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Abstract

Deep Reinforcement Learning (DRL) exhibits sig-
nificant advancements in games with both perfect
and imperfect information, such as Go, Chess,
Texas Hold’em, and Dota2. However, DRL en-
counters considerable challenges when tackling
card game DouDiZhu because of the imperfect in-
formation, large state-action space, and the sparse
reward issue. This paper presents OADMCDou,
which combines Oracle Guiding and Adaptive
Deep Monte Carlo Method to address the chal-
lenges in DouDiZhu. Oracle Guiding trains an Ora-
cle agent with both imperfect and perfect informa-
tion, gradually reducing reliance on imperfect in-
formation to transition to a standard agent. Adap-
tive Deep Monte Carlo uses gradient weight clip-
ping and constrains the magnitude of updates to
prevent extreme policy updates. We conduct ex-
tensive experiments to evaluate the effectiveness
of the proposed methods, demonstrating OADM-
CDou’s superior performance over the state-of-the-
art DouDiZhu Al, DouZero. This superiority over
DouZero is reflected in two metrics: a 95% confi-
dence interval of 0.104 £ 0.041 for performance,
and a 28.6% reduction in loss.

1 Introduction

Advances in artificial intelligence (AI) have produced agents
that perform at superhuman levels within domains previously
thought to be solely the purview of human intelligence. Such
performance has been demonstrated through the application
of reinforcement learning (RL) in board games [Schrittwieser
et al., 2020; Perolat et al., 20221, arcade games [Schulman et
al., 2017; Gao et al., 2022], real-time strategy games [Hoff-
man, 2019; Wang et al., 2022b], multiplayer online battle
arenas [Berner et al., 2019], and simulated aerial dogfights
[Kaufmann et al., 2023]. However, the challenge remains in
developing robust Al for multi-player imperfect information
games with large state and action space, such as DouDiZhu
[Zha et al., 2021; Luo et al., 2022].

*Corresponding authors.
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Figure 1: An example of DouDiZhu scenario. Peasant-Down and
Peasant-Up form an alliance against Landlord. Players cannot ob-
serve each other’s cards. Landlord plays first, followed by Peasant-
Down, then Peasant Up, and so on, until one player clears all his/her
cards.

DouDiZhu'!, with millions of active players and countless
games played daily, is a testament to the game’s popularity,
particularly in China. Despite its appeal, it poses a multi-
faceted challenge in Al research. The game’s complexity,
characterized by imperfect information and multiple players,
presents several problems that current algorithms have not
overcome fully:

1. DouDiZhu is a multi-player game with imperfect infor-
mation that requires players to make decisions under un-
certainty, as shown in Figure 1. This uncertainty in Deep
Reinforcement Learning (DRL) can hinder accurate es-
timation of action and state values, causing volatile esti-
mates and unstable learning.

2. DouDiZhu possesses a vast state and action space.

'https://www.pagat.com/climbing/doudizhu.html
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Given the card combinations and intricate rules, there
are about 1033 potential states and 27,472 actions [Zha
et al., 2021]. Training models on these conditions de-
mands substantial computational resources and time.

3. DouDiZhu is a game with sparse reward. Agents receive
no reward feedback until the game ends. Without regu-
lar feedback, agents struggle to ascertain the quality of
their actions. They may need to perform a series of ac-
tions before obtaining a reward. This delayed reward
introduces high variance in return estimates. Such high
variance can produce a large gradient during policy up-
dating, which can affect both training stability and per-
formance.

Contributions: Driven by these challenges, this paper pro-
poses OADMCDou, which integrates two novel methods: Or-
acle Guiding and the Adaptive Deep Monte Carlo Method
(ADMQ). In Oracle Guiding, the Oracle agent is initially
trained using both imperfect information (the private cards
of other players) and perfect information (its own cards and
public cards). This differs from the standard agent in prior
studies, which is trained exclusively on perfect information.
Gradually, we reduce the usage of imperfect information, a
process we term "Oracle Guiding", transitioning the Oracle
agent to a standard agent reliant solely on perfect information.
Simultaneously, to mitigate potential high variance in original
Deep Monte Carlo Method (DMC) [Zha er al., 2021], partic-
ularly during this transition, we introduce a gradient weight
clipping in ADMC. It ensures moderate policy updates and
prevents drastic changes. The combination of these two meth-
ods provides a novel solution for solving complex card games
like DouDiZhu. We conduct ablation experiments to evaluate
both Oracle Guiding and ADMC. These experiments show
that Oracle Guiding improves learning efficiency and ADMC
improves performance and stability. Furthermore, we com-
pare OADMCDou with state-of-the-art DouDiZhu Al agents.
The experiment results demonstrate that OADMCDou out-
performs the leading Al DouZero in terms of stability and
performance after 30 days of training.

2 Related Works

Monte Carlo Tree Search. Monte Carlo Tree Search
(MCTY) is a heuristic search algorithm that selects an action
based on sampling, asymmetrically building a decision tree to
find optimal choices instead of fully expanding it [Browne et
al., 2012; Swiechowski et al., 2023]. It demonstrates advan-
tages in perfect-information games like Chess, Shogi, and Go
[Schrittwieser et al., 2020]. However, MCTS cannot solve
imperfect-information games effectively due to hidden data
from other players. Variants to MCTS have been developed
for imperfect-information games. For example, Determinized
MCTS simulates possible states of hidden information by as-
signing fixed values to uncertain elements, thereby creating
"determinized" game states [Cowling er al., 2012b]. How-
ever, the determinization quality significantly affects its suc-
cess, as suboptimal choices may result in inaccurate value es-
timates. Information Set Monte Carlo Tree Search (ISMCTYS)
[Cowling et al., 2012a] is another MCTS variant designed for
handling hidden information and information asymmetry. It
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groups similar states into information sets instead of treating
each state individually [Jiang et al., 2019; Zhang et al., 2021].
ISMCTS lacks enough information to accurately estimate the
value of a specific information set. Moreover, MCTS and
its variants are computationally expensive, especially in com-
plex games with large state-action space [Zha er al., 2021,
He, 2022; Luo and Tan, 2023].

Deep Reinforcement Learning. Deep Reinforcement
Learning (DRL) [Mnih et al., 2013; Sutton and Barto, 2018;
Yin et al., 2023] combines deep neural networks and rein-
forcement learning to train an agent to maximize returns
during decision making when interacting with the envi-
ronment. Deep Q-Learning (DQN) [Mnih et al., 2015],
Asynchronous Advantage Actor-Critic (A3C) [Mnih et al.,
2016], and Proximal Policy Optimization (PPO) [Schulman
et al., 2017] are among the most popular DRL algorithms
that excel in small-scale (less than 20 actions) Atari games.
In comparison to Atari, DouDiZhu presents an immensely
larger state and action space, with over 1083 states and 10*
actions. Consequently, when applied to DouDiZhu, DQN,
A3C, PPO may fail to converge due to the large number of
output actions. Yang et al. [Yang et al., 2022] and Zha et
al. [Zha et al., 2021] demonstrate that DQN, PPO, and A3C
algorithms all struggle to achieve competitive performance
in DouDiZhu. To reduce the action space, You et al. [You
et al., 2020] propose Combination Deep Q-Learning (CQL),
a two-phase DQN algorithm that decouples actions into
decomposition selection and final move selection. While
CQL beats DQN and A3C in DouDiZhu, another study
reveals that it suffers from overestimation bias and fails to
compete against rule-based RLCard [Zha et al., 2021].

Deep Monte Carlo on DouDiZhu. To tackle overestima-
tion bias, DouZero [Zha et al., 2021] adopts Deep Monte
Carlo (DMC), a fusion of deep neural networks and the clas-
sical Monte Carlo Method. The Monte Carlo method uses
repeated sampling and statistical analysis to simulate com-
plex systems or estimate numerical results [Rubinstein and
Kroese, 2016]. It leverages the law of large numbers to ap-
proximate solutions or estimates for values so that the statis-
tical error is very small. DouZero is the forefront Al system
in DouDiZhu for its remarkable performance in contrast to
prior works. Subsequent work builds on it with some im-
provements. DouZero+ [Zhao et al., 2023] introduces oppo-
nent modeling to enhance performance. Opponent modeling
uses all information (observable and hidden) to predict other
players’ hidden cards. As a result, agents can make more in-
formed decisions by concatenating the predicted results with
the original input features. Besides, Wang et al. [Wang et
al., 2022a] argues that the value function of DMC directly es-
timates the expected return without considering distribution
particularities. This results in high variance and training in-
stability. To address these issues, they propose WagerWin
[Wang et al., 2022a], built upon DouZero, which incorporates
probability and value factorization to construct a more potent
value function. The exceptional performance of DouZero and
its variants not only provides valuable insights for the future
exploration of DouDiZhu but also serves as a springboard for
the development of these advanced algorithms.
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3 Background

DouDiZhu. DouDiZhu is a popular card game in China,
typically played by three players. Each player is assigned a
specific role: Landlord, Peasant Down, and Peasant Up. The
game proceeds in a counterclockwise direction, starting with
the Landlord, followed by Peasant Down (the player to the
right of the Landlord) and then Peasant Up (the player to the
left of the Landlord). DouDiZhu uses a deck of 54 cards,
consisting of 15 different ranks: 3, 4,5, 6,7, 8,9, 10 (T), J,
Q, K, A, 2, black joker (B), and red joker (R), ranked from
lowest to highest. Each of the ranks, except for the jokers,
has four cards representing four suits: heart, spade, club, and
diamond. However, suits are irrelevant in DouDiZhu.

At the start of the game, each player receives 17 private
cards. The final three cards are placed face-down, remain-
ing invisible to all players during the bidding process. Play-
ers can bid 1, 2, 3, or choose to 'Pass.” The highest bidder
wins these three cards, becomes the Landlord, and receives
the face-down cards (now holding a total of 20 cards). The
other two players are then referred to as Peasant Down and
Peasant Up. If no player bids for the three cards, the game is
restarted.

The objective of DouDiZhu is to be the first player to play
all of the cards in one’s hand. If the Peasants manage to de-
feat the Landlord, they each receive an equal reward from the
Landlord. Thus, the Peasants often collaborate to defeat the
Landlord. Conversely, if the Landlord is able to play all of
his/her cards first, he/she wins and receives a reward from
each Peasant.

DouZero. DouZero [Zha et al., 2021] is the state-of-
the-art artificial intelligence (AI) for the challenging card
game DouDiZhu, and it uses the Deep Monte-Carlo (DMC)
method. DMC is a model-free and value-based reinforce-
ment learning method, representing a variant of the Monte-
Carlo (MC) method that utilizes deep neural networks for
function approximation. In DMC, a Q-network is utilized to
estimate ((s, a), where both state s and action a are concate-
nated as input, and the mean-square-error (MSE) loss is used
for parameter updates. DMC samples a batch of episodes
and optimizes its Q-network using all instances (s, a,r) for
every-visit MC, where 7 is the reward. DMC predicts the dis-
counted final reward r as there is only one nonzero reward
at the terminal step of all episodes. The procedure of DMC
is described in Algorithm 1. DouZero parallelizes the DMC
method with multiple actor processes and one learner process
through self-play in a distributed training system, where ac-
tors play games to generate samples, and the learner trains the
network based on these samples. Each actor maintains a local
network for each agent and synchronizes it periodically with
the global network. On the other hand, the learner maintains
a global network for each agent and updates them based on
the samples generated by the actor processes. More details
about DouZero can be referred to in [Zha et al., 2021].

4 Method

In our proposed algorithm, we initially train an Oracle agent
using both imperfect and perfect information. Then, we grad-
ually reduce the reliance on imperfect information, transi-
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Algorithm 1 Deep Monte-Carlo Method.

Input: a large number of episodes maz_episodes — oo
procedure DMC(max_episodes)

1. Generate an episode using 7 by iterating over each
legal action a; in the action set A.

2. Update Q)(s, a) for each visited state-action pair with
average return.

3. Update policy for each state s as w(s) <
argmaz,Q(s,a).

4. Repeat (1) to (3) for a large number of episodes or
forever to cover all states and actions.
end procedure

tioning the Oracle agent into a standard agent (as described
in Section 4.1). Additionally, Adaptive Deep Monte Carlo
Method (ADMC) employs gradient weight clipping to reg-
ulate the magnitude of policy updates during training, mit-
igating potential high variances (refer to Section 4.2). The
overview of our framework is shown in Figure 2, which com-
bines Oracle Guiding and ADMC in a distributed training
system.

4.1 Oracle Guiding

DouDiZhu is a complex card game with imperfect informa-
tion, where other players’ cards are private and unobservable.
Without access to this information, it becomes challenging to
make optimal decisions. While Deep Reinforcement Learn-
ing (DRL) can help agents to learn a policy, the process can
be slow due to the imperfect information. To accelerate DRL
training, we propose an Oracle agent, which has access to all
perfect information about the state, including (1) the player’s
private cards, (2) the open cards of all players, (3) other pub-
lic information like the three face-down cards in DouDiZhu,
and (@) the private cards of other players. Only (D, ), and
(@) are accessible to the standard agent, whereas (4) provides
additional imperfect information only accessible to the Ora-
cle agent, as shown in Figure 3. Having access to imperfect
information gives the Oracle agent an unfair advantage, en-
abling it to master the games of DouDiZhu quickly through
training. However, the challenge lies in how to leverage the
Oracle agent to guide and accelerate the training of our stan-
dard agent. We propose OADMCDou that first train the Or-
acle agent through DMC, using all information including the
imperfect and perfect ones. Subsequently, it gradually drops
the imperfect information so that the Oracle agent eventually
transits to become a standard agent. Both the Oracle and stan-
dard agents adopt a strategy that involves selecting the action
with the maximum state-action value, as shown in (1).

ac = argmax, Q([s, \fy(s),a), a€A (1)

Equation (1) defines the action strategy, where f,(s) repre-
sents the additional imperfect information of state s, and A is
the dropout coefficient. The value of A gradually decreases
from 1 to 0 in a linear manner. When A = 0, all the imperfect
information is dropped out and the model transitions from
the Oracle agent to a standard agent. After A\ reaches zero,
we continue training the standard agent for a certain num-
ber of iterations. We adopt Adaptive Deep Monte Carlo dur-
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Figure 3: Oracle agent and standard agent. Only (1), (2), and (3)
are accessible to the standard agent, whereas (4) provides additional
imperfect information only accessible to the Oracle agent.

ing the continual training (refer to the following Section 4.2).
We restrict some state-action pairs if the importance weight
is greater than a predefined threshold to ensure that the con-
tinual training stable and lead to further improvements.

4.2 Adaptive Deep Monte Carlo Method

Step 2 in Algorithm 1 shows that (s, a) is updated using
the average return obtained in each episode. However, when
Q(s,a) is estimated based on a limited number of samples
(episodes), it can result in high variance because the estimated
Q (s, a) values for unvisited or rarely visited state-action pairs
will remain uncertain. This high variance can affect the sta-
bility and convergence during training. While it is possible to
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reduce the variance by using a large number of episodes, it is
computationally infeasible to visit and sample every possible
state-action pair multiple times in games with a large number
of state-action pairs, which would otherwise lead to slow con-
vergence. To mitigate this issue, we propose Adaptive Deep
Monte Carlo (ADMC), which is a distributed DMC with self-
play that comprises two parts: Actor and Learner. In ADMC,
multiple Actor processes and one Learner process are used.

Actor. Actor collects data by simulating interactions with
the environment, as shown in Figure 2. Each Actor main-
tains a local Q-network for each agent. At the beginning
of each iteration, the local Q-network will attempt to syn-
chronize its parameter 6,4 with 6 in Learner. Then, Ac-
tor starts to generate an episode of the game. In each
time step ¢ of this episode, Actor calculates the legal ac-
tion set A following the game’s rule and chooses the ac-
tion a; using (1) from A with an e-greedy policy. When
performing a;, the state s, changes to the next state s;4
and receives a reward 7;. Then, Actor saves the trajectory
([sts Mfp(s0)], ar, Qoola([se, Afp(se)], ar), 7). which is used
for training in Learner. Note that r; is zero except at time T’
when the game is over, so we update r; with r when one
episode is complete. Original DMC collects trajectories with
only state-action pairs (sy,a;), while in ADMC, the state s,
is appended with imperfect information Af,(s;), and a new
element Qgowa([s¢, Afp(se)], ar) is added to adjust the value
gradient. The algorithm for Actor is shown in Algorithm 2.

Learner. Learner is used to train the global Q-network
based on the data collected by Actor processes, as shown in
Figure 2. Learner receives the collected data from multiple
Actors. In each iteration, Learner samples a batch of data
([s, Mfp(8)], @ Qoota([s; A fp(s)],a),7) from a shared mem-
ory M to calulate loss() and update the parameters 6 of the
global Q-network. Original DMC calculates the loss (#) with
the average Q(s;, a;) in Step 2 of Algorithm 1. However,
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Algorithm 2 Actor Process of OADMCDou.

Algorithm 3 Learner Process of OADMCDou.

Input: shared memory M, exploration hyperparameter e
Initialize local Q-networks Qq,(Qo,...,Qx and caches
D1, Do, ..., Dy for N agent
for iteration«+— 1,2, 3, ... do
Synchronize parameters fold in Q1, Q2, ..., QN with 6
in Learner
fort <« 1,2,3,....T do > Generate an episode
Q < one of Q1,Q2, ..., QN based on the agent’s
index
Calculate the legal action set A

with €

random action
a 1—c¢

aTgmaxanold([st, Afp(st)]a Cl), a < Aa

Perform a,, observe s;;; and reward r;
Save ([St» Afp(st)Lah Qeold([sta Afp(st)]a at)ﬂ”t)
to D1, Do, ..., Dy based on the agent’s index
end for
r¢ < rp and update r; in Dy, Do, ...
for: < 1,2,3,..., N do
if D;.length > L then
Move ([Sn )\fp(St)L Qg QGold([Sh )\fp(st)L (lt)7 Tt)
of size L from D; to M
end if
end for
end for

7DN

adopting entirely new Q-value Q(s¢, a;) at each update may
result in large variations, which can destabilize the training
process. Oversized Q-value updates can lead to unstable gra-
dients and hinder the optimization process. To control the
magnitude of Q-value updates, ADMC introduces the con-
cept of Q-value weight clipping, as shown in (2). Specifically,
Qo([s:M fp(5)],0)
Qoota([s,Afp(s)],a)
by the new and old Q-value for a given state [s, Af,(s)] and
action a. This ratio is then constrained within a predefined
range controlled by a hyperparameter A. If the ratio exceeds
the range (1-v, 1+7), the clipping operation restricts it within
that range, as shown in (3). In our studied game, there exists a
range for the maximum loss or win, denoted as 7y, and 7pax.
Therefore, we use this range, ("min, "max), to further constrain

Qp([s, Afp(8)], @), as shown in (4).
Qo([s, Afp(s)], @)

it compares the ratio of Q-value generated

Qp([s? )‘fp(s)]v a) _Chp(Qeold([57 Afp(s)]’ a) s L—7,1+ '7)
* Qpotd([s; Afp(s)], @)
2
min ,z < min
clip(xz, min, max) = ¢ x ,min < x < max (3)
max ,T > max

@([S,Afp(s)],a) = Clip(Qp([S,)\fp(s)],a),rmin,rmax) “)

n

MSEloss(60) = + > (ri ~ Gills, Ay(s)], @) )

=1
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Input: shared memory M, batch size B, learning rate «
Initialize global Q-network Q1,Q2,...,Qn and for N

agent
for iteration«+— 1,2, 3, ... do
Sample a batch of trajectory data

([8, Ap(9)],a, Qoota([s, Afp(8)], ), 7") from M
Compute gradient Ay using MSE loss(#) in (5).
Update the global Q-network 0 < 6 + al\y
Send network parameters 6 to Actor

end for

S Experiments

In this section, we first describe the experiment setup (see
Section 5.1). Subsequently, we present an ablation experi-
ment for the proposed Oracle Guiding and Adaptive Deep
Monte Carlo Method (ADMC) (see Section 5.2). Finally,
we provide a comparative evaluation of OADMCDou, which
combines the two proposed algorithms, against state-of-the-
art DouDiZhu baselines (see Section 5.3).

5.1 Experiment Setup

We use the same evaluation methods in DouZero [Zha et al.,
2021]. Specifically, we deal the same deck to two compet-
ing algorithms, A and B, with each algorithm playing as op-
posing camps twice in different roles: initially, A acts as the
Landlord, and B acts as the Peasants; then, the players switch
sides and replay the same deck. The validity of the exper-
iments is threatened by two variables: first, the strength of
the initial hand cards, which is highly dependent on luck; and
second, poor bidding could negatively influence scores. We
mitigate the variable associated with luck by randomly deal-
ing 10,000 decks to two competing algorithms and omitting
the bidding phase to ensure fairness in the assessment. More-
over, for a fair comparison in the ablation experiments, we
train the original DouZero on the same server for the same
duration (30 days), referring to it as DouZero*, and compare
its performance with that of the proposed algorithms.

Evaluation metrics. We use the same metrics as DouZero,
which include Average Difference in Points (ADP) and loss,
to evaluate the performance and stability of the proposed
methods. ADP is calculated by adding the points won or lost
by algorithms A or B in each game. Loss is used to measure
how much the predicted values differ from the actual values.

Implementation details. We use a single server with 4
cores of Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz and
1 GTX 1080 GPU to run all the experiments, on which we
run 7 (N = 7) actors to generate samples and a learner
for training the neural network simultaneously. An av-
erage of 100,236,906 state-action pairs are generated and
trained daily. The training settings and hyperparameters re-
main consistent with DouZero, since the proposed method
builds upon and enhances the foundation established by
DouZero. For instance, in Algorithm 1, the number of
episodes max_episodes is set to 100,000,000,000. In Al-
gorithm 2, the exploration factor ¢ and shared memory M are
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0.01 and 50, respectively. Additionally, Algorithm 3 main-
tains a batch size B of 32 and a learning rate « of 0.0001.

5.2 Ablation Study

Evaluation of Oracle Guiding. The proposed Oracle
Guiding involves training an Oracle agent using both im-
perfect and perfect information, and then gradually reducing
the reliance on imperfect information to transition the Ora-
cle agent to a standard agent. The algorithm is discussed in
detail in Section 4.1. We conduct two experiments to eval-
uate the effect of integrating Oracle Guiding on the original
DouZero system. The first compares the original DouZero*
with the improved version incorporating Oracle Guiding (Per-
fectDou), where A in (1) remains equal to one all the time.
The second compares the original DouZero* with the im-
proved version incorporating Oracle Guiding (OracleDou),
where A in (1) gradually decreases from one to zero in a linear
manner. DouZero*, PerfectDou, and OracleDou are tested
using the DouZero baseline. We can observe from Figure
4a that although PerfectDou does not outperform DouZero in
its 30-day training period, PerfectDou has a clear advantage
over DouZero*. This result demonstrates that adopting im-
perfect information as input can enhance learning efficiency
and provides experimental support for Oracle Guiding. From
Figure 4a, we also note that PerfectDou experiences rapid
ADP growth within the first 20 days, followed by a slower
increase during the subsequent 10 days. Therefore, we em-
ploy a linear reduction of A\ from one to zero in (1) over the
initial 20 days, facilitating the gradual transition of the Ora-
cle agent into a standard agent. It can be observed that, after
the same 30-day training duration, OracleDou’s ADP is lower
than that of DouZero, but higher than DouZero*. This result
suggests that Oracle Guiding effectively improves learning
efficiency. One possible explanation for this improvement is
that the standard agents are uncertain about the hidden in-
formation in their input features. This uncertainty can make
exploration both time-consuming and inefficient. However,
Oracle Guiding can provide relatively accurate input features
and a smooth transition to standard agents, thus reducing the
need for extensive exploration.

Evaluation of Adaptive Deep Monte Carlo Method.
Adaptive Deep Monte Carlo Method (ADMC) is an enhanced
version of the Deep Monte Carlo method (DMC), which em-
ploys gradient weight clipping to regulate the magnitude of
policy updates during training, mitigating potential high vari-
ances. This modification is discussed in detail in Section 4.2.
To evaluate the effect of ADMC, we apply this algorithm to
DouDiZhu (referred to as ADMCDou) and compare it with
the original DMC method, DouZero*. We set A to zero in
(2), (4), and (5) to prevent interference from oracle guiding.
Figure 4b shows that ADMCDou has a significant advantage
over DouZero* and is on par with DouZero (ADP = 0) in
less training time. To investigate potential reasons, we com-
pare MSE loss during training for DouZero* and ADMCDou,
as shown in Figure 4c. After three days of training, we ob-
serve that ADMCDou exhibits lower loss (1.25) compared
to DouZero* (1.75) and experiences less fluctuation in loss.
Lower loss indicates that the model is getting closer to the
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optimal solution. Less fluctuation in loss means that the op-
timization process is more stable. When the loss is low and
stable, the model converges faster, which means it requires
fewer iterations to reach convergence. This reduces the time
needed for training. The possible explanation for why ADM-
CDou achieves lower and more stable loss than DouZero* is
discussed in Section 4.2. Specifically, in the original DMC
algorithm, the calculation of the loss (#) using the average
Q(s,a) in Step 2 of Algorithm 1 leads to high and unstable
loss. ADMC controls the magnitude of Q-value updates by
constraining the new and old Q-values in (4) and (5), result-
ing in a more stable and lower loss.

5.3 Comparison to the State-of-the-Arts

The aforementioned ablation experiments suggest that the
proposed Oracle Guiding and Adaptive Deep Monte Carlo
Method (ADMC) enhance both the learning efficiency and
stability of DouZero. This section evaluates the combina-
tion of these two algorithms, referred to as OADMCDou,
which integrates Oracle Guiding and ADMC. We compare
OADMCDou with the following DouDiZhu state-of-the-art
baselines:

e DouZero [Zha et al., 2021]. Tt is the latest and most
powerful open-sourced DouDiZhu Al system using the
Deep Monte Carlo method (DMC).

* DouZero+ [Zhao et al., 2023]. This Al is the closest
to our Oracle Guiding, enhancing DouZero through an
opponent model to predict imperfect information.

» WagerWin [Wang et al., 2022al. It is an Al that, sim-
ilar to our ADMC, enhances stability and performance
in DouZero, differing by incorporating probability and
value factorization.

¢ SL [Zha et al., 2021]. This AT utilizes supervised learn-
ing and aggregates 226,230 expert matches from top
players in a commercial DouDiZhu mobile app, result-
ing in a dataset of 49,990,075 samples for supervised
learning.

* CQL [You et al., 2020]. Combinational Q-Learning
(CQL) is one of the state-of-the-art programs based on
pure reinforcement learning.

To quantitatively assess performance, we collect 10,000 sam-
ples generated by OADMCDou and each state-of-the-art
benchmark when they compete. Subsequently, a significance
T-test is conducted to compare the means and assess the
95% confidence interval of these observed samples, as de-
tailed in Table 1. From Table 1, we draw two conclusions.
First, DouZero (DMC) and its enhanced versions (DouZero+
and WagerWin) demonstrate superior performance against
SL and CQL in ADP metric. Accordingly, the DMC algo-
rithm, which is also used in OADMCDou, is more effec-
tive than supervised learning and other DRL algorithms in
DouDiZhu in achieving optimal policies. Second, OADM-
CDou achieves better performance than DouZero, considered
the most advanced DouDiZhu Al, achieving an ADP of 0.104
with a confidence bound of 0.041. These results indicate that
the proposed algorithm, which integrates Oracle Guiding and
ADMC, enhances self-play performance. One of the reasons
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Figure 4: (a) DouZero* is the replication of DouZero, while PerfectDou and OracleDou are improved versions that incorporate Oracle
Guiding with different A values in (1): A stays fixed at one in PerfectDou but gradually reduces from one to zero in OracleDou during
training. (b) ADMCDou is an enhanced version of DouZero with Adaptive Deep Monte Carlo Method (ADMC). (c¢) The loss of DouZero*

and ADMCDou during training.

Rank A B OADMCDou DouZero DouZero+ WagerWin SL CQL
1 OADMCDou - 0.104£0.041  0.345+0.024  0.399£0.035  0.823£0.036  1.782+0.046
2 DouZero -0.104£0.041 - 0.226+0.031  0.261+0.043  0.705+£0.049  1.676+0.062
3 DouZero+ -0.345+0.024 -0.226£0.031 - 0.093+0.048  0.5954+0.042  1.607+£0.058
4 WagerWin -0.399£0.035 -0.261£0.043  -0.09340.048 - 0.552+0.045  1.574+£0.067
5 SL -0.823£0.036  0.705£0.049  -0.595+0.042 -0.552+0.045 - 1.053+0.054
6 CQL -1.782+£0.046  -1.676+0.062 -1.607+0.058 -1.574+0.067 -1.053+0.054 -

Table 1: Competition results between OADMCDou and each baseline algorithm by playing 10,000 decks. Algorithm A outperforms B if the

confidence interval of ADP is larger than zero.

for this, as previously analyzed in Section 5.2 , is that Oracle
Guiding provides more accurate input features to the learning
agent. Another contributing factor is the implementation of
gradient weight clipping in ADMC, which helps stabilize the
training process by preventing the occurrence of large gradi-
ents. Large gradients can lead to unstable learning, resulting
in policy oscillations or divergence. The control of gradient
magnitudes through weight clipping in (4) and (5) ensures
a more stable training process, a crucial factor in achieving
good performance. It is worth noting that WagerWin and
DouZero+, both improved versions of DouZero, do not pro-
vide pre-trained models. To facilitate a fair comparison, we
use their open-source code for training under the same condi-
tions as OADMCDou. However, our computing resources are
not as robust as theirs. Therefore, WagerWin and DouZero+
do not perform better than DouZero in the comparative exper-
iments. This discrepancy may be inconsistent with the results
reported in their papers, although it does not impede our abil-
ity to conduct an effective evaluation.

6 Conclusion and Future Work

This paper proposes OADMCDou, which combines Oracle
Guiding and Adaptive Deep Monte Carlo (ADMC) method,
surpasses the leading Al DouZero in stability and perfor-
mance. OADMCDou uses Oracle Guiding to gradually trans-
form an Oracle agent into a standard agent. This algorithm
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provides a comprehensive perspective, allowing OADM-
CDou to process information more efficiently and make
more accurate guesses and reasoned decisions, which im-
proves learning efficiency and performance. Using ADMC,
OADMCDou prevents extreme policy updates that can lead
to volatile and erratic behavior in the agent. By gradient
weight clipping and constraining the magnitude of updates,
the agent’s learning process becomes more stable, and it
avoids drastic changes in its policy. We conduct ablation ex-
periments on Oracle Guiding and ADMC, comparing it with
DouZero* (a replication version of DouDiZhu) and DouZero
(the leading DouDiZhu AI). Additionally, we conduct com-
parative experiments on OADMCDou, comparing its perfor-
mance with existing state-of-the-art DouDiZhu algorithms.
The experiment results demonstrate the effectiveness of our
method.

In the future, we will extend OADMCDou to other popular
card games like Contract Bridge > and Mahjong 3. We also
plan to combine OADMCDou with other classic reinforce-
ment learning algorithms, such as AlphaZero-like algorithms,
and neural networks, such as Transformer [Han et al., 2021],
to test their effectiveness and generalization. Moreover, we
are aware that Oracle Guiding may gain better learning and
guessing ability if combined with opponent modeling.

Zhttps://en.wikipedia.org/wiki/Contract_bridge
*https://en.wikipedia.org/wiki/Mahjong
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