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Abstract

Cell type annotation is pivotal to single-cell RNA
sequencing data (scRNA-seq)-based biological and
medical analysis, e.g., identifying biomarkers, ex-
ploring cellular heterogeneity, and understanding
disease mechanisms. The previous annotation
methods typically learn a nonlinear mapping to in-
fer cell type from gene expression vectors, and
thus fall short in discovering and associating salient
genes with specific cell types. To address this issue,
we propose a multi-scale scRNA-seq Sub-vector
Completion Transformer, and our model is referred
to as SCTrans. Considering that the expressiveness
of gene sub-vectors is richer than that of individ-
ual genes, we perform multi-scale partitioning on
gene vectors followed by masked sub-vector com-
pletion, conditioned on unmasked ones. Toward
this end, the multi-scale sub-vectors are tokenized,
and the intrinsic contextual relationships are mod-
eled via self-attention computation and conditional
contrastive regularization imposed on an encoding
transformer. By performing mutual learning be-
tween the encoder and an additional lightweight
counterpart, the salient tokens can be distinguished
from the others. As a result, we can perform gene-
selective cell type annotation, which contributes to
our superior performance over state-of-the-art an-
notation methods.

1 Introduction
The rapid advancements in single-cell RNA sequencing
(scRNA-seq) technologies have enabled high-resolution char-
acterization of tissue heterogeneity at cellular-level[Ziegen-
hain et al., 2017]. As a critical application of scRNA-seq,
automatic cell type annotation enables the precise identifica-
tion of unique and shared genetic expressions across different
cell types. This process elucidates the molecular characteris-
tics and functional regulation of cells. Furthermore, cell type
annotation facilitates the comparison of cellular typology al-
terations under pathological states, including cells’ stress re-
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Figure 1: Illustrating SCTrans performs gene sub-vector representa-
tion learning and gene-selective cell type annotation via multi-scale
tokenization and attention computation at each transformer block.

sponses and adaptive mechanisms. This sheds light on cellu-
lar functional dysregulation and the mechanisms of disease.

There are a number of attempts made in applying ma-
chine learning algorithms to cell type annotation [Wang et
al., 2022]. For example, scBERT [Yang et al., 2022] lever-
ages pretrained bidirectional transformer networks to learn
the contextual relationships between gene expression vec-
tors. Another representative strategy is to adopt an optimal
transport model to identify the known cell types while at the
same time discovering new ones, such as scPOT [Zhai et
al., 2023]. However, the existing methods mainly focus on
learning a nonlinear mapping to infer cell types from indi-
vidual genes, often overlooking the interdependency between
the sub-vectors of gene expression. Compared to individual
genes, we consider that gene sub-vectors provide richer infor-
mation, and performing attention computation among them
potentially identities salient ones for downstream biological
research and analysis as shown in Figure 1.

More specifically, we propose a multi-scale gene expres-
sion Sub-vector Completion Transformer (SCTrans) for cell
type annotation over scRNA-seq. SCTrans aims to learn an
effective representation of the sub-vectors, such that the in-
terdependency and the association with cell type can be bet-
ter captured, than dealing with individual genes. As shown in
Figure 2, we adopt a multi-scale partitioning strategy to yield
gene sub-vectors across different scales. Next, the resulting
sub-vectors are tokenized, followed by self-attention compu-
tation in each transformer block. One of our training goals is
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to perform sub-vector completion across different scales: pre-
dicting the masked sub-vectors from the unmasked ones. We
further impose conditional contrastive regularization on the
transformer to learn cell-type-aware representation. By mod-
eling intrinsic contextual relationships, another advantage is
to distinguish salient tokens from the others, based on atten-
tion scores. As a result, we can perform gene-selective cell
type annotation, and provide meaningful and interpretable re-
sults. We perform extensive experiments on multiple bench-
mark dataset to highlight the effectiveness of our design ele-
ments and the superior performance over state-of-the-art cell
type annotation methods.

In summary, the main contribution of this work are as
follows: (a) We design a multi-scale scRNA-seq encoding
transformer to learn the representation of gene sub-vectors,
whose expressiveness is richer than that of individual genes.
(b) Based on the nature of gene co-expression, we perform
gene sub-vector completion to capture the intrinsic contextual
relationships across different scales. (c) By performing mu-
tual learning between the transformer and a lightweight coun-
terpart, salient tokens of various scales can be distinguished
from the others, and lead to significant improvement in terms
of annotation accuracy and interpretability.

2 Related Work

2.1 Transformer Based Representation Learning
The Transformer architecture [Xu et al., 2019][Dosovitskiy et
al., 2021][Wu et al., 2021][Liu et al., 2021] has emerged as
a powerful framework, drawing inspiration from transformer
research in natural language processing (NLP) [Devlin et al.,
2018][Vaswani et al., 2017]. By utilizing the self-attention
mechanism, Transformer can model the long time relation,
particularly effective in analyzing complex relationships in
biological data[Abnar and Zuidema, 2020][Alsaigh et al.,
2022]. In single-cell RNA sequencing (scRNA-seq) analy-
sis, Transformer has led to significant advancements. For in-
stance, scBERT [Yang et al., 2022] utilizes the Transformer
to annotate cell types in scRNA-seq data, learning from large
datasets to understand gene interactions. Similarly, the Ex-
ceiver model [Connell et al., 2022], based on the Perceiver IO
framework, adapts to new datasets for gene expression analy-
sis. TOSICA [Chen et al., 2023], another Transformer-based
tool, excels in integrating diverse datasets for cell type an-
notation. The DeepMAPS [Ma et al., 2023] model uses a
unique approach combining cells and genes to infer biolog-
ical networks, streamlining the training process. Moreover,
scFoundation [Hao et al., 2023] and scAAGA [Meng et al.,
2023] models enhance single-cell analysis by transforming
gene expression data into informative vectors and employing
gene attention modules for feature extraction.

These models are exemplary in their integration of com-
putational techniques with biological data, providing pro-
found insights into genomic analysis. However, a limitation
of existing methods is their focus either on single genes, fail-
ing to fully reveal the expressions across the gene sub-vectors.
This oversight can potentially neglect the deeper implications
and nuances within the genomic data.

2.2 Cell Type Annotation

Cell type annotation methods can be broadly categorized into
two approaches: cluster-then-annotate and supervised cell
type classification. The cluster-then-annotate approach seeks
to categorize cells into distinct clusters, and these identified
clusters are subsequently manually annotated by experts who
examine cluster-specific gene expression patterns [Kiselev et
al., 2019]. In this learning paradigm, which falls under the
unsupervised learning branch, various clustering approaches
have been developed to identify cell types. For example,
SC3 accomplishes cell clustering by consistently integrat-
ing diverse clustering solutions through a consensus approach
[Kiselev et al., 2017]. SIMLR strives to acquire a more ac-
curate metric that better reflects the similarity between sam-
ples, capturing the underlying structure of the data through
a multiple kernel learning approach [Wang et al., 2017]. Re-
cently, deep learning methods have emerged as powerful tools
for clustering scRNA-seq data, overcoming challenges posed
by high dropout rates and noise [Tian et al., 2021]. For ex-
ample, DESC is an unsupervised deep embedding algorithm
designed to accurately cluster scRNA-seq data through an
iterative self-learning process [Li et al., 2020b]. scziDesk
utilizes a convolutional autoencoder to learn representations
of the single cell data, followed by a regularized soft k-
means approach to identify cell clusters [Hu et al., 2022].
scNAME method incorporates mask estimation task, in con-
junction with a neighborhood contrastive learning framework
to achieve effective clustering [Wan et al., 2022]. These deep
clustering techniques can characterize complex nonlinear re-
lationships in single cell data to identify the cell groupings.

In contrast, the supervised classification approach in-
volves training a model on data where cell types are pre-
annotated. Subsequently, this model is utilized to predict cell
type labels for new, unlabeled single cells [Abdelaal et al.,
2019]. While supervised methods can leverage expert knowl-
edge during the training process, their effectiveness may be
constrained by the quantity and quality of labeled data avail-
able. ScType leverages a comprehensive database of cell
type-specific marker genes to facilitate the automated high-
throughput annotation of cell types [Ianevski et al., 2022].
scDeepSort leverages a pre-trained weighted graph neural
network (GNN) for cell-type annotation [Shao et al., 2021].
MARS, a meta-learning approach, is designed for the iden-
tification and annotation of both known and novel cell types
[Brbić et al., 2020]. scPOT is an end-to-end algorithm specif-
ically designed for the annotation of cell types, including the
discovery of novel cell types. This is achieved through the
utilization of the optimal transport (OT) framework [Zhai et
al., 2023]. scBERT is a pre-trained deep cell-type annotation
model that leverages the Bidirectional Encoder Representa-
tions from Transformers (BERT [Devlin et al., 2018]).

Significantly different from existing methods, this work
proposes a biologically interpretable cell annotation method
that considers biological information. The proposed model
not only accurately achieves cell annotation but also exploits
the contextual relationships that exist between gene expres-
sion, providing meaningful biological gene sub-vector selec-
tion for downstream biological analysis.
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Figure 2: Our proposed multi-scale gene expression Sub-vector Completion Transformer (SCTrans). As shown in (a), SCTrans leverage
random sub-vector completion to learn well-defined representations. This multi-scale encoder E aims to reconstruct multi-scale masked gene
sub-vector to mitigate the impact of severe sparsity for scRNA-seq data. (b) represents the attention score based gene selection module, by
incorporating the idea of mutual learning, a lightweight gene selection Encoder ES will use the attention scores to assess the importance of
the gene sub-vector and select salient tokens. Importantly, (c) performs our novel gene-selective cell type annotation mechanism, we leverage
the coefficient matrix from (b) to focus on the salient tokens, utilize E and classifier C to annotate cell type gene-selectively.

3 Methodology
In this section, we present the details of our proposed SC-
Trans tailored for cell type annotation. As illustrated in Fig-
ure 2, we design an encoding transformer E to learn the rep-
resentation of gene expression sub-vectors, and adopt an ef-
fective sub-vector selection mechanism to identify the salient
ones, and facilitate gene-selective cell type annotation.

3.1 Random Sub-vector Completion
Based on the nature of gene co-expression, we adopt a self-
supervised training strategy of random gene sub-vector com-
pletion to learn the representation of gene sub-vector for cell
type annotation. This process is designed to effectively ex-
plore the intrinsic contextual relationships among gene ex-
pression patterns at various scales. As illustrated in Figure
2.(a), the gene sequencing data X can be sub-vectorified into
multiple gene expression sub-vectors X, and random masks
Ω are generated to mask the majority of these sub-vectors,
the masked regions are denoted as XΩ. Inspired by Masked
Auto-Encoder [He et al., 2022], one of the training goal is to
predict the masked sub-vectors, conditioned on the unmasked
ones. To achieve this, the unmasked sub-vectors XΨ are fed
into the multi-scale encoding transformer E (Ψ denotes the
unmasked position index). Specifically, we perform attention
computation over multi-scale Queries {Q(i)} and global Key-
Value pairs {K,V } to explore the interdependency and learn
the representation of gene sub-vectors across different scales,
formulated as follows:

{Q}(i) = W (i)
q ⊗ I(XΨ, i) + b(i)q , i = 1, . . . , N,

{K,V } =W{k,v} ⊗XΨ + b{k,v},
(1)

where Wq,k,v and bq,k,v are learnable model parameters, N
denotes the number of sub-vector sizes, I(·, i) represents the

function to produce gene sub-vectors with size i. In the above
equation, Q(i) involves the gene sub-vector representations
with difference sizes. With the aggregation of multiple trans-
former blocks, E explores the interdependency of gene sub-
vector with different scales, and the output of multiple blocks
are concatenated together to build the final output E(XΨ):

A(i) = softmax
(
Qi ·K/

√
Λ
)
· V,

E(XΨ) = concat(A(1), ...,A(N)),
(2)

where Λ denotes the number of feature channels. The result-
ing representation E(XΨ) together with the mask Ω are fed
into a simple decoding transformer D to predict the masked
gene sub-vectors as follows:

Lcomp = EX,Ω

[
∥(XΩ −D({Ω, E(XΨ)}))∥22

]
. (3)

By minimizing the above mean squared error (MSE), the
multi-scale encoding transformer is trained to complete the
unmasked gene sub-vectors, such that their intrinsic contex-
tual relationships are explored and leveraged.

3.2 Gene-selective Cell Type Annotation
To induce our model to concentrate on salient gene sub-
vectors specific to cell annotation and provide interpretable
results, we incorporate a lightweight encoding transformer
denoted as ES and perform mutual learning with E. The
idea behind our selection module is to utilize the attention
scores among multi-scaled Queries and global Keys to distin-
guish the gene sub-vectors playing more important role than
the others, and the formulation is expressed as follows:

S(i) =Q(i) ·K,

M(i) = sigmoid(T · (S(i) − θ))),
(4)
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where the attention score S(i) is calculated by aggregating the
multi-scale Queries {Qi} and the global Key K. To indicate
salient gene sub-vectors, a coefficient matrix M(i) is gen-
erated in the above equation. The sigmoid function is used
in conjunction with a temperature factor T and a learnable
threshold θ to modulate the attention score. The value of the
elements in M(i) ranges from 0 to 1 to indicate the impor-
tance of each gene sub-vector at different positions.

To identify the meaningful gene sub-vectors for cell type
annotation, M(i) is further used to guide the lightweight
encoding transformer ES . Specifically, we apply M(i) to
weight the multi-scale gene sub-vector, and obtain the cor-
responding Queries as follows:

Q̂(i) = Ŵ (i)
q ⊗ (I(XΨ, i)⊗M(i)) + b̂(i), (5)

where Q̂(i) denotes the weighted queries with sub-vector size
i. Different from E, we perform attention computation at
each transformer block of ES to mainly explore the relation-
ship of the highlighted gene sub-vectors.

On the other hand, we incorporate a linear classifier C
on top of E to infer the cell types: Ŷ = C(E(XΨ)), where
Ŷj denotes the predicted probability distribution of the j-
th cell. The predictions are evaluated by using the cross-
entropy-based loss function Leval as follows:

Leval = EX,Ω

[∑
j

(
−Yj · log(Ŷj)− (1−Yj) · log(1− Ŷj)

)]
.

(6)
Minimizing Leval enforces E and C work together to pro-
duce the cell type annotation as accurate as possible. To as-
sociate gene sub-vector selection with specific cell types, we
further perform mutual learning between E and ES by im-
posing prediction consistency regularization as follows:

Lkl = EX,Ω

∑
j

Ŷj ·
(
− log(Ŷj/Ŷj)

) , (7)

where Ŷj = C(ES(XΨ)) denotes the cell type prediction
from the representation learnt by ES . As will be shown in
the experiments, the integration of multi-scale encoding and
re-weighting strategies contributes to our cell type annotation
performance.

3.3 Model Optimization
Considering that the representation discrepancy among cell
types is expected to be significant. For this purpose, we fur-
ther incorporate a conditional contrastive learning term to
regularize the encoding transformer. We can construct se-
mantically congruent and incongruent pairs according to cell
type. We aim to push the gene representations of the cells of
the same type closer, while moving away from other types of
cells. The conditional contrastive loss function is defined as
follows:

Lctrst = EX,Ω

[
−
∑
j

log

(∑
Yj=Yk

exp(cos(Xj ,Xk)/τ)∑
Yj ̸=Yk

exp(cos(Xj ,Xk)/τ)

)]
,

(8)

where Xj (Xk) represents the j (k)-th cell, and τ is a temper-
ature parameter.

By integrating the above four aspects: gene sub-vector
completion, cell type prediction, mutual learning and con-
trastive regularization, the overall optimization of the pro-
posed SCTrans is expressed as follows:

min
E

Lcomp + Leval + Lctrst,

min
C

Leval + Lctrst,

min
D

Lcomp,

min
ES

Lkl,

(9)

As shown in the above equation, the multi-scale encoding
transformer is jointly optimized with other constituent net-
works to learn cell-type-aware representation for cell type an-
notation, and the discovered salient gene sub-vectors lead to
interpretable results.

4 Experiment
In this work, we conduct experimental studies to evaluate our
method on seven representative benchmark datasets, the tis-
sues of datasets including Peripheral Blood Mononuclear Cell
(PBMC), Pancreas, Liver and Lung. Table 1 provides con-
cise descriptions of these datasets.We carefully selected these
tissues due to their critical roles in health and disease. Our
objective in utilizing these diverse datasets is to demonstrate
the flexibility and effectiveness of our method.

Dataset Tissue Protocol Cell # Population #

Zheng68K PBMC 10X CHROMIUM 68450 11
Baron Pancreas inDrop 8569 14
Xin Pancreas SMARTer 1449 4

Segerstolpe Pancreas SMART-Seq2 2133 13
Muraro Pancreas CEL-Seq2 2122 9

MacParland Liver 10X CHROMIUM 8444 13
Lung Lung 10X Genomics sequencing 39778 9

Table 1: Dataset descriptions.

4.1 Comparison Results
In this section, we compare our model with several represen-
tative cell type annotation methods, including scBERT [Yang
et al., 2022], Seurat [Hao et al., 2021], SingleR [Aran et
al., 2019], CellID [Cortal et al., 2021], scmap [Kiselev et
al., 2018], scNym [Kimmel and Kelley, 2021], and Scibet
[Li et al., 2020a]. It is worth noting that both CellID and
scmap include two variants with different strategies: Cel-
lID cell and CellID group for CellID, and scmap cell and
scmap cluster for scmap. We evaluate the effectiveness of
these cell type annotation methods using classification accu-
racy and F1 Score, where higher values indicate better per-
formance. For each dataset, we randomly select 80% of the
total data for model training and use the remaining 20% as
test data. Table 2 provides a quantitative comparison be-
tween our model and other competing methods across seven
datasets. Based on these results, we make the following ob-
servations: 1) PBMC (Zheng68k) presents a challenge in
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Methods Zheng68k Baron Muraro Xin Segerstolpe MacParland Lung

Accuracy ↑ F1↑ Accuracy ↑ F1↑ Accuracy ↑ F1 ↑ Accuracy ↑ F1↑ Accuracy ↑ F1↑ Accuracy ↑ F1↑ Accuracy ↑ F1↑
scNym 0.700 0.627 0.983 0.805 0.960 0.801 0.906 0.550 0.833 0.648 0.974 0.957 0.925 0.875
SciBet 0.679 0.667 0.975 0.864 0.964 0.819 0.984 0.795 0.789 0.728 0.971 0.957 0.909 0.847
Seurat 0.686 0.581 0.980 0.833 0.964 0.858 0.959 0.594 0.846 0.652 0.979 0.965 0.901 0.833
SingleR 0.326 0.550 0.969 0.878 0.965 0.877 0.977 0.809 0.672 0.692 0.951 0.933 0.870 0.781
CellID cell 0.566 0.509 0.957 0.857 0.958 0.904 0.901 0.520 0.829 0.724 0.946 0.924 0.950 0.911
CellID group 0.539 0.567 0.936 0.815 0.943 0.816 0.870 0.528 0.743 0.672 0.882 0.908 0.879 0.837
scmap cell 0.291 0.212 0.844 0.398 0.801 0.382 0.822 0.281 0.499 0.266 0.826 0.421 0.574 0.287
scmap cluster 0.463 0.482 0.912 0.826 0.901 0.758 0.956 0.780 0.600 0.619 0.931 0.899 0.893 0.717
scBERT 0.759 0.691 0.977 0.849 0.976 0.932 0.980 0.793 0.892 0.759 0.976 0.959 0.957 0.914

SCTrans 0.817 0.717 0.980 0.881 0.986 0.984 0.995 0.946 0.977 0.826 0.981 0.966 0.965 0.921

Table 2: Quantitative comparison with competing methods.

scRNA-seq data, as indicated by the unsatisfactory results
obtained by competing methods. In contrast, our method
consistently achieves the best results, with an accuracy value
exceeding 0.8, significantly outperforming other competing
methods. 2) While scBERT achieves the second-best results,
our proposed method significantly outperforms all competing
methods across all seven datasets in terms of accuracy and F1
score. It consistently attains an accuracy exceeding 0.95 for
all datasets except Zheng68k.
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Figure 3: Heatmaps for the confusion matrices of the cross
validation results on the Zheng68K dataset for SCTrans and
scBERT. (a) to (f) represemts ‘CD34+’, ‘CD4+/CD25 T Reg’,
‘CD4+/CD45RA+/CD25- Naive T’, ‘CD4+/CD45RO+ Memory’,
‘CD8+ Cytotoxic T’, ‘CD8+/CD45RA+ Naive Cytotoxic’.

Figure 4: The impact of varying the ratio of training data on model
performance on the Zheng68K dataset.

Moreover, we conduct a detailed comparison of the
performance of our method and scBERT for each cell

type. Figure 3 displays the confusion matrix to illus-
trate the classification results of our model and scBERT
across all cell types on the Zheng68k dataset. Our ap-
proach outperforms scBERT in classifying every cell type,
with particularly notable improvements in classification per-
formance for the‘CD4+/CD45RA+/CD25- Naive T’ and
‘CD4+/CD45RO+ Memory’ cell types.

In addition, we explore the impact of varying training
sample sizes on model performance, comparing our method
with scBERT, Scibet, Seurat and CellID cell as depicted in
Figure 4. Specifically, we randomly select 10%, 30%, 50%,
70%, and 90% of PBMC cells from the Zheng68K dataset
as training data, while the remaining samples serve as testing
data. As observed, our model consistently outperforms other
methods in terms of accuracy across all settings.

4.2 Model Analysis
Robustness Analysis on Imbalanced Data
In scRNA-seq data, the imbalanced distribution of cate-
gories among different cell types poses a challenge. To as-
sess the efficacy of the proposed method in handling imbal-
anced scRNA-seq data, we specifically chose four distinct
PBMC cell populations (‘CD19+ B’, ‘CD8+ cytotoxic T’,
‘CD34+’, and ‘CD8+/CD45RA naive cytotoxic cells’) from
the Zheng68K dataset. In detail, we randomly sampled cells
from these types, obtaining counts of 100, 10,000, 100, and
10,000, respectively, to construct the training dataset. For
model testing, 100 cells were randomly selected as the testing
dataset. As depicted in Figure 5, in the same experimental
setup, scBERT exhibits low annotation accuracy for recog-
nizing cell types, whereas our model consistently achieves
satisfactory results across all cell types. This underscores the
robustness of our method in classifying imbalanced data.

Robustness Analysis on Batch Effects
In the collection of scRNA-seq data, it is common to inte-
grate multiple samples from different sequencing platforms,
leading to batch effects. These batch effects can signifi-
cantly impact the accuracy of experimental results. To assess
our model’s capability to overcome batch effects, we con-
duct experiments across datasets, integrating human pancreas
datasets generated from diverse sequencing technologies, in-
cluding Baron, Muraro, Segerstolpe, and Xin. These datasets
were harmonized into a unified dataset by aligning common
genes and preserving four shared pancreas cell types (‘alpha’,
‘beta’, ‘delta’, and ‘gamma’).
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Figure 5: Performance of SCTrans and scBERT on the imbalanced
dataset reconstructed from Zheng68K dataset. (a) to (d) represents
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naive cytotoxic cells’.

Figure 6: Performance of intra-dataset and cross-dataset classifica-
tion on human pancreas dataset.

In this setting, three of the datasets were utilized for
training, while the fourth served as the test set. We apply our
SCTrans method to this constructed dataset (cross-dataset),
and for comparative analysis, we also perform tests on single
source data (intra-dataset), where both the training and test
sets originated from the same human pancreas dataset, such
as Baron or Muraro. As illustrated in Figure 6, our model
demonstrates high accuracy and F1 scores on the unified con-
structed dataset. Notably, it achieves accuracy results that are
comparable to, or even better than, those obtained on single
source data. These findings indicate that the representation
learning from scRNA-seq data facilitated by our model is ro-
bust against batch effects.

Biological Meaningful Gene Sub-vector Selection
To assess whether our model can concentrate on the most in-
fluential gene segments for cell type recognition task, we con-
duct experiments involving the selection of a specific ratio of
relevant gene sub-vectors selected by SCTrans shown in Fig-
ure 7. As scBERT lacks the capability for gene segments
selective, we randomly remove a certain ratio of gene sub-
vectors. Subsequently, we compare the resulting accuracy
and F1 scores under different settings. Notably, our model
demonstrates robust performance, maintaining high accuracy
and F1 scores even after the removal of a ratio of gene sub-

Figure 7: Accuracy and F1 score of selecting different ratios of gene
sub-vectors on the Zheng68K dataset.
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Figure 8: Meaningful gene sub-vector selection ratio. The attention-
score based selection mechanism can make SCTrans focus the
salient tokens.(a) to (g) represents ‘CD14+ Monocyte’,‘CD4+/CD25
T Reg’,‘CD4+ T Helper2’,‘CD34+’,‘Dendritic’,‘CD4+/CD45RO+
Memory’,‘CD56+ NK’.

vector through selection. In contrast, scBERT experiences a
notable decline in classification performance as the ratio of
removed gene sub-vectors increases.

Moreover, we anticipate that our SCTrans model can
identify meaningful and interpretable gene sub-vectors,
which would be highly valuable for downstream biological
analyses. To validate this, we undertake a meticulous selec-
tion of salient gene sub-vectors and evaluate their biological
significance. Specifically, if a marker gene is present within
the selected gene sub-vector, this sub-vector is considered bi-
ologically meaningful. As depicted in Figure 8, we compare
the gene sub-vectors selected by SCTrans against those se-
lected randomly. The results from this comparison indicate
that SCTrans is adept at selecting biologically relevant gene
sub-vectors. Additionally, SCTrans’s selection varies from
0.67 to 0.14, we think this may due to the meaningful tokens’s
mapping is not average, and the meaningful tokens have weak
relation with gene expression in some specific situation. SC-
Trans’s selection may provide insights from other views.

Combining the outcomes from Figures 7 and 8, we can
conclude that SCTrans is not only effective in gene selec-
tion, which contributes to accurate cell annotation, but also
excels in providing biologically meaningful and interpretable
results, demonstrating its multifaceted utility in the realm of
biological research.

Representation Learning
Figure 9 (right) depicts the UMAP visualization of gene data
representations learned by our model, while the left panel il-
lustrates the UMAP visualization based on the original gene
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Segerstolpe

Baron

Figure 9: UMAP representation of cells from the Segerstolpe dataset
coloured by cell types, based on the raw expression (left) and the
SCTrans embedding (right) of each cell. The adjusted Rand index
(ARI) score is calculated and shown in the plot.

Variants Zheng68k MacParland Lung

Accuracy ↑ F1↑ Accuracy ↑ F1↑ Accuracy ↑ F1↑
SCTrans w/o MA 0.772 0.668 0.926 0.851 0.943 0.907
SCTrans w/o CCR 0.801 0.708 0.971 0.961 0.959 0.914

SCTrans 0.817 0.717 0.981 0.966 0.965 0.921

Table 3: Quantitative results of ablative models.

data. The visualizations clearly indicate that the representa-
tions obtained by our model are more distinguishable than
those derived from the original gene data, leading to superior
results in terms of ARI scores.

Ablation Study
To further validate the significance of multi-scale attention
and contrastive learning in the proposed model, we compare
the proposed SCTrans with two variants:

• Without the Multi-scale Attention strategy (SCTrans w/o
MA): In this setting, only the single-scale attention will
be considered.

• Without Conditional Contrastive Regularization (SC-
Trans w/o CCR): In this setting, we disable the condi-
tional contrastive regularition term Lctrst in Eq.(8).

In detail, we conduct an ablation study on the Zheng68k,
MacParland, and Lung datasets to assess the impact of these
two important components. As shown in Table 3, the pro-
posed model with multi-scale attention and contrastive learn-
ing outperforms the two related variants, validating the effec-
tiveness of these two components in the proposed method.

Additionally, we conduct an evaluation to assess the im-
pact of the multi-scale attention strategy in terms of the re-
construction task. As depicted in Figure 10, the results clearly
demonstrate that the implementation of the multi-scale atten-
tion strategy significantly enhances the reconstruction pro-
cess, both in terms of efficiency and accuracy.

Figure 10: The impact of multi-scale attention and single scale at-
tention about reconstruction tasks on the Zheng68k and MacParland
datasets.

5 Conclusion
In this study, we present SCTrans, a novel multi-scale
scRNA-seq Sub-vector Completion Transformer designed to
overcome the limitations of current cell type annotation meth-
ods in scRNA-seq data analysis. SCTrans capitalizes on the
richer expressiveness of gene sub-vectors and incorporates
self-attention and contrastive regularization techniques. This
approach allows SCTrans to excel in identifying crucial genes
associated with specific cell types, leading to more accu-
rate cell type annotation compared to current state-of-the-art
methods. Furthermore, SCTrans performs attention compu-
tation among genes, potentially identifying salient ones, and
provides interpretable results for downstream biological re-
search and analysis, enhancing its utility in advancing our
understanding of cellular behaviors and functions.
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