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Abstract

Knowledge tracing (KT) is the task of predicting
students’ future performance based on their histor-
ical learning interaction data. With the rapid ad-
vancement of attention mechanisms, many atten-
tion based KT models are developed. However,
existing attention based KT models exhibit perfor-
mance drops as the number of student interactions
increases beyond the number of interactions on
which the KT models are trained. We refer to this
as the length generalization of KT model. In this pa-
per, we propose stableKT to enhance length gener-
alization that is able to learn from short sequences
and maintain high prediction performance when
generalizing on long sequences. Furthermore, we
design a multi-head aggregation module to capture
the complex relationships between questions and
the corresponding knowledge components (KCs)
by combining dot-product attention and hyperbolic
attention. Experimental results on three public ed-
ucational datasets show that our model exhibits ro-
bust capability of length generalization and outper-
forms all baseline models in terms of AUC. To en-
courage reproducible research, we make our data
and code publicly available at https://pykt.org.

1 Introduction
Knowledge tracing (KT) is a sequential prediction task that
utilizes the historical learning interaction data of students to
predict their responses to future questions. This is achieved
by modeling students’ mastery of knowledge, i.e., knowledge
states, as they interact with learning platforms such as mas-
sive open online courses (MOOCs) and intelligent tutoring
systems. Solving the KT task can empower teachers to bet-
ter guide students who need further attention or recommend
personalized learning materials. This is crucial for the devel-
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opment of next-generation intelligent and personalized edu-
cation.
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Figure 1: The AUC performance of KT models with different se-
quence lengths.

Recently, with the rapid development of attention mecha-
nisms [Vaswani et al., 2017], many attention based KT mod-
els are developed such as SAKT [Pandey and Karypis, 2019],
SAINT [Choi et al., 2020] and simpleKT [Liu et al., 2023b].
To build an effective attention based KT model, a major de-
sign decision is the length of student interaction sequences
at training stage, denoted L herein, which has been equiva-
lent to the length of student interaction sequences at predic-
tion stage. When computing the attention scores, incorporat-
ing more student interactions (achieved by a larger L) in the
context window improves estimations of student knowledge
mastery at prediction stage. However, longer interaction se-
quences are more expensive to train on [Press et al., 2022].
We refer to this as the length generalization of KT model,
which denotes a KT model’s capability to continue perform-
ing well as the number of student interactions increases be-
yond the number of interactions on which the KT model is
trained.

While in some cases the attention based KT models trained
on short sequences can be directly applied on longer interac-
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tion sequences at prediction stage, the performance degrades
as the length of sequences increases (Shown in Figure 1). We
train attention based KT models, such as SAKT [Pandey and
Karypis, 2019], SAINT [Choi et al., 2020] and simpleKT
[Liu et al., 2023b], on student interaction sequences with
a fixed length of 200 and evaluate on sequences of vary-
ing lengths, i.e., 200, 400, 600, 800 and 1000. In Figure
1, these attention based KT models display lower prediction
performance on longer sequences compared to shorter ones,
which poses a significant challenge when generalizing the
well-trained KT models to students who have long historical
interaction sequences.

Furthermore, in real-world educational scenarios, there are
intricate relationships between questions and their associated
knowledge components (KCs)1. Effectively capturing these
relationships may significantly boost the performance of KT
models [Cui et al., 2023]. However, most existing atten-
tion based KT models, such as SAKT [Pandey and Karypis,
2019], SAINT [Choi et al., 2020] and simpleKT [Liu et al.,
2023b], simply rely on the standard dot-product attention
function, which computes the similarity between two student
interactions by taking their inner product. Such inner product
fails to model the complex and hidden structural properties of
questions and their associated KCs.

Therefore, in this paper, we present KT solutions that are
able to help models learn from short sequences and generalize
well to longer sequences at prediction stage, and at the same
time effectively capture complex relationships between ques-
tions and their associated KCs when learned from a collec-
tion of real-world student interaction data. Our work focuses
on the refinements of a popular attention based KT baseline
model, i.e., simpleKT [Liu et al., 2023b].

Briefly, the simpleKT model explicitly captures question-
specific variations of the individual differences among ques-
tions covering the same set of KCs and uses the standard
dot-product attention function to extract the time-aware infor-
mation embedded in the student learning interactions. How-
ever, when learning a standard simpleKT model from real-
world educational datasets characterized by variations in in-
teraction sequence lengths, several crucial questions arise: (1)
Since the performance of attention based KT models notably
drops on longer sequences, how can we maintain consistent
and stable prediction performance across student interaction
sequences of varying lengths? (2) Due to the fact that the
questions and their associated KCs may contain intricate re-
lationships, how can we effectively capture such complex and
structural relationships?

In this work we address the above issues by introducing a
novel KT model, i.e., stableKT that

• is able to learn from short sequences and maintain stable
and consistent performance when generalizing on long
sequences by biasing query-key attention scores with
penalties that are proportional to query-key distances.

• captures complex relationships between questions and
their associated KCs by computing their similarities us-

1A knowledge component (KC) is a generalization of everyday
terms like concept, principle, fact, or skill.

ing the depth of their lowest common ancestor in a hier-
archy.

• supports accurate estimations of student knowledge state
and response predictions.

Our stableKT model builds upon the standard simpleKT
model and enhances its length generalization with linear bi-
ases applied to attention scores. It utilizes multi-head aggre-
gation module to capture individual differences and complex
hierarchical relationships. To ensure fair comparisons with
recently developed deep learning based KT (DLKT) mod-
els, we choose to follow a publicly available standardized KT
task evaluation protocol [Liu et al., 2022]. We conduct com-
prehensive and rigorous experiments on three public datasets,
and the results show that our stableKT model is able to greatly
enhance the length generalization and improve the prediction
performance in terms of AUC.

2 Background and Related Works
2.1 SimpleKT
The simpleKT is a popular and widely used KT baseline
model that captures question-specific variations of the indi-
vidual differences among questions covering the same set
of KCs [Liu et al., 2023b]. It utilizes the standard dot-
product attention function to simplify the sophisticated stu-
dent knowledge state estimation. The definitions of the sim-
pleKT model are as follows:
(xt,yt) = InteractionEncoder(qt, ct, rt)

Q = xt+1;K = {x1, · · · ,xt};V = {y1, · · · ,yt}
ht+1 = SelfAttention(Q,K,V)

r̂t+1 = PredictionLayer(ht+1,xt+1)

where qt, ct, rt represent question, KC and response respec-
tively at the (t)-th time step. The InteractionEncoder is an
encoder that characterizes the latent factor of question dif-
ficulty. r̂t+1 and ht+1 denote prediction result and the ex-
tracted knowledge state respectively at the (t+1)-th time step.
The PredictionLayer is a two-layer fully connected network.

2.2 Related Works
Attention Based KT Models
Attention based KT models utilize attention mechanisms to
capture relationships among student interactions. SAKT is
the first research work that adopted a self-attention network
to predict students’ future performance [Pandey and Karypis,
2019]. Since then, many KT models use attention based
network to capture the potential relationships between stu-
dent interactions. Ghosh et al. proposed a monotonic at-
tention mechanism, building upon the dot-product attention
function, which computes attention weights with exponential
time-related decay [Ghosh et al., 2020]. Huang et al. incor-
porated a k-selection module designed to choose relevant his-
torical interactions based on the highest dot-product attention
scores [Huang et al., 2023]. Im et al. represented forgetting
behaviors as linear biases in their approach [Im et al., 2023].
Yin et al. designed a temporal and cumulative attention to di-
agnose students’ knowledge proficiency from each question
mastery state [Yin et al., 2023].
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Length Generalization
The capability of length generalization allows a KT model
to continue performing well as the length of student in-
teraction sequences increases beyond the length of interac-
tion sequences on which the KT model is trained. Posi-
tion embedding plays an important role in length general-
ization [Press et al., 2022; Chi et al., 2023; Qin et al.,
2024]. Sinusoidal position embedding employs sinusoidal
functions with either non-learned or learnable parameters
to generate position embedding and combines the position
embedding with input embeddings [Vaswani et al., 2017;
Jacob et al., 2019]. Different from Sinusoidal position em-
bedding, Rotary position embedding computes embedding by
sinusoidal functions with queries and keys instead of input
embedding [Su et al., 2021]. T5 position embedding pro-
vides position embedding by adding a learned, shared bias to
each query-key score before the softmax operation of atten-
tion [Raffel et al., 2020].

However, the KT models utilizing the above position em-
beddings both experience performance drops at prediction
stage when applied to longer sequences. Inspired by [Press
et al., 2022], we enhance the length generalization of our
stableKT model by biasing query-key attention scores with
penalties that are proportional to query-key distance. Addi-
tionally, different from existing attention based KT models,
our stableKT model designs a multi-head aggregation mod-
ule that combines dot-product attention and hyperbolic atten-
tion to capture a more complex relationship between ques-
tions and their associated KCs.

3 The StableKT Framework
3.1 Problem Definition
Our objective is to develop a KT model M that is able
to learn from short student interaction sequences and main-
tain high prediction performance when applied on longer se-
quences. We refer to this as the length generalization of KT
model, which is defined as follows:

Definition 1 (Length Generalization of KT Model). Given a
student interaction dataset D, a KT model M, if for any lp
that lp > lt, there is,

|aucp(M,D)− auct(M,D)|
auct(M,D)

< ϵ

then KT model M is considered to have the capability of
the length generalization, where aucp and auct denote the
AUC scores on sequences with length lp and lt on prediction
and training sequences respectively and ϵ is a small positive
constant.

3.2 The Framework Overview
In this section, we present the framework overview of our
stableKT model (Shown in Figure 2) that consists of five
components: (1) interaction encoding module that explicitly
uses a scalar to characterize the latent factor of question diffi-
culty (See Section 3.3); (2) hyperbolic attention module that
captures complex relationships between questions and their
associated KCs (See Section 3.4); (3) length generalization

module that enhances KT model prediction performance on
longer sequences (See Section 3.5); (4) multi-head aggrega-
tion module that utilizes both the hierarchy-aware similarity
score and the standard dot-product attention score (See Sec-
tion 3.6); and (5) prediction module that uses a two-layer fully
connected network to make prediction (See Section 3.7).

3.3 Interaction Encoding Module
Due to the fact that there are various difficulty levels between
questions covering the same set of KCs, it is crucial to ef-
fectively represent student interactions. Similar to simpleKT
[Liu et al., 2023b], we encode the interactions as follows:

zct
= Wc · ect

; art
= Wr · ert

xt = zct
⊕ fqt

⊙ vct
; yt = zct

⊕ art

where zct and art denote the latent representations of KC
ct and student response rt on question qt. ect and ert rep-
resent the original s-dimensional and 2-dimensional one-hot
vectors of the corresponding KC and response respectively.
Wc ∈ Rd×s and Wr ∈ Rd×2 are learnable linear transfor-
mation operations. xt denotes the augmented embedding of
KC ct with difficulty vector fqt

. vct
represents the question-

centric variation of qt covering this KC ct. qt denotes the
question answered at the (t)-th timestamp. yt represents the
embedding of interaction with response rt. ⊙ and ⊕ repre-
sent the element-wise product and addition operators respec-
tively.

3.4 Hyperbolic Attention Module
Existing attention based KT models mostly employ the dot-
product attention function to capture relationships between
questions and their associated KCs in Euclidean space. The
attention scores Sdot of dot-product attention are calculated
by taking the inner product of query Q and key K as:

Sdot =
QKT

√
d

where
√
d is a scaling factor and the KT represents the trans-

pose of K.
However, in real-world educational datasets, there exists a

tree-like hierarchical relationship between questions and their
associated KCs, which is a challenge to capture using dot-
product attention in Euclidean space. Following the previous
work of [Yu et al., 2023; Tseng et al., 2023], we measure
a hierarchy-aware similarity score of query Q and key K in
hyperbolic space that is well-suited for embedding tree-like
structures. Intuitively, the radius of a hyperbolic ball is di-
rectly proportional to its volume, which grows exponentially.
Similarly, the number of leaves grows exponentially with re-
spect to depth in a tree.

Hyperbolic Mapping
Since the hyperbolic space cannot be isometrically embed-
ded into Euclidean space, similar to [Gulcehre et al., 2019;
Tseng et al., 2023], in this work we use the Poincaré half-
space model to represent the hyperbolic space by a subset
of Euclidean space. In the hyperbolic space represented by
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Figure 2: The overview of the proposed stableKT framework.

Poincaré half-space model, ideal points, points at infinity and
geodesics2 all have particularly nice Euclidean forms and de-
tails can be found at [Gulcehre et al., 2019; Yu et al., 2023;
Tseng et al., 2023].

Here, we discuss mappings of student interactions from
Euclidean space to the hyperbolic space. Specifically, let Xd

be the last dimension of X and X[:−1] be the first d − 1 di-
mensions of X. Similar to [Tseng et al., 2023], we transform
the query Q and key K matrices in the standard dot-product
attention via the penumbral mapping function defined as fol-
lows:

Ψ(X)[:−1] = X[:−1]
α

1 + exp (−Xd)

Ψ(X)d =
α

1 + exp (−Xd)

where α is the mapping coefficient. Therefore, we obtain the
mapped query matrix Q̂ and key matrix K̂ in the hyperbolic
space, i.e.,

Q̂ = [Ψ(Q)[:−1]; Ψ(Q)d]; K̂ = [Ψ(K)[:−1]; Ψ(K)d]

Similarity in Hyperbolic Space
In the hyperbolic space, the similarity between two data
points reflects their hierarchical relationships. More specif-
ically, we associate two points by the depth of their lowest
common ancestor (LCA) in the cone partial ordering in hy-
perbolic cones, which is analogous to finding their LCA in
a latent tree and captures how divergent two points are. We
compute the attention scores in the hyperbolic space follow-
ing the penumbral attention definition defined in [Tseng et al.,
2023]. In particular, if Equation (1) holds true, as follows:

(∥∥Ψ(Q)[:−1] −Ψ(K)[:−1]

∥∥−
√

α2 −Ψ(Q)2d

)2

+Ψ(K)2d < α2 (1)

the hierarchy-aware similarity score Shyp in hyperbolic space
is computed by:

u =

√
α2 −Ψ(Q)2d +

√
α2 −Ψ(K)2d −

∥∥Ψ(Q)[:−1] −Ψ(K)[:−1]

∥∥
2

Shyp = exp(−γmax
(
Ψ(Q)d,Ψ(K)d,

√
α2 − u2

)
)

2The shortest path between two points.

where γ is a scaling coefficient and ∥·∥ denotes the L2-norm
distance. If Equation (1) does not hold true, the hierarchy-
aware similarity score Shyp is computed by:

v =

∥∥Ψ(Q)[:−1] −Ψ(K)[:−1]

∥∥2 +Ψ(Q)2d −Ψ(K)2d
2
∥∥Ψ(Q)[:−1] −Ψ(K)[:−1]

∥∥
Shyp = exp(−γ

√
v2 +Ψ(K)2d)

3.5 Length Generalization Module
To help stableKT continue performing well as the number
of student interactions increases, inspired by [Press et al.,
2022], we design a length generalization module that penal-
izes query-key attention scores with linear biases. Specif-
ically, the linear biases implicitly contain relative position
information of student interaction sequences by leveraging
query-key distance in a computationally friendly way, which
does not include learnable parameters and can avoid attention
based KT model overfitting the position embeddings during
training. We formulate the length generalization module g as
follows:

g(S,B,C) = Softmax{(S⊕B)⊙C} (2)

where the matrices S, B and C denote attention scores (from
either hyperbolic attention module or dot-product attention
module), linear biases and causal mask respectively. The
Softmax{·} represents softmax function.

The matrix B in Equation (2) penalizes attention scores
with linear biases. Each element of matrix B is computed by:

bmn = −|m− n| · 2−8 i
H

where bmn denotes the element at the (m)-th row and (n)-th
column of matrix B. The 2−8 i

H denotes a coefficient that
adjusts the attention scores for the (i)-th attention head out of
H attention heads.

The matrix C in Equation (2) ensures that attention based
KT models cannot peek the future interaction sequences of
students. Each element of matrix C is computed by:

cmn =

{
1, m ≥ n

0, otherwise

where cmn denotes the element at the (m)-th row and (n)-th
column of C.
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3.6 Multi-head Aggregation Module
To effectively capture the intricate relationships between
questions and their KCs, inspired by [Pan et al., 2022;
Wang et al., 2023; Li et al., 2023], we design a multi-head
aggregation module by concatenating dot-product attention
head Hdot and hyperbolic attention head Hhyp:

H
(i)
dot = g(Sdot,B,C) ·V

H
(j)
hyp = g(Shyp,B,C) ·V

ht+1 = Concat({H(i)
dot}, {H

(j)
hyp}) ·Wh

where H
(i)
dot and H

(j)
hyp denote the (i)-th dot-product attention

head and the (j)-th hyperbolic attention head respectively. V
represents the value of attention. Wh ∈ Rd×s is a learnable
linear transformation operation.

3.7 Prediction Module
We use a two-layer fully connected network to make predic-
tion and optimize the prediction function by minimizing the
binary cross-entropy loss between the ground-truth response
rt+1 and the prediction probability r̂t+1 as follows:

r̂t+1 = σ(ϕ(W2 · ϕ(W1 · [ht+1;xt+1] + b1) + b2))

L = −
∑
t

(rt+1 · log r̂t+1 + (1− rt+1) · log(1− r̂t+1))

where σ, ϕ denote Sigmoid and ReLU function. b1, b2, W1,
W2 are trainable parameters.

4 Experiments
We present the details of our experiment settings and the cor-
responding results in this section. We conduct comprehen-
sive analyses and investigations to illustrate the effectiveness
of our stableKT model.

4.1 Datasets
We select three public real-world educational datasets to eval-
uate the effectiveness of our model.

• Algebra 2005-2006 (AL2005)3: The AL2005 dataset
stems from KDD Cup 2010 EDM Challenge which in-
cludes 13-14 year-old students’ interactions with Al-
gebra questions. It has detailed step-level student re-
sponses to the mathematical problem. In our experi-
ments, we use the concatenation of the problem name
and step name as a unique question.

• Bridge to Algebra 2006-2007 (BD2006)3: The BD20-
06 dataset, similar to AL2005 dataset, consists of math-
ematical problems from logs of students’ interactions
with intelligent tutoring systems. The unique question
construction of BD2006 dataset is similar to AL2005
dataset.

3https://pslcdatashop.web.cmu.edu/KDDCup

• NeurIPS2020 Education Challenge (NIPS34)4: The NI-
PS34 dataset is provided by NeurIPS 2020 Education
Challenge. We use the dataset of Task 3 & Task 4 to
evaluate our models. It contains students’ answers to
mathematics questions from Eedi which millions of stu-
dents interact with daily around the globe.

To ensure reproducibility in our experiments, we rigor-
ously follow the data pre-processing steps suggested in [Liu
et al., 2022]. We filter out student sequences that are shorter
than 3 interactions. Data statistics are summarized in Table 1.

Dataset # of interactions # of students # questions # of KCs
AL2005 607,021 574 173,113 112
BD2006 1,817,458 1,145 129,263 493
NIPS34 1,382,678 4,918 948 57

Table 1: Data statistics of three widely used datasets.

4.2 Baselines
We compare our stableKT model with the following state-
of-the-art DLKT models to evaluate the effectiveness of our
approach:

• DKT [Piech et al., 2015] uses a LSTM layer to en-
code the students’ knowledge state for predicting their
response performances.

• DKVMN [Zhang et al., 2017] exploits two memory net-
works to extract the relationships between different KCs
and students’ knowledge states.

• GKT [Nakagawa et al., 2019] casts the knowledge struc-
ture as a graph and reformulates the KT task as a time
series node-level classification problem via a graph neu-
ral network.

• SAKT [Pandey and Karypis, 2019] leverages a self-
attention mechanism to capture the relationships be-
tween question and KCs. It employs question embed-
dings as queries and utilizes interaction embeddings as
both keys and values.

• SAINT [Choi et al., 2020] employs a Transformer-based
encoder-decoder architecture to handle students’ ques-
tion and response sequences.

• AKT [Ghosh et al., 2020] introduces a monotonic at-
tention to enhance self-attention by considering the stu-
dents’ forgetting behaviors.

• ATKT [Guo et al., 2021] exploits adversarial perturba-
tions to the interaction embeddings to enhance robust-
ness of the model.

• LPKT [Shen et al., 2021] uses a learning gate to dis-
tinguish students’ absorptive capacity of knowledge and
forgetting gate to model the decline of students’ knowl-
edge over time.

• simpleKT [Liu et al., 2023b] uses dot-product attention
to extract the time-aware information embedded in stu-
dent learning interactions.

4https://eedi.com/projects/neurips-education-challenge
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• DKT-AT [Liu et al., 2023a] performs two auxiliary
learning tasks, including question tagging prediction and
individualized prior knowledge prediction task, to en-
hance the predictive capability of DKT.

• sparseKT [Huang et al., 2023] incorporates a k-select-
ion module to select relevant historical interactions with
the highest attention scores to improve the robustness of
attention based KT models.

• FoLiBiKT [Im et al., 2023] is an attention based KT
model that represents forgetting behaviors as linear bi-
ases decoupled from the question correlation.

• DTransformer [Yin et al., 2023] exploits a two-level
framework to explicitly diagnose learner’s knowledge
states and increase stability of knowledge state diagnosis
by contrastive learning.

4.3 Experimental Setting
To evaluate the length generalization of KT models, all mod-
els are trained on student interaction sequences with the fixed
length of 200 and evaluated on sequences with the length of
200, 400, 600, 800 and 1000, respectively. We perform stan-
dard 5-fold cross-validation for every combination of models
and datasets. We choose to use early stopping when the per-
formance is not improved after 10 epochs. For each hyper-
parameter combination, we use the Adam optimizer to train
the models up to 200 epochs. We adopt the Bayesian search
method to find the best hyperparameters for each fold. The
embedding dimension, the hidden state dimension, the two
dimension of the prediction layers are both set to [64, 256].
The learning rate, dropout rate and random seed are set to
[1e-3, 1e-4, 1e-5], [0.05, 0.1, 0.3, 0.5] and [42, 3407] respec-
tively. The scaling coefficient γ and mapping coefficient α
are both set to [0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 2.0, 5.0]. Sim-
ilar to existing works [Liu et al., 2022; Piech et al., 2015;
Ghosh et al., 2020], we use the AUC to evaluate the KT pre-
diction performance.

4.4 Results
Overall Performance
We report the average AUC and the standard deviations
across 5 folds. Table 2 shows the overall performance. From
Table 2, we have the following observations: (1) Our sta-
bleKT model maintains stable and consistent prediction per-
formance across different length of student interaction se-
quences in all three datasets. In comparison to sequences
of length 200, the performance of most baseline models de-
grades notably as the length of sequences increases on three
datasets. For example, simpleKT model exhibits significant
drop in performance at sequences of length 1000 compared
to sequences of length 200, reaching up to 5.55% on AL2005
dataset. This indicates that our stableKT model has the ca-
pability to generalize the well-trained KT model to students
who have long historical interaction sequences. (2) At the
same length of student sequences, our stableKT model out-
performs all the baseline models in all three datasets and im-
proves the AUC of the original simpleKT model by up to
6.93% on AL2005 dataset, 5.24% on BD2005 dataset and
1.00% on NIPS34 dataset at sequences of length 1000. This

Model Length of Interaction Sequences
200 400 600 800 1000

DKT 0.8149±0.0011 0.8150±0.0011 0.8150±0.0011 0.8149±0.0011 0.8149±0.0011
DKVMN 0.8054±0.0011 0.8039±0.0014 0.8030±0.0016 0.8025±0.0017 0.8023±0.0018

GKT 0.8110±0.0009 0.8111±0.0009 0.8111±0.0009 0.8111±0.0009 0.8111±0.0009
SAKT 0.7899±0.0036 0.6743±0.0023 0.6691±0.0030 0.6677±0.0024 0.6666±0.0018
SAINT 0.7715±0.0018 0.6691±0.0110 0.6589±0.0021 0.6539±0.0017 0.6551±0.0016
AKT 0.8306±0.0019 0.8277±0.0030 0.8258±0.0038 0.8241±0.0045 0.8227±0.0051

ATKT 0.7995±0.0023 0.7816±0.0025 0.7641±0.0039 0.7523±0.0047 0.7446±0.0050
LPKT 0.8268±0.0004 0.8216±0.0019 0.8107±0.0104 0.7990±0.0181 0.7891±0.0197

simpleKT 0.8210±0.0014 0.7808±0.0078 0.7763±0.0055 0.7535±0.0263 0.7655±0.0169
DKT-AT 0.8246±0.0019 0.8238±0.0019 0.8235±0.0019 0.8233±0.0020 0.8233±0.0020
sparseKT 0.8080±0.0030 0.7628±0.0091 0.7557±0.0082 0.7546±0.0118 0.7573±0.0090
FoLiBiKT 0.8310±0.0010 0.8288±0.0007 0.8272±0.0014 0.8256±0.0017 0.8242±0.0020

DTransformer 0.8188±0.0025 0.8156±0.0025 0.8137±0.0028 0.8123±0.0030 0.8112±0.0033

stableKT (Ours) 0.8351±0.0008 0.8349±0.0008 0.8348±0.0009 0.8348±0.0009 0.8348±0.0009

(a) Performance comparisons in terms of AUC on AL2005 dataset.

Model Length of Interaction Sequences
200 400 600 800 1000

DKT 0.8015±0.0008 0.8015±0.0008 0.8015±0.0008 0.8015±0.0008 0.8015±0.0008
DKVMN 0.7983±0.0009 0.7956±0.0009 0.7936±0.0010 0.7925±0.0012 0.7919±0.0014

GKT 0.8046±0.0008 0.8047±0.0009 0.8047±0.0009 0.8047±0.0010 0.8047±0.0010
SAKT 0.7739±0.0015 0.7097±0.0056 0.7000±0.0042 0.6987±0.0035 0.6962±0.0044
SAINT 0.7791±0.0018 0.6847±0.0035 0.6816±0.0027 0.6692±0.0037 0.6697±0.0024
AKT 0.8208±0.0007 0.8187±0.0008 0.8168±0.0010 0.8155±0.0012 0.8144±0.0014

ATKT 0.7889±0.0008 0.7641±0.0028 0.7370±0.0041 0.7142±0.0042 0.6963±0.0040
LPKT 0.8056±0.0008 0.8014±0.0021 0.7965±0.0029 0.7939±0.0031 0.7923±0.0031

simpleKT 0.8151±0.0006 0.7897±0.0046 0.7764±0.0124 0.7726±0.0090 0.7724±0.0088
DKT-AT 0.8104±0.0009 0.8098±0.0008 0.8095±0.0007 0.8092±0.0006 0.8089±0.0006
sparseKT 0.8087±0.0079 0.7518±0.0080 0.7452±0.0090 0.7277±0.0150 0.7408±0.0082
FoLiBiKT 0.8199±0.0008 0.8171±0.0007 0.8145±0.0011 0.8125±0.0016 0.8110±0.0020

DTransformer 0.8093±0.0009 0.8052±0.0020 0.8023±0.0029 0.8002±0.0035 0.7985±0.0039

stableKT (Ours) 0.8252±0.0003 0.8250±0.0003 0.8249±0.0003 0.8248±0.0003 0.8248±0.0003

(b) Performance comparisons in terms of AUC on BD2006 dataset.

Model Length of Interaction Sequences
200 400 600 800 1000

DKT 0.7689±0.0002 0.7689±0.0002 0.7689±0.0002 0.7689±0.0002 0.7689±0.0002
DKVMN 0.7673±0.0004 0.7673±0.0004 0.7673±0.0004 0.7672±0.0004 0.7672±0.0004

GKT 0.7689±0.0024 0.7689±0.0025 0.7689±0.0025 0.7689±0.0025 0.7689±0.0025
SAKT 0.7525±0.0009 0.7331±0.0013 0.7329±0.0011 0.7330±0.0011 0.7330±0.0011
SAINT 0.7895±0.0009 0.7708±0.0009 0.7703±0.0012 0.7700±0.0012 0.7700±0.0012
AKT 0.8033±0.0003 0.8030±0.0004 0.8028±0.0004 0.8028±0.0004 0.8028±0.0004

ATKT 0.7665±0.0001 0.7630±0.0005 0.7620±0.0006 0.7619±0.0006 0.7619±0.0006
LPKT 0.8004±0.0003 0.7997±0.0005 0.7993±0.0006 0.7992±0.0007 0.7992±0.0006

simpleKT 0.8035±0.0000 0.7952±0.0017 0.7961±0.0012 0.7960±0.0012 0.7960±0.0012
DKT-AT 0.7816±0.0002 0.7815±0.0002 0.7815±0.0002 0.7815±0.0002 0.7815±0.0002
sparseKT 0.8034±0.0013 0.7918±0.0021 0.7881±0.0026 0.7851±0.0029 0.7826±0.0029
FoLiBiKT 0.8032±0.0002 0.8029±0.0003 0.8028±0.0003 0.8028±0.0003 0.8028±0.0003

DTransformer 0.7994±0.0003 0.7988±0.0003 0.7985±0.0003 0.7985±0.0003 0.7985±0.0003

stableKT (Ours) 0.8059±0.0004 0.8060±0.0004 0.8060±0.0004 0.8060±0.0004 0.8060±0.0004

(c) Performance comparisons in terms of AUC on NIPS34 dataset.

Table 2: Performance comparisons in terms of AUC. The best AUCs
are in bold and the second-best AUCs are underlined.

indicates that our model can better capture complex relation-
ships between questions and their associated KCs by using
a multi-head aggregation module. (3) The DKT and GKT
do not exhibit notable performance drops among AL2005,
BD2006 and NIPS34 datasets, but they achieve far less AUC
than our model. Since these models do not rely on attention
mechanisms, they typically do not face length generalization
challenges. However, compared to our stableKT model, these
models struggle to effectively model the knowledge states of
students.

Impact on Different Position Embeddings
As mentioned in Section 2, exploiting complex position em-
beddings, such as Sinusoidal, T5 and Rotary, usually hurts at-
tention based KT models’ capability of length generalization.
We conduct experiments on our stableKT model with Sinu-
soidal, T5, Rotary and our length generalization module re-
spectively. Figure 3 shows the results of our stableKT model
with different position embeddings. From Figure 3, we have
the following observations: (1) At different lengths of stu-
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dent interaction sequences, our length generalization module
maintains stable and consistent high prediction performance
while other position embeddings exhibit notable drops in per-
formance. This indicates that our length generalization mod-
ule can effectively enhance the length generalization of KT
models than other position embeddings. (2) At the same
length of student interaction sequences, using different po-
sition embeddings also affects the prediction performance of
KT models, and our length generalization module can effec-
tively improve the prediction performance.
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Figure 3: Performance analysis with different position embeddings.

Impact on Different Attention Mechanisms
We visualize the impact on dot-product attention and hyper-
bolic attention, as shown in Figure 4 and Figure 5. From that,
we have the following observations: (1) Dot-product atten-
tion and hyperbolic attention, in Figure 4, focus on different
information of questions. For example, when predicting the
19-th question, dot-product attention emphasizes information
from questions 16, 17 and 18 while hyperbolic attention fo-
cuses on information from questions 0, 2, 3, 4, 5, 8, 13 and 18.
This indicates that our multi-head aggregation module is able
to utilize both dot-product attention and hyperbolic attention
to capture more information of questions. (2) To further ex-
plore the characteristics of questions focused by hyperbolic
attention, we visualize the questions that hyperbolic attention
focuses on when predicting the 19-th question. As shown in
Figure 5, the questions focused by hyperbolic attention, such
as 0, 2, 3, 4, 5, 8, 13 and 18, exhibit a hierarchical relation-
ship in terms of KCs, indicating that hyperbolic attention is
able to capture hierarchical relationships of student interac-
tion sequences. The Qs represents questions index and KCs
denotes the questions’ associated KCs index. The Maths[3]
represents that the index 3 of KCs is Math, similarly for oth-
ers.
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Figure 4: Visualization of both hyperbolic attention and dot-product
attention. The Question index represents questions answered by a
specific student.

Qs KCs Hierarchical Relationships of KCs

0 [3], [32], [211], [42]

2 [3], [32], [144], [204]

3 [3], [32], [144], [204]

4 [3], [32], [211], [42]

5 [3], [32], [144], [204]

8 [3], [32], [219], [37]

13 [3], [32], [144], [204]

18 [3], [32], [219], [37]

19 [3], [32], [144], [204]

Maths [3]

Number [32]

Negative
Numbers [42]

Adding and Subtracting 
Negative Numbers [211]

Basic
Arithmetic [144]

Mental Multiplication 
and Dvision [204]

Factors Multiples 
and Primes [37]

Factors and Highest 
Common Factor [219]

Figure 5: Hierarchical relationships captured by hyperbolic atten-
tion.

Ablation Study
We systematically examine the effect of two key components
in our stableKT model by constructing four model variants
in Table 3. The MA represents the multi-head aggregation
module. The LG denotes the length generalization module.
The w/o means excluding such module from stableKT model.
Please note that the stableKT w/o MA & LG is equivalent
to the vanilla simpleKT model. From Table 3, we have the
following observations: (1) Compared to other variants, sta-
bleKT model maintains stable and consistent high prediction
performance in all cases. This empirically verifies the impor-
tance of both length generalization module and multi-head
aggregation module. (2) When comparing stableKT w/o LG
to stableKT w/o MA & LG, we can observe that if the model
lacks the length generalization module, its performance no-
tably degrades as the length of sequences increases. Further-
more, the stableKT w/o MA & LG experiences more perfor-
mance drops compared to stableKT w/o LG. This indicates
that the multi-head aggregation module also has a positive
impact on length generalization.

Models Length of Interaction Sequences
200 400 600 800 1000

stableKT 0.8351±0.0008 0.8349±0.0008 0.8348±0.0009 0.8348±0.0009 0.8348±0.0009
stableKT w/o MA 0.8317±0.0010 0.8314±0.0011 0.8312±0.0011 0.8312±0.0011 0.8312±0.0011
stableKT w/o LG 0.8236±0.0036 0.7933±0.0099 0.7962±0.0087 0.7736±0.0266 0.7834±0.0140
stableKT w/o MA & LG 0.8210±0.0014 0.7808±0.0078 0.7763±0.0055 0.7535±0.0263 0.7655±0.0169

Table 3: Component analysis of stableKT model.

5 Conclusion
In this paper, we propose stableKT model to enhance
length generalization for standard attention based KT model.
Specifically, our stableKT model is able to learn from short
sequences and maintain stable performance when general-
izing on long sequences. Furthermore, we design a multi-
head aggregation module to effectively capture individual
differences and complex hierarchical relationships between
questions and their associated KCs. Experimental results
on three real-world educational datasets demonstrate that our
stableKT model has the capability of length generalization
and outperforms a wide range of state-of-the-art DLKT mod-
els in terms of AUC.
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