORM. This en-
sures stable training dynamics and upholds the SE(3) equiv-
ariance constraints with a theoretical guarantee. We perform
extensive experiments on n-body system simulation tasks
with large system sizes, specifically N = 50, 100. It is
observed that GEONORM effectively stabilizes training, ir-
respective of different weight initialization and learning rate
choices. We further evaluate the SE(3) equivariance preserva-
tion of GEONORM by applying random rotations and trans-
lations to test inputs. Empirical results show that GEONORM
achieves the lowest rotational and translational errors (RTE)
when compared to baseline methods. In conclusion, our con-
tributions can be summarized as follows:

• We systematically analyze the equivariance properties
of several simple and existing normalization strategies.
To the best of our knowledge, this is the first attempt
to investigate geometric normalization techniques with
equivariance analysis;

• We propose a SE(3) equivariant normalization layer,
called GEONORM, which can stabilize the training dy-
namics of EGNN on much larger systems;

• We conduct extensive experiments to verify that our pro-
posed GEONORM method can effectively address the
numerical explosion issue, while maintaining the SE(3)
group equivariance of the original EGNN architecture.

2 Related Works
Normalization. Normalization layers are essential compo-
nents of modern large models. In language and vision model-
ing, various classic normalization techniques have been intro-
duced to improve the stability of large model training. These
normalization layers aim to normalize the output of neurons

by removing the mean and dividing by the standard devia-
tion along specific dimensions, ensuring that the values fall
within a reasonable range. For example, BatchNorm [Ioffe
and Szegedy, 2015] standardizes the output across the entire
batch of samples to address internal covariate shift. Layer-
Norm [Ba et al., 2016], on the other hand, normalizes the out-
put across the feature dimensions of each individual sample,
resulting in improved training stability for transformer-based
models. Other variations follow a similar normalization ap-
proach but with different dimensions [Ulyanov et al., 2016;
Wu and He, 2018; Brock et al., 2021], or use simpli-
fied versions by scaling with different norms [Singh and
Krishnan, 2020; Daneshmand et al., 2020; Salimans and
Kingma, 2016; Miyato et al., 2018]. Recent research has ex-
plored incorporating symmetry priors into normalization lay-
ers. In the context of graph structures, normalization tech-
niques have been developed to stabilize deep GNN training
by leveraging graph-specific information [Cai et al., 2021;
Zhao and Akoglu, 2020; Yang et al., 2020; Li et al., 2022;
Zhou et al., 2020; Dwivedi et al., 2023]. Similarly, there
are SO(3) equivariant normalization layers designed for point
cloud modeling [Deng et al., 2021; Shen et al., 2020]. Ad-
ditionally, different normalization techniques have been pro-
posed for chemical modeling [Meng et al., 2023] and pro-
tein modeling, taking into account corresponding geomet-
ric considerations [Schütt et al., 2017; Batatia et al., 2022;
Jing et al., 2021].

Equivariant Graph Neural Networks. There are three
main types of equivariant GNNs. Irreducible representa-
tion methods [Fuchs et al., 2020; Anderson et al., 2019;
Thomas et al., 2018; Batzner et al., 2022; Zitnick et al., 2022;
Brandstetter et al., 2022; Frank et al., 2022] leverage spe-
cific equivariant basis functions to process relative posi-
tion signals. However, these models suffer from exces-
sive computational overhead and produce higher-order out-
puts. Regular representations [Finzi et al., 2020; Hutchin-
son et al., 2021] map each geometric vector to a group el-
ement by designing equivariant group convolutions. How-
ever, these models are usually SE(3)-invariant. Scalariza-
tion methods [Satorras et al., 2021b; Schütt et al., 2017;
Gasteiger et al., 2020; Liu et al., 2022; Köhler et al., 2020;
Jing et al., 2021; Huang et al., 2022; Schütt et al., 2021;
Thölke and Fabritiis, 2022; Klicpera et al., 2021] transform
relative position information into invariant scalars and use
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Figure 3: The proposed GEONORM method. Figure (a) illustrates the comparisons over three different norms. GEONORM summarizes
statistics over dimension N and coordinate dimension 3 while the feature scaling norm and the vanilla LN computes summary statistics only
over the coordinate dimension; Figure (b) illustrates the comparison over three different norms in terms of SE(3) equivariance constraints
fulfillment; Figure (c) shows how to concatenate GEONORM with SE(3) equivariant graph neural networks in the general architectures; Figure
(d) illustrates the comparison between bi and gi learning mechanism.
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Figure 4: Two important geometric notions in a particle system.

models dominates current research and benefits many down-
stream applications like molecules [Hoogeboom et al., 2022],
proteins [Ganea et al., 2022] and materials [Jiao et al., 2023;
Song et al., 2024].

3 Preliminary
We first define the problem formulation of particle dynamics
modeling. Given a set of N particles P = {pi}Ni=1 with an
input 3D position vector matrix X(T ) ∈ R3×N at time T ,
each particle pi is associated with an input geometric vector
xi(T ) ∈ R3 (i-th column of X(0)) and an input scalar feature
vector hi(T ) ∈ RH with hidden dimension H . A geometric
graph G = (P,E) can be constructed by building local edges
between each pair of particles. Usually, each particle con-
nects with its neighbors within a pre-defined cutoff distance
threshold γ such that E = {eij |∥xi(T ) − xj(T )∥2 < γ}.
In this work, we only consider fully connected geometric
graphs. Each edge eij can be associated with an edge feature
eij , such as bond types in chemical molecules. The target of
dynamics modeling is predicting the system state X(T+∆T )
after ∆T steps given the initial state X(T ) as input.

SE(3) Equivariance. Let Tg : X → X be a set of transfor-
mations on X for the abstract group g ∈ G. We say a function
f : X → Y is equivariant to g if there exists an equivalent

transformation on its output space Sg : Y → Y such that:

f(Tg(X)) = Sg(f(X)). (1)

If Sg is an identity mapping function, then the function f(·) is
invariant to group action g. Function f(·) is considered to be
SE(3) equivariant if it is equivariant to both 3D rotations R ∈
R3×3 (SO(3) group elements) and 3D translations t ∈ R3.
Specifically, function f(·) is SE(3)-equivariant if f(RX +
t) = Rf(X) + t.

Equivariant Graph Neural Networks (EGNN). In this
work, we mainly focus on the EGNN architecture since
its output is not higher-order outputs like irreducible
representation-based methods and it is the fundamental pro-
totype of various scalarization-based methods. Currently,
EGNN is still regarded as the most efficient equivariant
GNN models. The following is the general message passing
scheme proposed by EGNN [Satorras et al., 2021b]:

ml
ij = ϕm(hl

i,h
l
j , ∥xl

i − xl
j∥22, eij),

xl+1
i = xl

i +
∑
j ̸=i

(xl
i − xl

j)ϕx(m
l
ij),

hl+1
i = ϕh(h

l
i,

∑
j∈N(i)

ml
ij),

(2)

where xl
i denotes the coordinate of particle i at layer l, hl

i
denotes the invariant embedding of particle i at layer l, ϕm

and ϕh denote two separate multi-layer perceptrons (MLPs).
For dynamics modeling, the EGNN is trained in an Markov
way with input xi(T ) and output xi(T + ∆T ). The layer
input x0

i is the input system state xi(T ) at time T and the final
layer output xL

i of the above learning mechanism (stacking L
layers) is the output predicted xi(T +∆T ).

4 Proposed Methods
In this section, we first demonstrate the issue of numerical
instability in SE(3) equivariant GNNs and identify the spe-
cific challenges in designing geometric normalization. Next,
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we summarize the temporary normalization techniques used
in previous works and analyze their limitations. To address
this challenge, we introduce a new normalization layer called
GEONORM, which provides SE(3) equivariance with theo-
retical guarantee. Finally, we discuss some trade-off issues
recently discovered in GEONORM.

4.1 Numerical Instability & Particular Challenges
From Eq. 2, we can see that there are two separate updating
steps which are invariant embedding updates and geometric
vector updates. Indicated by equivariant normalizing flow
[Satorras et al., 2021a], the coordinate update step easily ex-
plodes when utilized in an ODE. Based on our experimental
observations shown in Figure 2, the coordinate update step
also explodes when training EGNN on large particle systems.
In fact, both invariant embedding updates and geometric vec-
tor updates can lead to numerical explosions. The numerical
instability of the invariant embedding update part can be al-
leviated through a vanilla layer normalization LAYERNORM
[Ba et al., 2016]. If we apply LAYERNORM on geometric
vectors, the normalization layer would be as follows:

µ(xl
i) =

∑3
d=1 x

l
id

3
, σ(xl

i) =

√∑3
d=1(x

l
id − µ(xl

i))
2

3
,

xl+1
i = F (xl

i) = gi · (
xl
i − µ(xl

i)

σ(xl
i)

) + bi, gi ∈ R,bi ∈ R3

(3)

where xl
id ∈ R denotes the dth dimension of the position co-

ordinate of particle i in layer l, µ(xl
i) ∈ R and σ(xl

i) denote
the mean and standard deviation across coordinate dimen-
sions respectively, xl+1

i denotes the output position vector of
particle i after the lth layer block, gi ∈ R denotes a learnable
re-scaling scalar parameter, bi ∈ R3 denotes a learnable bias
parameter. Note that unlike the vanilla LAYERNORM on the
invariant embedding update, the standard deviation σ(xl

i) in
Eq. 3 is a scalar value since each dimension of the particle
should be scaled by the same magnitude. However, LAYER-
NORM has two important deflects. First, the µ(xl

i) and σ(xl
i)

computation are measuring the mean and variance across co-
ordinate dimension values, which does not summarize useful
statistics that can reflect geometric information. Second, the
above transformation is not SE(3) equivariant and thereby we
present the following lemma:

Lemma 1. The vanilla LAYERNORM on geometric vectors
are neither rotation equivariant nor translation equivariant.

The proof of lemma 1 is straightforward since µ(xl
i) is

clearly not SE(3) equivariant and thus we show the detailed
procedures in Appendix. To sum up, the geometric vector
update has instability issue and it cannot be easily solved by
simple modifications of the vanilla LAYERNORM. Hence, de-
signing SE(3) equivariant normalization layers for geometric
vectors is a non-trivial challenge.

4.2 Existing Solutions
There are some straightforward solutions tackling the insta-
bility issue. One of the popular strategies adopted in many

recent works [Liao and Smidt, 2023; Fuchs et al., 2020;
Deng et al., 2021; Jing et al., 2021; Batatia et al., 2022] is
scaling the geometric vector by its norm. Specifically, most
of the variants can be concluded in the following form:

xl+1
i = F (xl

i) = gi ·
xl
i

norm(xl
i)
, gi ∈ R, (4)

where gi is still a learnable re-scaling scalar parameter,
norm(·) denotes a vector norm computation on xi. Some
adopt the L2-norm and some adopt the RMS-norm (Root-
Mean-Square norm). To summarize, the temporary solution
presented in Eq. 4 involves using various norms to scale geo-
metric vectors into unit-length vectors, depending on the se-
lected norm. Experimental evidence from related works sug-
gests that this method of feature scaling can significantly fa-
cilitate the training stability of EGNN. However, it also has
issues with SE(3) equivariance constraints and we present the
following lemma:
Lemma 2. The feature scaling norm SCALENORM is rota-
tion equivariant but not translation equivariant.

We use L2-norm as an example to prove the Lemma 2:

Proof. F (Rxi) = gi · Rxi

∥Rx∥2
= gi · Rxi√

(Rxi)TRxi

= gi · Rxi√
(xi)TRTRxi

= R(gi · xi√
(xi)Txi

) = RF (xi)

F (xi + t) = gi
xi+t√

(xi+t)T (xi+t)

̸= gi
xi√

(xi)T (xi)
+ t = F (xi) + t

Therefore, the SCALENORM is rotation equivariant but not
translation equivariant. Also, this feature scaling normaliza-
tion does not collect the mean statistics and consequently it
does not contain learnable bias parameters, which impairs the
expressiveness of the normalization layer.

Another temporary solution proposed in E-NF [Satorras
et al., 2021a] is turning the relative coordinate difference
(xl

i − xl
j) in the second line of Eq. 2 into the scaled relative

coordinate difference
(xl

i−xl
j)

∥xl
i−xl

j∥2
. This solution is not a real

normalization layer since it does not contain the re-scaling
operation and (xl

i − xl
j) is not a direct neural network output

in EGNN. Consequently, no recovery of the coordinate differ-
ence norm would hurt the expressiveness of the networks as it
results in some geometry and force information loss. In addi-
tion, this method still cannot stabilize the training dynamics
of EGNN on real large particle systems.

4.3 New Geometric Normalization Layer
GEONORM

The very first challenge we need to solve is finding summary
statistics µ(x) and σ(x) in particle systems that make geo-
metric sense. Inspired by point cloud geometry observations,
two important geometric notions are emerged as strong can-
didates for µ(x) and σ(x). First, we adopt the center of mass
of the particle system as µ(x). Since our problem setting as-
sumes that each particle has exactly the same mass to simplify
the problem setting, the center of mass is equal to the geomet-
ric center of the particle system such that µ(x) =

∑N
i=1 xi

N .
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For the standard deviation σ(x), we adopt the euclidean dis-
tance between each particle and the geometric center such
that σ(xi) = ∥xi − µ(x)∥2 =

√
(xi − µ(x))T (xi − µ(x)).

Here we abuse the notation σ a bit for alignment with the
terminologies used in the vanilla LN setting although the se-
lected σ(xi) is not a typical standard deviation. We illus-
trate these two geometric notions in Figure 4. Importantly,
these two statistics include fundamental geometric informa-
tion. The geometric center µ(x) reflects the global state of
the whole particle system and the σ(xi) describes how distant
from each particle to the geometric center. Furthermore, these
two geometric notions enjoy great SE(3) equivariance prop-
erties, which brings extra convenience for designing SE(3)
equivariant normalization layers. Therefore, we present the
following two lemmas:
Lemma 3. The geometric center µ(x) is both rotation equiv-
ariant and translation equivariant.
Lemma 4. The standard deviation σ(xi) is both rotation in-
variant and translation invariant.

The proof procedures of the above two lemmas are shown
in the Appendix.

To consider the SE(3) equivariance guarantee of
GEONORM design, our strategy is splitting the normal-
ization layer into two independent operations. The first
operation is the normalization that projects geometric vectors
to the standard normal distribution. The second operation is
the re-scaling operation that learns to recover the normalized
vectors back to the original. The general idea is turning
the first operation into a rotation equivariant and translation
invariant operation and then adding the translation back
with a rotation-equivariant re-scaling operation. From the
Lemma 2, we know that the feature scaling norm is rotation
equivariant but not translation equivariant. Inspired by
[Satorras et al., 2021a] and the two previously selected
geometric summary statistics, we modify the feature scaling
operation in Eq. 4 to be a rotation equivariant and translation
invariant operation xl

i−µ(xl)

∥xl
i−µ(xl)∥2

=
xl
i−µ(xl)

σ(xl
i)

. We present the
following lemma:
Lemma 5. The feature scaling of coordinate difference be-
tween each particle coordinate and the geometric center is
rotation equivariant and translation invariant.

The proof of this lemma is shown in the Appendix. At this
time, the feature scaling norm becomes gi · xl

i−µ(xl)

σ(xl
i)

.
The remaining problem is how to add the missing trans-

lation back in the re-scaling operation while still maintain-
ing the rotation equivariance. Note that since the geomet-
ric center has been removed from position coordinates, we
need a learnable bias to recover the geometric center such
that gi · xl

i−µ(xl)

σ(xl
i)

+ bi. However, adding the additional bias
vector bi would break the rotation equivariance. A straight-
forward solution to solve this tricky issue is multiplying a
rotation equivariant and translation invariant vector on b and
replace the bias vector bi with a scalar parameter bi. There-
fore, we multiply a direction vector µ(xl)−µ(x0)

∥µ(xl)−µ(x0)∥2
to bi such

that the norm becomes gi · x
l
i−µ(xl)

σ(xl
i)

+ µ(xl)−µ(x0)
∥µ(xl)−µ(x0)∥2

·bi where

µ(x0) denotes the computed geometric center of the input
state of particle system (not the intermediate layer l state).

Note that we apply µ(xl)−µ(x0)
∥µ(xl)−µ(x0)∥2

as the bias direc-

tion instead of using xl
i−µ(xl)

∥xl
i−µ(xl)∥2

and xl
i−µ(x0)

∥xl
i−µ(x0)∥2

. If we

use xl
i−µ(xl)

∥xl
i−µ(xl)∥2

, then the bias bi learning would degener-
ate into the gi learning since the mean removal direction
and given bias direction are exactly the same, which makes
the bias learning very trivial. If we use xl

i−µ(x0)

∥xl
i−µ(x0)∥2

, then
GEONORM would be unstable particularly when a single par-
ticle position vector xl

i has extreme values. Therefore, using
µ(xl)−µ(x0)

∥µ(xl)−µ(x0)∥2
would avoid both problems. However, this

leads to a direction inconsistency issue between the mean re-
moval direction xl

i−µ(xl)

∥xl
i−µ(xl)∥2

and the bias learning direction
µ(xl)−µ(x0)

∥µ(xl)−µ(x0)∥2
. The scalar bias bi is not able to calibrate the

bias direction to align with the mean removal direction. For-
tunately, this problem can be perfectly solved by adding an
additional µ(x0) since µ(xl)−µ(x0)

∥µ(xl)−µ(x0)∥2
bi+µ(x0) can perfectly

recover the removed µ(xl) with bi learns different informa-
tion from gi (No degeneracy). We illustrate this mechanism
in Figure 3 (d).

To conclude, the complete solution of our GEONORM nor-
malization layer is as follows:

µ(xl) =

∑N
i=1 x

l
i

N
, σ(xl

i) = ∥xl
i − µ(xl)∥2,

F (xl
i) = gi · (

xl
i − µ(xl)

σ(xl
i)

) +
µ(xl)− µ0

∥µ(xl)− µ0∥2
· bi + µ0.

xl+1
i = F (xl

i), µ0 = µ(x0), gi ∈ R, bi ∈ R
(5)

Then we prove the following theorem:

Theorem 1. GEONORM is an SE(3) equivariant normaliza-
tion layer, which is both rotation-equivariant and translation-
equivariant.

We show the proof of the above theorem as follows:

Proof. F (Rxi + t) = gi · (Rxi+t−Rµ(x)−t
σ(xi)

)

+Rµ(x)+t−Rµ0−t
∥µ(x)−µ0∥2

· bi +Rµ0 + t

= gi ·R(xi−µ(x)
σ(xi)

) +R µ(x)−µ0

∥µ(x)−µ0∥2
· bi +Rµ0 + t

= R(gi · (xi−µ(x)
σ(xi)

) + µ(x)−µ0

∥µ(x)−µ0∥2
· bi + µ0) + t

= RF (xi) + t

Therefore, GEONORM is an SE(3) equivariant normaliza-
tion layer which would not break the whole SE(3) equivari-
ance of the particle system.

4.4 Further Discussions
Although we obtain an SE(3) equivariant normalization layer,
a new challenge arises in the bias learning design. Note that
in Eq. 5, the bias bi is a scalar parameter, which is only able
to learn scalar information such as distance particularly the
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Figure 5: Comparisons of training dynamics of EGNN equipped with GEONORM and other mentioned baseline methods over different
random seeds and learning rates. The training dynamics of GEONORM is highlighted by red.

direction information is determined by both µ(x)−µ0

∥µ(x)−µ0∥2
and

µ0. This design apparently downgrades the expressiveness of
GEONORM although we avoid the bias bi to be degenerated
into the re-scaling parameter gi. In contrast, if we want to
transform the bias bi into a vector parameter bi ∈ R3, the
rotation matrix R cannot be extracted to the front to ensure
the rotation equivariance of GEONORM. To sum up, there ex-
ists an temporary trade-off issue between expressiveness and
SE(3) equivariance guarantee for the current GEONORM de-
sign. To enable the bias parameter to learn both direction and
distance information, we need to come up with a new solution
that set biases to be learnable vectors instead of scalars mean-
while not breaking the rotation equivariance of GEONORM.
Since this is a tough challenge that requires tremendous ad-
ditional research efforts, it is hard to cover the corresponding
solutions in this work. Therefore, we leave this problem as an
important future work to explore.

5 Experiments
Dataset & Experimental Setting. We also adopt the 3D
extension [Fuchs et al., 2020] of the N -body system simula-
tion dataset provided by Kipf [Kipf et al., 2018]. It provides
simulation trajectories of charged particle systems following
simple physical force rules. Specifically, we train EGNNs on
thousands of provided training trajectories that can generalize
to the validation and test sets containing 2000 trajectories. We
utilize the MSE (Mean-Squared-Error) loss as the evaluation
metric to measure the state prediction accuracy between pre-
dicted particle positions and ground-truth particle positions
after 1000 steps. Unlike the previous works adopting small
particle systems (N = 3, 5), we set large system simulations
with N = 20, 50, 100 particles to test the model training sta-
bility. The two commonly used datasets QM9 and MD-17 are
not used in this work since the involved particle system size
is around 5-10 (small chemical molecular conformers), which
is not large enough to test the stability of large EGNN train-
ing. In addition to stability testing, we also evaluate whether
GEONORM satisfy the SE(3) equivariance constraints. Dur-
ing testing, we apply random 3D rotations and translations
to mutate the inputs. Then we report MSE scores of each

selected baseline after SE(3) transformations mutations. We
mainly report mean, median and incremental rotational and
translational errors (RTE).

Implementation Details, Hyperparameters and Configu-
rations. In preliminary sections, we explore the training
instability issue by setting the number of particles n =
20, 50, 100, the number of layers l = 3, 5, 8, 10. For the
equivariant GNN model selection, we adopt the alternative
velocity version of EGNN as our backbone model (Note that
the velocity vector update is omitted from Eq. 2, please refer
details in [Satorras et al., 2021b]). In main experiments for
normalization comparisons, there are mainly two important
configurations which are random seed and learning rate. We
select random seed= 30, 40, 50, 60 to test different weight
initialization. For learning rate, we select lr = 5e− 3, 5e− 4
to test different learning rates. The optimization is conducted
using Adam [Kingma and Ba, 2015] and the weight decay of
1×10−12. The feature dimensions in EGNN is 64 as its orig-
inal paper reported. All algorithms have been trained under
the same conditions with batch size of 50. All experiments
on N-body particle system use the default trajectory sampling
method in EGNN [Satorras et al., 2021b]. We train all models
with 1000 total number of epochs with batch size 50. The tar-
get we optimize is the averaged Mean Squared Error (MSE)
between predicted positions and corresponding ground-truth
positions. A single Tesla V100 GPU is needed to reproduce
each hyperparameter’s experimental results. Running each
configuration may take up to 6 hours.

Experimental Results. We mainly compare the train-
ing stability of vanilla EGNN, the feature scaling norm
SCALENORM and our GEONORM. From the training dy-
namics shown in Figure 5, we can see that both GEONORM
and SCALENORM can stabilize the training dynamics over
all system configurations while the vanilla EGNN easily en-
counters numerical explosions. Furthermore, compared to
SCALENORM, our GEONORM perform better convergence
properties in optimizations over different settings. We clearly
see that in most cases GEONORM (highlighted by red curves)
can reach lower training errors compared to SCALENORM.
Even in some cases, SCALENORM may converge faster than
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Model
N = 100, l = 5, seed = 30 N = 100, l = 5, seed = 40

Mean Rerr(
◦) Median Rerr(

◦) Max Rerr(
◦) ∆Rerr Mean Terr Median Terr Max Terr ∆Terr Mean Rerr(

◦) Median Rerr(
◦) Max Rerr(

◦) ∆Rerr Mean Terr Median Terr Max Terr ∆Terr

EGNN-LN 77.6337 76.2877 120.6114 70.2623 76.4022 76.5329 108.3657 69.0064 79.7006 78.9167 119.5280 72.3209 80.5087 80.8898 117.7024 73.1220
EGNN-SN 11.6812 11.6423 12.8005 0.00 79.9684 79.0553 113.0788 68.3327 11.7812 11.7750 12.9575 0.00 84.7791 82.4171 139.6815 73.0484
EGNN-GN 12.0141 11.9806 13.1563 0.00 12.0149 11.9934 13.1494 0.00 11.9976 11.9577 13.1755 0.00 12.0059 11.9898 13.0797 0.00

Model
N = 100, l = 3, seed = 30 N = 100, l = 3, seed = 40

Mean Rerr(
◦) Median Rerr(

◦) Max Rerr(
◦) ∆Rerr Mean Terr Median Terr Max Terr ∆Terr Mean Rerr(

◦) Median Rerr(
◦) Max Rerr(

◦) ∆Rerr Mean Terr Median Terr Max Terr ∆Terr

EGNN-LN 75.7769 77.0998 114.7744 68.4406 74.4919 73.3482 120.7420 67.1195 76.2032 73.3847 116.7627 68.8349 73.0035 72.6746 104.7594 65.6595
EGNN-SN 11.6409 11.5987 12.6707 0.00 81.2245 81.2323 108.4697 69.7046 11.4117 11.3684 12.5119 0.00 81.2904 79.4168 120.2692 69.9343
EGNN-GN 12.0191 11.997 13.0744 0.00 12.01149 12.00350 13.1469 0.00 11.9349 11.9154 13.1020 0.00 11.8147 11.8018 12.8062 0.00

Model
N = 50, l = 5, seed = 30 N = 50, l = 5, seed = 40

Mean Rerr(
◦) Median Rerr(

◦) Max Rerr(
◦) ∆Rerr Mean Terr Median Terr Max Terr ∆Terr Mean Rerr(

◦) Median Rerr(
◦) Max Rerr(

◦) ∆Rerr Mean Terr Median Terr Max Terr ∆Terr

EGNN-LN 43.4534 43.2547 74.5962 38.1556 42.3317 41.4941 66.3715 37.0249 42.7479 41.4761 75.6686 37.4484 43.5382 41.7819 71.8296 38.2338
EGNN-SN 8.5636 8.5396 9.5382 0.00 51.8175 50.1510 68.9853 43.2368 8.6886 8.6783 9.6922 0.00 52.4891 50.8263 84.0599 43.7528
EGNN-GN 9.0896 9.0807 9.9733 0.00 9.1155 9.1257 10.0839 0.00 9.1182 9.0935 10.1146 0.00 9.0662 9.0217 10.0238 0.00

Table 1: In this table, all reported results are MSE scores between predicted positions and ground-truth positions. Therefore, each score in the
table lower is better. EGNN-LN, EGNN-SN, EGNN-GN denote the LAYERNORM, SCALENORM and GEONORM concatenated with EGNN
training. We mainly report 8 metrics: Mean Rerr(

◦), Median Rerr(
◦), Max Rerr(

◦), ∆Rerr , Mean Terr , Median Terr , Max Terr , ∆Terr ,
which are reporting the mean, median, max and incremental RTE errors over all testing samples after rotation and translation mutations. Note
that the most important metrics are ∆Rerr and ∆Terr which reflect additional MSE errors caused by SE(3) transformations to the original
testing input. System configurations include the number of particles N = 50, 100, the EGNN layers l = 3, 5 and the random seed 30, 40.

GEONORM, GEONORM can still catch up with the perfor-
mance of SCALENORM in few more epochs. This demon-
strates the effectiveness of GEONORM compared to baseline
methods. However, we can also observe that GEONORM is
still not good enough since the training errors cannot be fur-
ther minimized at some training stage. Although the vanilla
EGNN is very unstable, its training errors can be minimized
to very decent accuracy at some certain epochs. This may
suggest that GEONORM is still not expressive enough and
some operations may hurt the expressiveness of the original
EGNN.

From the table 5, we can see that using the LAYERNORM
cannot preserve both rotation equivariance and translation
equivariance in all experimental configurations. And the
SCALENORM successfully preserves the rotation equivari-
ance but fail to preserve the translation equivariance in all
settings. Only our GEONORM preserves the rotation equiv-
ariance and the translation equivariance at the same time.
Although the SCALENORM enjoys a bit lower rotational er-
rors in some system configurations, it also suffers from large
translational errors. And we surprisingly find that the rota-
tional errors of GEONORM become relatively lower when the
system becomes larger (from the bottom to top). This might
indicate the superiority of GEONORM on large particle sys-
tem compared to baseline methods. To sum up, GEONORM
is the only SE(3) equivariant normalization layer among these
methods. Equipping EGNN models with GEONORM would
not hurt its generalization to testing trajectories with respect
to rotation and translation input mutations. Note that we
only train few epochs to produce these experimental results
since we focus on the generalization error instead of deriving
the final optimal performance. In conclusions, we show that
our GEONORM can stabilize the training dynamics of EGNN
on larger systems while additionally satisfying SE(3) group
equivariance properties. More experiments on different vari-
ants are shown in Appendix since the experimental settings
are hard to be exhausted.

6 Limitations and Future Works
The most critical limitation is that GEONORM is only SE(3)
equivariant but not permutation equivariant, which is another
fundamental equivariance property that GNN models should

ensure. This may hurt the model generalization when per-
muting the input order of particles. Secondly, to stabilize the
training of large EGNNs, we should also incorporate other
important techniques to further enhance the neural architec-
tures from different perspectives. However, this necessitates
additional research efforts and can result in a series of works.
Additionally, it would be beneficial to conduct more exper-
iments on real-world large particle systems. Unfortunately,
most popular particle system simulation datasets only include
small systems, making large real-world particle system sim-
ulation datasets extremely limited. Moreover, GEONORM
needs to store the initial state or the initial geometric cen-
ter, which occupies additional storage space. Hence, more
advanced techniques should be explored to avoid this issue
in the following works. Last but not the least, more diverse
equivariant models should be involved in the discussions.
For example, some of the models might be E(3) equivari-
ant, which further include reflection equivariance. And some
models might follow a special case of SE(3) equivariance
(e.g. translation invariant). Therefore, more comprehensive
investigations should be included in the future works.

7 Conclusion

In this work, we investigate geometric normalization tech-
niques for deep SE(3) equivariant graph neural networks on
larger particle system simulation tasks. We demonstrate that
both naive and existing solutions cannot strictly satisfy the
SE(3) equivariance geometric constraints. To address this
issue and maintain both stable training dynamics and SE(3)
equivariance, we propose a new technique called GEONORM
as a replacement for previous normalization strategies. The
effectiveness of our approach is supported by theoretical anal-
ysis and experimental results.
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Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra.
In ICML, volume 139 of Proceedings of Machine Learn-
ing Research, pages 9377–9388. PMLR, 18–24 Jul 2021.

[Shen et al., 2020] Wen Shen, Binbin Zhang, Shikun Huang,
Zhihua Wei, and Quanshi Zhang. 3d-rotation-equivariant
quaternion neural networks. In ECCV, volume 12365
of Lecture Notes in Computer Science, pages 531–547.
Springer, 2020.

[Singh and Krishnan, 2020] Saurabh Singh and Shankar Kr-
ishnan. Filter response normalization layer: Eliminating
batch dependence in the training of deep neural networks.
In CVPR, pages 11234–11243. Computer Vision Founda-
tion / IEEE, 2020.

[Song et al., 2024] Zixing Song, Ziqiao Meng, and Irwin
King. A diffusion-based pre-training framework for crys-
tal property prediction. In AAAI 2024, pages 8993–9001.
AAAI Press, 2024.

[Thölke and Fabritiis, 2022] Philipp Thölke and Gianni De
Fabritiis. Equivariant transformers for neural network
based molecular potentials. In ICLR, 2022.

[Thomas et al., 2018] Nathaniel Thomas, Tess E. Smidt,
Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff,
and Patrick Riley. Tensor field networks: Rotation-
and translation-equivariant neural networks for 3d point
clouds. CoRR, abs/1802.08219, 2018.

[Ulyanov et al., 2016] Dmitry Ulyanov, Andrea Vedaldi, and
Victor S. Lempitsky. Instance normalization: The miss-
ing ingredient for fast stylization. CoRR, abs/1607.08022,
2016.
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