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Abstract
Multimodal knowledge graphs incorporate multi-
modal information rather than pure symbols, which
significantly enhance the representation of knowl-
edge graphs and their capacity to understand the
world. Despite these advances, the existing multi-
modal fusion technique still faces significant chal-
lenges in representing modalities and fully integrat-
ing the diverse attributes of entities, particularly
when dealing with more than one modality. To
address this issue, the article proposes a Knowl-
edge Graph Multimodal Representation Learning
(KG-MRI) method. This method utilizes founda-
tion models to represent different modalities and
incorporates a triple contrastive learning model and
a dual-phase training strategy to effectively fuse the
different modalities with knowledge graph embed-
dings. We conducted comprehensive comparisons
with several knowledge graph embedding meth-
ods to validate the effectiveness of our KG-MRI
model. Furthermore, validation on a real-world
Non-Alcoholic Fatty Liver Disease (NAFLD) co-
hort demonstrated that the vector representations
learned through our methodology have enhanced
representational capabilities and can remove batch
effects, showing promise for broader applications
in complex multimodal environments.

1 Introduction
A knowledge graph (KG) is a complex semantic network that
includes various entities, each with unique attributes, linked
by edges representing different semantic relationships [Ji et
al., 2021]. These graphs play a vital role in many contem-
porary applications, especially in recommendation systems
[Guo et al., 2020] and natural language-based question an-
swering [Chen et al., 2020b]. With the rapid development
of graph management tools and analysis methods, knowledge
graphs are increasingly used in scientific research, with no-
table applications in fields such as genomics, proteomics, and
systems biology.

However, most existing knowledge graphs are represented
with pure symbols in the form of natural text or identifiers,

which does not align with how humans perceive and process
knowledge in the real world [Zhu et al., 2022]. Human cog-
nition stores knowledge in a variety of non-symbolic modali-
ties. For example, when a person observes an apple, they do
not retrieve a symbolic identifier but rather access a rich array
of sensory and contextual information, including the apple’s
taste, smell, color, and texture. This multimodal integration
is crucial for holistic understanding. Grounding entities in a
knowledge graph with these diverse modalities can enable it
to mirror human-like cognition more accurately during repre-
sentation learning.

Current knowledge graph embedding (KGE) models tries
to represent all entities and relations with low-rank continu-
ous vectors that preserve the graph’s inherent structure and
capture diverse contextual information [Wang et al., 2017].
This makes them easier to work with and apply to various
machine learning and deep learning tasks [Mohamed et al.,
2021]. Common KGE methods includes translation mod-
els like TransE [Bordes et al., 2013], RotatE [Sun et al.,
2019], etc., semantic match models like DisMult [Yang et
al., 2014], SimplE [Kazemi and Poole, 2018], etc., and neural
network models like ConvE [Dettmers et al., 2018], ER-MLP
[Dong et al., 2014], etc. Recently, researchers have extended
KGE methods to multimodal knowledge graphs. They pro-
posed a series of multimodal KGE methods, ranging from
conceptual frameworks [Lu et al., 2022; Cao et al., 2022;
Wang et al., 2019] to practical applications [Yao et al., 2023;
Li et al., 2023]. Despite these advancements, the integra-
tion of more than two modalities’ information remains a chal-
lenge.

Recent advances in foundation models offer an ideal solu-
tion for representing different modalities. For example, for
text or natural language modalities, semantic vector repre-
sentations can be obtained through large language models
(LLMs) such as GPT-4 [Achiam et al., 2023], LLama [Tou-
vron et al., 2023], BERT [Devlin et al., 2018], and others. For
image modalities, vector representations containing image in-
formation can be acquired through Vision Foundation Mod-
els (VFMs) like MAE [He et al., 2022], ImageBind [Gird-
har et al., 2023], and similar models. Additionally, there has
been a surge in domain-specific foundation models, such as
CNBERT [Lu et al., 2023a], ChemBERTa-2 [Ahmad et al.,
2022] and scGPT [Cui et al., 2024]. Additionally, contrastive
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learning has been proven to be an effective method for align-
ing information from different modalities. In the face of rep-
resentations from foundation models in various domains, the
CLIP model [Radford et al., 2021] was the first to use con-
trastive learning to bring closer the representations of differ-
ent modalities that convey the same semantics, and to dis-
tance the representations of different semantics. For mul-
timodal information in knowledge graphs, using contrastive
learning is also an effective approach [Zhang et al., 2023;
Yang et al., 2022; Liang et al., 2022].

In this paper, we propose a multimodal representation inte-
gration model for knowledge graph representation learning
(KG-MRI). This approach aims to help incorporate differ-
ent modalities’ representations from foundation models with
knowledge graph embeddings. To further optimize alignment
among these varied representations, we employ a triple con-
trastive learning (TCL) module and apply a dual-phase train-
ing strategy. Comprehensive comparison experiments with
various KGE models demonstrate the superiority of the KG-
MRI algorithm. In addition, we conducted an empirical anal-
ysis on a non-alcoholic fatty liver disease (NAFLD) real-
world clinical cohort, illustrating the practical application of
KG-MRI in clinical decision-making and removing batch ef-
fects. Altogether, our contributions are three-fold:

• We proposed a multimodal representation integration
method in knowledge graph representation learning to
fully integrate different information of an entity.

• We introduce a triple contrastive learning module and a
dual-phase training strategy in aligning multimodal rep-
resentation. We demonstrate the efficacy of KG-MRI in
comparison with other KGE methods.

• We test the KG-MRI’s practical utility using a private
NAFLD cohort from Jidong Hospital, China. Experi-
mental results indicate that the multimodal embedding
enhances diagnostic accuracy and mitigates batch ef-
fects.

2 Related Work
2.1 Multimodal Knowledge Graph Embedding
Contrary to earlier unimodal KGE methods, multimodal KGE
takes advantage of the extensive knowledge derived from
multiple modalities [Zhu et al., 2022]. Recent advancements
in multimodal KGE have introduced various models, with the
objective of combine diverse data modalities for enhanced
representation learning. Models like MMKRL [Lu et al.,
2022] and CapEnrich [Yao et al., 2023] leverage multi-source
knowledge to improve the semantic understanding of enti-
ties and relations in knowledge graphs, focusing on enrich-
ing traditional KGE methods that primarily rely on triplet
facts, he2019integrating presents MK-BERT, a model that
integrates BERT with multimodal data to enrich entity and
relation embeddings in knowledge graphs. Likewise, the
TransAE model [Wang et al., 2019] combines a multimodal
autoencoder with TransE model, addressing challenges in
unifying multimodal data for better representation learning.
These models underscore a shared goal to harness multimodal

information to provide more robust representations of real-
world entities and relations. They have demonstrated promis-
ing results in link prediction tasks and knowledge graph com-
pletion benchmarks.

In our work, we propose a multimodal representation in-
tegration algorithm, aiming to better align the different rep-
resentation of entities through contrastive learning and KGE
methods, thus improving the representation capability of the
whole knowledge graph.

2.2 Contrastive Learning in Knowledge Graph
Contrastive learning, as a self-supervised learning method,
has proven highly effective in leveraging the inherent
properties and structures of knowledge graphs (KGs)
to enhance the quality and utility of graph embed-
dings. Liang2022Relational utilizes the relational sym-
metrical structures in KGs to construct positive pairs for
contrastive learning, significantly boosting the discrimina-
tive capacity of the embeddings. Similarly, the Cross-
Scale Contrastive Graph Knowledge Synergy approach by
Zhang2023Contrastive leverages hierarchical graph views
to promote knowledge sharing and enhance the gen-
eralization ability of graph embeddings. Additionally,
yang2022knowledge addresses the challenges of noise and
sparsity in KG-enhanced recommendation systems through
a novel contrastive learning framework KGCL, which uses
a knowledge graph augmentation schema to mitigate noise
and employs a cross-view contrastive learning paradigm to
leverage unbiased user-item interactions effectively. These
methods share a unified objective to harness structural and
relational data inherently present in KGs, fostering more ac-
curate and robust embeddings.

However, current contrastive learning-based KG embed-
ding methods are primarily limited to dual modalities and
tend to focus predominantly on graph structures, often over-
looking the potential to integrate richer multimodal informa-
tion on entities.

3 Preliminaries
In this section, we first define the concepts of a Knowl-
edge Graph (KG) and Multimodal Representation Integration
(MRI) as used in our study.

3.1 Definition of Knowledge Graph
A Knowledge Graph, denoted as G = (E ,R, T ), consists of
entities and relationships forming a network.

Specifically, E represents the set of entities in the graph
G, R denotes the set of relationships connecting pairs of en-
tities, and T = {(h, r, t) | h, t ∈ E , r ∈ R} is the set
of triplets. Each triplet (h, r, t) indicates that a relationship
r exists between the head entity h and the tail entity t. In
this work, we aim to enhance Knowledge Graph Embed-
ding (KGE) methods by using multimodal representations of
entities. To this end, we retrieve two different modalities
for each entity e using the queries (e, has modality 1, ?) and
(e, has modality 2, ?).
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Figure 1: The overall framework of the multimodal representation learning (MRI) algorithm. Two different modalities of an entity are re-
trieved from the knowledge graph and are represented to vector representations through foundation models respectively. These two distinct
representations, along with outputs from the basic KGE method, are integrated using a triple contrastive learning module to enhance align-
ment. Two separate training phases are employed to optimize integration performance. The outputs of this training process serves as the new
KG embeddings for the knowledge graph.

3.2 Definition of MRI
The Multimodal Representation Integration (MRI) algorithm
is designed to enhance the representation of entities by inte-
grating their representations from different modalities.

Specifically, for an entity e ∈ E with an initial represen-
tation eemb ∈ Rd, and two other modalities’ representations
em1

∈ Rd1 and em2
∈ Rd2 , the MRI algorithm integrates

these representations to produce a refined multimodal embed-
ding e′emb ∈ Rd through a triple contrastive learning module
and a dual-phase training strategy. This approach aims to im-
prove the representational capability of the existing knowl-
edge graph embedding methods.

4 Methods
The overall framework of MRI is shown in Figure 1. In
general, the MRI algorithm consists of the following mod-
ules: multimodal representation acquisition, triple contrastive
learning, and dual-phase training. First, the multimodal rep-
resentation acquisition module utilizes two distinct large lan-
guage models to produce the representations of two different
representations of entities. Then, the triple contrastive learn-
ing models aligns different representations of the same en-
tity into a fixed-dimension vector space while maintaining the
richness of information from each modality. Finally, the dual-

phase training approach guarantees a holistic and in-depth
learning experience by concentrating on refining the KG rep-
resentations.

4.1 Multimodal Representation Acquisition
A multimodal knowledge graph primarily stores different
modalities related to a entity e. Yet, a comprehensive un-
derstanding of each entity necessitates the integration of dif-
ferent modalities’ information. With the advancements in vi-
sual foundation models (VFMs) and large language models
(LLMs), it’s now feasible to obtain different representations
through specially tailored LLMs.

We initially extract one modality s from a entity through
knowledge graph query (e, has modality 1, ?). We use a
foundation model FM1 with a specified cut-off length of 128
to get the corresponding representation semb.

semb = fFM1
(s1:128)[0], semb ∈ R768 (1)

where fFM1 is the encoder of the first foundation model,
s1:128 is the truncated or padded information, and the first
element of the encoder’s output is the global vector of the
entity’s representation of modality s.

Similarly, we retrieve the second modality t of the same en-
tity e via a knowledge graph query (e, has modality 2, ?). We
use a corresponding foundation model FM2 with a specified
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Figure 2: An illustration comparing triple contrastive learning with
other contrastive learning techniques. While methods like InfoNCE
loss focus on contrasting pairs, our triple contrastive learning iexcels
in refining sample representations. It not only aligns identical sam-
ples more closely but also distinctly separates dissimilar samples.

cut-off length of 256 to get the corresponding representation
temb.

temb = fFM2
(t1:256)[0], temb ∈ R768 (2)

where fFM2
is the encoder of the second foundation model,

t1:256 is the truncated or padded, and the first element of the
encoder’s output is the global vector of the entity’s represen-
tation of modality t.

4.2 Triple Contrastive Learning
With two 768-dimensional representation vectors semb and
temb, we consider to integrate them into the entity’s represen-
tation eemb ∈ Rd calculated by the base KGE model. We first
project semb and temb to the same dimension of eemb by an
average-pooling network.

es[i] =
1

k

k∑
j=1

semb[i× k + j], ms ∈ Rd (3)

et[i] =
1

k

k∑
j=1

temb[i× k + j], mt ∈ Rd (4)

where es[i] and et[i] is the i-th element after pooling and k =
768
d is the pooling stride.
With 3 same-dimension representation vectors eemb,es and

et, we propose a triple contrastive learning module to learn an
integrate vector for multiple entity representations. This mod-
ule brings together the distances between the representations
eemb, es, et of all modalities (3 in our experiment) of the same
entity while pulling away the representations e′emb, e

′
s, e

′
t of

other samples:

Spos =
3∑

p=1

exp
(
e⊤ipei(p mod 3)+1/τ

)
(5)

Sneg1 =
3∑

p=1

exp
(
e⊤ipei(p mod 3)+1/τ

)
(6)

Sneg2 =
K∑
j=1

3∑
q=1

exp
(
e⊤iqej(q mod 3)+1/τ

)
(7)

LTCL = − 1

n

n∑
i=1

log
Spos

Sneg1 + Sneg2

(8)

where n is the number of samples, τ is a temperature pa-
rameter, e1, e2, e3 represents eemb, es and et respectively. K
is the number of negative samples. We then calculate the av-
erage vector of eemb, es and et

e′emb =
eemb + es + et

3
, (9)

as the integrated multimodal representation for entity e.
Different from the traditional contrastive learning loss

function calculated between two elements, such as InfoNCE
loss in SimCLR [Chen et al., 2020a], triple contrastive learn-
ing [Lu et al., 2023b] seeks to concentrate the representations
from three modalities of the same entity while ensuring their
representations remain distinct from the other entities. An
intuitive illustration of this concept is available in Figure 2.
Both InfoNCE loss and its triple version cannot well distin-
guish the three-modality scenario.

4.3 Dual-phase Training
To better integrate the representations of multiple modalities,
we designed a two-stage training process, namely the multi-
modal training phase and the combined training phase. Here,
we use the RotatE [Sun et al., 2019] KGE method as an ex-
ample for explanation.

We first initialize all the entity and relation embeddings
E ∈ Rnum entites×d and R ∈ Rnum relations×d. Then, given
a triplet (h, r, t), the head entity embedding is rotated by the
relation embedding using element-wise multiplication:

hemb rot = hemb ⊙ remb, hemb ∈ E, remb ∈ R, (10)

where ⊙ denotes element-wise multiplication. We then com-
pute the distance score between the rotated head entity em-
bedding and the tail entity embedding as

fscore = ||hemb rot − temb||1, temb ∈ E, (11)

and we applied margin ranking loss LRL as the total loss as
the supervisory signal for KGE methods.

LRL =

N∑
i=1

max (0, 1 + fscore(h, r, t)− fscore(h
′
i, r

′
i, t

′
i))

(12)
During the multimodal training phase, the gradient is up-

dated using sum of LRL and LTCL. However, during the
combined training phase, only LRL is utilized to ensure a
more consistent update of the integrated representation. In
our experiments, each training phase is set to run 500 epochs.
Upon the completion of training, we extract the embeddings
of E and R as the representations of all entities and relations.

5 Experiments
5.1 Dataset
We constructed a biomedical knowledge graph named
HMKG from the Human Metabolome Database (HMDB,
https://hmdb.ca/, [Wishart et al., 2022]), which is a compre-
hensive electronic online database offering intricate details
on small molecule compounds present in the human body.
HMDB presents chemical, clinical, and molecular biological
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Translation Semantic Neural Network Hit@1 Hit@3 Hit@5 Hit@10 MR MRR

TransE [Bordes et al., 2013] ✓ 0.059 0.168 0.213 0.276 2561 0.135
TransD [Ji et al., 2015] ✓ 0.147 0.389 0.44 0.512 462 0.294
TransH [Wang et al., 2014] ✓ 0.458 0.542 0.579 0.607 2730 0.512
TransR [Lin et al., 2015] ✓ 0.181 0.262 0.303 0.369 1740 0.244
DisMult [Yang et al., 2014] ✓ 0.479 0.577 0.621 0.675 783 0.551
ER-MLP [Dong et al., 2014] ✓ 0.096 0.220 0.299 0.427 644 0.199
SimplE [Kazemi and Poole, 2018] ✓ 0.012 0.055 0.089 0.140 6223 0.054
NodePiece [Galkin et al., 2021] ✓ 0.185 0.194 0.201 0.218 17622 0.198
PairRE [Chao et al., 2020] ✓ 0.227 0.311 0.35 0.405 1703 0.289
QuatE [Zhang et al., 2019] ✓ 0.075 0.118 0.14 0.173 8394 0.111
RotatE [Sun et al., 2019] ✓ 0.538 0.664 0.699 0.742 656 0.614

MRI-RotatE(Ours) ✓ ✓ 0.572 0.698 0.731 0.770 550 0.631

Table 1: We first compared some popular knowledge graph embedding methods, including translation models, semantic match models and
neural network models. Then we selected the best performing knowledge graph embedding methods and applied it as the base model for our
MRI algorithm. Results are presented in terms of Hit@n, median rank (MR), and MRR (Mean Reciprocal Rank). The best results are bolded,
and the second-best results are underlined.

specifics of over 200,000 compounds. Each compound is cat-
aloged under a distinct MetaboCard, encompassing 130 data
fields; roughly two-thirds pertain to chemical and clinical de-
tails, while the remaining one-third focuses on enzymatic or
biological data. Many data fields are hyperlinked to other
databases, which provide a high extensibility in the future.
All the information in HMDB are storaged in the XML for-
mat. Based on this, we designed a specially-tailed parser to
extract all the biological information in HMDB in the form of
triplets.

5.2 Data Preprocessing
Regarding the data preprocessing process of HMKG, we in-
corporated data de-duplication, data alignment, and data dis-
ambiguation methods to enhance data quality. In the process
of entity standardization, we eliminated duplicates caused by
variations in letter case and special symbols. Entities repre-
senting the same concept are linked using the ”the same as”
relationship. Additionally, we preprocessed all numerical in-
formation in the knowledge graph, removing missing values,
outliers, and erroneous data to ensure data accuracy and reli-
ability. Furthermore, we perform standardization of the nor-
mal concentration values of compounds in the human body.
By comparing these values with concentration values in pa-
tients with specific diseases, we establish triplets indicating
upregulation or downregulation relationships between com-
pounds and diseases. This enables us to identify compound
expression changes related to diseases accurately.

5.3 Multimodal Information Representation
In our experiment, we first extract all the SMILES sequences
of each compound. SMILES is a notation employed to de-
pict chemical structures in textual form, with an average se-
quence length of 64. We utilize a recently developed language
model named ChemBERTa-2 as the encoder for SMILES.
ChemBERTa-2 is pretrained on a vast dataset comprising the

SMILES sequences of 77 million compounds sourced from
PubChem.

Then we extract all the text descriptions stored in HMDB
of each compound and opt for SciBERT to encode these text
descriptions. SciBERT is pretrained on a large multi-domain
scientific publications corpus of 1.14M papers from Semantic
Scholar and is widely used in biomedical natural language
processing tasks.

5.4 Experiment Settings
In our experiment, we meticulously partitioned the dataset
into training, validation, and testing sets following an 8:1:1
ratio. This division was aimed at ensuring a robust evalua-
tion framework. The hyperparameters were chosen to strike a
balance between the model’s efficiency and reliability. Both
the entity and relation embeddings were initialized with a di-
mensionality of 128. The learning rate was established at
1.0×10−3. The training was conducted over 1000 epochs on
a single Tesla A100 GPU. The total computation time varied
between 3 and 60 hours, contingent on the base KGE model
employed.

To uphold the reproducibility of our experimental out-
comes, we utilized a fixed random seed of 42. During train-
ing, we applied AdamW [Loshchilov and Hutter, 2018] and
CosineAnnealingLR [Loshchilov and Hutter, 2016] as our
default optimizer and scheduler. This meticulous setup was
designed to balance computational efficiency with model fi-
delity, thereby ensuring robust and reproducible results.

For reporting the experimental results of HMKG, common
metrics including Hits@1, Hits@3, Hits@5, Hits@10, MR
(Mean Rank), and MRR (Mean Reciprocal Rank) were uti-
lized. The higher values of Hits@n and MRR and the lower
values of MR explain the better performance of the method.
These metrics are extensively used in evaluating the perfor-
mance of models in knowledge graph embedding and infor-
mation retrieval tasks.
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6 Results

6.1 Comparison with Other KGE Methods

In HMKG, different patterns exist among various relation-
ships. Some relationships are symmetric, like ”the same as”
relationship, while others are asymmetric, like the ”is a” re-
lationship. Additionally, some relationships are inversions of
each other. For instance, if Entity A has a ”has sub class”
relationship with Entity B, it typically implies that Entity B
has a ”has father class” relationship with Entity A. More-
over, some relationships exhibit properties of composition
and transitivity. For example, if Compound A ”has disease”
Disease B, and Disease B is ”related to” Gene C, then Com-
pound A and Gene C may also have a ”related to” relation-
ship.

Since different knowledge graph embedding (KGE) meth-
ods may have varying effects in knowledge graphs composed
of different patterns, we selected a group of KGE methods
to compare their vector representation learning capabilities
within HMKG. We broadly categorized our selected KGE
methods into three groups. Firstly, we considered transla-
tion model-based KGE models such as TransE [Bordes et al.,
2013], TransD [Ji et al., 2015], TransH [Lin et al., 2015],
and RotatE [Sun et al., 2019], etc. Secondly, we explored
semantic matching models like Dismult [Yang et al., 2014]
and SimplE [Kazemi and Poole, 2018]. Lastly, we delved
into neural network-based models including ER-MLP [Dong
et al., 2014] and NodePiece [Galkin et al., 2021]. The com-
parison results are shown in Table 1.

In Table 1, we bolded the best results, and underlined the
second-best results. Among all KGE methods, RotatE [Sun
et al., 2019] achieved the best performance in Hits@n and
MRR, and significantly outperformed other methods, such
as (Hit@1 was 5% higher than the second place DisMult
model [Yang et al., 2014], and MRR was 0.08 higher than
the second place DisMult model as well). However, TransD
[Ji et al., 2015] and ER-MLP [Dong et al., 2014]models per-
formed somewhat better on the MR evaluation metric. We
have also tested the results of other KGE methods like ConvE
[Dettmers et al., 2018], KG2E [He et al., 2015], ConvKB
[Nguyen et al., 2017] and RGCN [Schlichtkrull et al., 2018],
etc., but their performance is not as good as the methods listed
in Table 1, so we choose not to display these results.

Based on the above results, we chose RotatE [Sun et al.,
2019] as the base KGE model in our MRI algorithm, and we
integrate the chemical embedding of compounds’ SMILES
sequences and semantic embedding of compounds’ text de-
scriptions to enhance the representation capability of HMKG.
We report the performance of our MRI-RotatE KGE meth-
ods in the last row of Table 1. Not surprisingly, our method
notably outperformed on various metrics, encompassing all
Hit@n and MRR values. Furthermore, it achieved an MR
of 550, marking a substantial advancement over RotatE [Sun
et al., 2019] and surpassing ER-MLP [Dong et al., 2014]
(MR=644), while nearing the performance of TransD [Ji
et al., 2015] (MR=462). The comparison results strongly
demonstrate the effectiveness of the MRI algorithm.

Overall NAFLD NC

Sex, n (%)
Male 194 (62.6%) 109 (35.2%) 85 (27.4%)
Female 116 (37.4%) 51 (16.5%) 65 (21.0%)

Average age, years 40.3 ± 9.0 40.8 ± 9.0 39.7 ± 8.9
Age group, n (%)

<30 16 (5.2%) 7 (2.3%) 9 (2.9%)
30-39 164 (52.9%) 82 (26.5%) 82 (26.5%)
40-49 69 (22.3%) 39 (12.6%) 30 (9.7%)
50-59 55 (17.7%) 29 (9.4%) 26 (8.4%)
≥60 6 (1.9%) 3 (1.0%) 3 (1.0%)

Table 2: Demographic statistics of the NAFLD cohort (n=310),
where NAFLD stands for non-alcoholic fatty liver disease (n=160),
NC stands for normal control (n=150).

6.2 An Empirical Study in NAFLD Diagnosis
In demonstrating the practical application of KG-MRI for dis-
ease diagnosis and health assessment, we carried out a study
on a non-alcoholic fatty liver disease (NAFLD) cohort (160
NAFLD patients and 150 Normal Control) from Jidong Hos-
pital, Hebei, China. Blood sample of each patient was col-
lected after fasting and followed by medical follow-up. De-
tailed statistics of this cohort can be found in Table 2.

In clinical scenario, using compound information for
health assessments is a crucial concern. Traditional machine
learning methods have been successful in diagnosing certain
single diseases. However, the challenge of integrating data
from different batches, due to variations in devices and con-
ditions, hinders the reuse of pre-trained models. In order to
overcome this problem, it’s essential to decouple the fixed
number of compounds in patient clinical test data from pre-
dictive models. Our compound embedding through KG-MRI
model allows the handling of compound data regardless of the
number of compounds. Moreover, using information about
individual compounds from knowledge graphs for disease
prediction can provide a more detailed and thorough descrip-
tion of compounds. This enhances the model’s generality and
interpretability.

As illustrated in Figure 3, our analytical pipeline starts
by sampling all normal population samples to establish ref-
erence ranges for each compound. Next, for each sam-
ple under study, the model classifies the compounds into
three categories, that is, upper-regulation, normal, and lower-
regulation, based on these reference ranges. Within each cat-
egory, we select 50 most relevant compounds and look up into
HMKG to obtain their vector representations. These vectors
are then multiplied by their respective expression levels to
create a comprehensive patient-level matrix. If the number of
compounds in a given category is fewer than 50, zero-padding
vectors are used to fill up the shortfall.

We then used the MultiLayer Preceptron (MLP) neural
network to classify this NAFLD cohort using the aforemen-
tioned patient-level matrix under the cross-validation settings,
achieving an average AUC of 0.87, an average F1 of 0.84,
and an average accuracy of 0.83, which surpasses the clas-
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Figure 3: NAFLD diagnosis pipeline using HMKG. The normal range compound expression are calculated as thresholds for distinguishing
upregulating, normal, and downregulating compounds. Representation retrieved from HMKG are fed into a NAFLD classification model.

Acc. F1 AUC Acc. F1 AUC

LR 0.72 0.71 0.65 NB 0.70 0.72 0.68
SVM 0.80 0.83 0.83 KNN 0.76 0.74 0.77
RF 0.72 0.58 0.61 KG-MRI 0.83 0.84 0.87

Table 3: Performance metrics for different classification models.
Each model has gone through a five-fold cross-validation. The high-
est metric value is highlighted in bold.

sification performance attained when directly applying tradi-
tional machine learning models to classify patients’ different
compounds expression data (a fixed-length vector that can-
not generalize to a varying lengths due to factors like batch
effects of samples and disparities among different clinical
test machines). The full comparison results with other ma-
chine learning models [Su et al., 2012; Rish and others, 2001;
Hearst et al., 1998; Breiman, 2001] are shown in Table 3.

7 Conclusion
In this study, we proposed a knowledge graph multimodal
representation (KG-MRI) learning model using triple con-
trastive learning and a dual-phase training strategy. This
model uniquely integrates various modalities associated with
a single entity in a knowledge graph, enhancing the multi-
modal coherence and utility of the derived embeddings. Our
exhaustive comparative analysis reveals that KG-MRI outper-
forms traditional KGE models across multiple metrics. Fur-
ther in-depth evaluations were conducted using a biomed-
ical knowledge graph specifically tailored to analyze Non-
Alcoholic Fatty Liver Disease (NAFLD). By applying our
KG-MRI model to this domain, we were able to significantly
reduce batch effects, which are common issues in traditional
classification models used in biomedical contexts. This re-
duction in batch effects, coupled with our model’s enhanced
performance metrics, underscores the practical and theoret-
ical benefits of integrating multimodal data in knowledge
graph representations.
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