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Abstract
Neural simulators for modeling complex dynami-
cal systems have been extensively studied for vari-
ous real-world applications, such as weather fore-
casting, ocean current prediction, and computa-
tional fluid dynamics simulation. Although they
have demonstrated powerful fitting and predicting,
most existing models are only built to learn single-
system dynamics. Several advanced researches
have considered learning dynamics across environ-
ments, which can exploit the potential commonali-
ties among the dynamics across environments and
adapt to new environments. However, these meth-
ods still are prone to scarcity problems where per-
environment data is sparse or limited. Therefore,
we propose a novel CoNDP (Context-Informed
Neural ODE Processes) to achieve learning sys-
tem dynamics from sparse observations across en-
vironments. It can fully use contextual information
of each environment to better capture the intrin-
sic commonalities across environments and distin-
guishable differences among environments while
modeling uncertainty of system evolution, produc-
ing more accurate predictions. Intensive experi-
ments are conducted on five complex dynamical
systems in various fields. Results show that the
proposed CoNDP can achieve optimal results com-
pared with common neural simulators and state-of-
the-art cross-environmental models.

1 Introduction
The learning of dynamical systems is a fundamental task in
various scientific domains such as economics [Varian, 1981],
geophysics [Samelson and Wiggins, 2006], and epidemiol-
ogy [Galea et al., 2010]. However, traditional learning meth-
ods heavily rely on expert knowledge and may require exten-
sive computational resources, primarily due to the necessity
of solving a large number of complex differential equations
[Fu et al., 2017; Liu et al., 2021]. A popular current ap-
proach is to utilize neural networks to construct data-driven
neural simulators [Li et al., 2021; Chen et al., 2018]. These
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Figure 1: Comparison of state-of-the-art model principles for learn-
ing dynamical systems across environments. All models have two
components, i.e., a shared component (blue) and an environment-
specific component (orange). Both LEADS [Yin et al., 2021] and
CoDA [Kirchmeyer et al., 2022] are deterministic. As a comparison,
our CoNDP innovatively introduces uncertainty modeling, where
environmental parameters are generated by a random control vec-
tor (ue), enhancing the model’s generalization power.

networks can mitigate the need for expert knowledge and en-
hance computational speed [Li et al., 2021]. They have also
been successfully employed to address challenging problems
in chaotic dynamics [Linot et al., 2023] and to expedite sci-
entific discovery [Reichstein et al., 2019].

However, the majority of current neural simulators are con-
strained by the i.i.d. assumption, which fantasizes that the
observed trajectories are abundant and originate from an un-
changing environment [Yin et al., 2021]. In reality, data from
dynamical systems are influenced by various environmental
factors such as gravity, pressure, and temperature [Baradel et
al., 2020; Sanchez-Gonzalez et al., 2020], leading to the in-
adequacy and inefficiency of existing models when applied
to real-world data. While it is possible to train multiple mod-
els specific to different environments, this approach would
require a substantial amount of computational resources and
would fail to capture the potential commonalities in dynam-
ics across different environments, resulting in poor predictive
performance when the data from individual environments is
limited or sparse [Huang et al., 2023]. Consequently, learn-
ing dynamical systems across multiple environments remains
a fundamental challenge.

Currently, there are several researches exploring cross-
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environmental learning models for system dynamics [Yin et
al., 2021; Kirchmeyer et al., 2022]. As illustrated in Fig. 1,
these models utilize a shared component and an environment-
specific component to model ordinary differential equations
(ODEs) that characterize system dynamics for each environ-
ment, capturing commonalities across environments and the
distinct effects of each environment’s settings. In practical
applications, real-world data may be costly or incomplete due
to the expensive and time-consuming nature of data acqui-
sition [Huang et al., 2020], as well as the frequent occur-
rence of broken sensors or damaged memory units during
data collection [Tang et al., 2020]. However, these meth-
ods either require numerous parameters to be tuned in the
environment-specific component, necessitating a large num-
ber of environment-specific trajectories [Yin et al., 2021], or
they carry the risk of overfitting in sparse settings [Kirch-
meyer et al., 2022]. Moreover, existing methods are deter-
ministic, focusing on learning a deterministic system evolu-
tion process, even when dealing with sparse data. This is
undoubtedly suboptimal.

To tackle these challenges, we propose a novel Context-
informed Neural ODE Processes (CoNDP) to learn dynam-
ical systems from sparse observations across environments.
It innovatively introduces uncertainty modeling, where envi-
ronmental parameters are generated by a random control vec-
tor, retaining the advantage in few-shot learning (see Fig. 1).
A context-informed encoder is proposed to produce the con-
ditional distribution based on contextual information, i.e.,
p(ue|Context, ξe). The incorporation of uncertainty enables
the generation of diverse governing equations, thereby en-
hancing the model’s generalization capabilities and support-
ing learning in sparse settings. Note that the parameters in the
encoder are divided into two components, namely W c and
W e, with W e determined by a hyper network, thereby en-
dowing our model with greater expressive power to capture
the inherent commonalities across environments and distin-
guishable differences among them.

The main contributions are summarized as follows:

• We propose a novel Context-informed Neural ODE Pro-
cesses (CoNDP) to learn dynamical systems from sparse
observations across environments. To our knowledge,
this is the first work to incorporate uncertainty into
modeling cross-environmental dynamical systems to en-
hance generalization in sparse setting.

• Extensive experiments are conducted on various com-
plex dynamical systems in ecology, chemistry, and
physics, demonstrating the effectiveness of the CoNDP
with superior results compared to existing models.

2 Related Work and Problem Statement
2.1 Related Work
Learning dynamical systems for a single environment.
Neural simulators modeling system dynamics for a single en-
vironment can be broadly categorized into two groups: dis-
crete and continuous. Typical discrete neural simulators are
constructed using recurrent neural networks such as LSTM
[Hochreiter and Schmidhuber, 1997] and GRU [Cho et al.,

2014] due to the power to process sequences. These models
often integrate various prior knowledge to enhance learning,
such as antisymmetric relations [Chang et al., 2019], system
Lagrangians [Rajchakit et al., 2021], and Lyapunov stabil-
ity [Engelken et al., 2023]. However, prior knowledge re-
quires early efforts or a broad understanding of the dynam-
ical system, which is often impractical or unattainable. Ad-
ditionally, the discrete nature of these methods makes them
struggle with irregularly-sampled observations. Therefore,
continuous neural simulators, such as neural ordinary dif-
ferential equations (neural ODEs) [Chen et al., 2018], have
garnered increasing attention. It has been found that neural
ODEs can serve as powerful tools for modeling continuous
time series [Weerakody et al., 2021; Kidger et al., 2020; Mor-
rill et al., 2021] and system dynamics [Legaard et al., 2023;
Böttcher et al., 2022; Linot et al., 2023; Gupta and Lermusi-
aux, 2021], especially in latent space [Rubanova et al., 2019].
ODE-RNN [Chen et al., 2018] is a representative model that
combines neural ODE and recurrent neural networks, where
the latter is utilized to update hidden states when observations
are available. However, these methods still unrealistically as-
sume that the observed trajectories are abundant and originate
from unchanging environments, leading to ill-defined and in-
effective modeling for real-world systems.

Learning dynamical systems across environments. Cur-
rently, there have been several researches on exploring the
learning of dynamical systems across different environments
[Yin et al., 2021; Kirchmeyer et al., 2022]. LEADS is the first
attempt to address multi-environmental scenarios [Yin et al.,
2021]. It utilizes a shared component and an environment-
specific component to model ODEs that characterize system
dynamics in each environment, capturing both commonali-
ties across environments and the distinct effects of each en-
vironment’s settings as dxe

t

dt =
(
fθc + gθe

)
(xe

t , t). Here, xe
t

represents the system state at time t in environment e, while
θc and θe respectively parameterize the commonalities and
differences among environments. After the two components
are trained across multiple environments, the shared com-
ponent is frozen, and only the environment-specific compo-
nent is tuned when adapting to new environments. It directly
optimizes θe during adaptation, resulting in the need for a
large number of environment-specific trajectories [Yin et al.,
2021]. To alleviate the data scale issue, CoDA [Kirchmeyer et
al., 2022] introduces a hyper network to produce θe. During
the adaptation phase, it determines θe by tuning environment-
specific parameters ξe, where |ξe| ≪ |θe|. Consequently,
CoDA learns fewer parameters than LEADS during the adap-
tation phase, mitigating overfitting. However, these methods
are still deterministic, focusing on learning a deterministic
system evolution process. This makes it difficult to gener-
alize in sparse settings caused by expensive data acquisition
[Huang et al., 2020] or malfunctioned sensors [Tang et al.,
2020] in the real world. Therefore, we need to consider how
to generalize to sparse settings for learning dynamical sys-
tems across environments.

2.2 Problem Statement
The objective of learning dynamical systems across environ-
ments is to construct a generalized neural simulator S. This
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Figure 2: Overview of the CoNDP. Initial encoder estimates the distribution of initial latent state zt0 from xe
t0 , i.e., p(zt0 |xe

t0). The context-
informed encoder is to map the context into a conditional distribution of environment representation ue, i.e., p(ue|Context, ξe), which is
controlled by the environment-specific parameter ξe. Environment representation can be seen as a random control vector of system dynamics,
which is fed into a control net to produce the environment-specific component of the governing equation f . By sampling the initial latent
state, we can solve the initial value problem (IVP) to generate the hidden state at any time t, i.e., zt. Then, using a decoder to give the
predictive distribution.

simulator uses sparse trajectories from the past K timestamps
and the current timestamp to predict future trajectories over
1 : T timestamps for any environment e. In other words,
it aims to achieve the mapping: S(xe

t−K
, · · · ,xe

t−1
,xe

t0) →
(xe

t1 , · · · ,x
e
tT ), where the timestamps can have non-uniform

intervals and take continuous values.
We consider a dynamical system whose dynamics for en-

vironment e is governed by the following ODE:

dxe
t

dt
= fe

(
xe
t , t
)
, (1)

where xe
t ∈ Rd is system state at time t under environment

e ∈ E. The dimension of the state is denoted by d, and E
signifies the set of environments. The observed data from
a system under environment e consists of the sparse trajec-
tories De = {xe

t−K
,xe

t−K+1
, · · · ,xe

t−1
,xe

t0 ,x
e
t1 , · · · ,x

e
tT }.

We focus on learning fe based on the observed data from
multiple environments, i.e., D1, D2, · · · , D|E|, to capture fe′

for any new environment e′. This is essential for predicting
the system dynamics and achieving a generalized neural sim-
ulator. Note that we are considering two tasks: when the new
environment e′ belongs to the training environment set E, we
refer to this as the transductive task, whereas when e′ is not
in E, it is referred to as the inductive task.

3 CoNDP: Context-Informed Neural ODE
Processes

In this section, we present Context-Informed Neural ODE
Processes (CoNDP) to generalize to sparse settings for learn-
ing dynamical systems across environments.

3.1 Model Overview
An overview of the CoNDP is shown in Fig. 2. It consists of
four main components: an initial encoder that infers the ini-
tial latent states of the system; a context-informed encoder for

learning the environment representation, where the attention
weights consist of shared weights and environment-specific
weights determined by environment-specific parameters and
a hyper network; a process of solving initial value problems
in hidden space; and a decoder for predicting future system
states. Initial encoder estimates the distribution of initial la-
tent state zt0 from initial state xe

t0 , i.e., p(zt0 |xe
t0). We de-

note the historical trajectories over the past K timestamps as
Context = (xe

t−K
, · · · ,xe

t−1
). The context-informed en-

coder is to map the Context into a conditional distribution
of environmental representation ue, i.e., p(ue|Context, ξe),
which is determined by environment-specific parameters ξe

and a hyper network. The environmental representation can
be viewed as a random control vector of the system dynamics,
which is fed into a control net to produce the environment-
specific component of the governing equation f . By sampling
the initial latent state zt0 , we can solve the IVP to generate
the hidden state at any time t, i.e., zt. Then, a decoder is used
to provide the predictive distribution p(xe

1:T |zt0 ,ue). On the
contrary, all shared parameters and environment-specific pa-
rameters are learned based on the empirical error between
predicted and true values.

3.2 Model Details
We now introduce the four main components of the model.

Initial encoder. Given the initial condition xe
t0 of the dy-

namical system over environment e, the initial encoder encφi

generates a Gaussian distribution of the initial latent state, i.e.,
p(zt0 |xe

t0) = N (µz,σ
2
z). The mean and variance of the dis-

tribution are obtained from

µz,σ
2
z = encφi

(
xe
t0

)
, (2)

where φi is the learnable parameters that are updated dur-
ing the training phase. The initial latent state zt0 determines
the starting point for carrying out dynamic evolution in hid-
den space. Note that zt0 is a random vector, so it can generate
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diverse starting points in prediction. We implement encφi us-
ing a Multilayer Perception (MLP) whose output is split into
two halves to represent the mean and variance respectively.

Context-informed encoder. The evolution process of
dynamical systems is often influenced by external environ-
ments, and environmental characteristics are usually latent
and challenging to observe. We thus design an encoder to ex-
tract environmental features from data to automatically adapt
to the impact of the environment.

As in many cases, the influence of the environment features
on system evolution is often manifested in delayed effects
rather than instant behaviors [Glass et al., 2021; Smith, 2011;
Kuang, 1993; Guglielmi et al., 2022], we employ a temporal
self-attention mechanism to learn environment features from
observed trajectories by summarizing system behaviors with
different delays. This also offers better parallelization for
accelerating training speed and alleviates the gradient issues
brought by long sequences [Sankar et al., 2020]. Specifically,
we use a temporal encoding [Kazemi et al., 2020] to integrate
the time delay information.

Given historical trajectories over the past K timestamps
under environment e as Context = (xe

t−K
, · · · ,xe

t−1
), the

computation of the representation of the observation at time
tm involves conducting a weighted summation over each dif-
ferent time point tj , along with a residual connection. The
attention score is determined using a transformer-based ap-
proach [Vaswani et al., 2017] and is computed as the dot-
product of observation representations derived from value,
key, and query projection matrices. We calculate the rep-
resentation for each historical observation xe

tm , where m ∈
{−1, · · · ,−K}, as follows

h
(1)
tm = xe

tm + σ

(∑
j ̸=m

α(tj ,tm) ×Wvĥ
(0)
tj

)
,

α(tj ,tm) =
(
Wkĥ

(0)
tj

)⊤((
W c

q +W e
q

)
xe
tm

)
· 1√

d
,

ĥ
(0)
tj = xe

tj +TE(tj − tm),

(3)

where σ(·) is a non-linear activation function, the temporal
encoding TE(·) satisfying TE(∆t)2i = sin

(
∆t

100002i/d

)
, and

TE(∆t)2i+1 = cos
(

∆t
100002i/d

)
, 1 ⩽ i ⩽ d, where d is the

state dimension. Wk, Wv , W c
q , and W e

q are the parameters
in this attention layer. Here we assume the query projection
matrix is different among environments by introducing W e

q .
This enables our model to receive different attention scores
when dealing with different environments, enhancing its abil-
ity to capture the intrinsic commonalities and distinguishable
differences among environments. W e

q is determined by a hy-
per network, with its input being an environment-specific pa-
rameter ξe. This parameter can be viewed as the unobserv-
able implicit characteristic of the environment. As it exclu-
sively focuses on the differences among environments (the
commonalities are modeled with other shared parameters in
the encoder), ξe can be very low-dimensional, enabling rapid
adaptation to new environments.

Then, we can obtain the final representation of each obser-

vation based on the following attention operations

h
(l+1)
tm = h

(l)
tm + σ

(∑
j ̸=m

α(tj ,tm) ×W l
vĥ

(l)
tj

)
,

α(tj ,tm) =
(
W l

kĥ
(l)
tj

)⊤(
W l

qh
(l)
tm

)
· 1√

dh
,

ĥ
(l)
tj = h

(l)
tj +TE(tj − tm),

(4)

where l = 1, 2, · · · , L and dh is the dimension of hidden
representation. We use the output of the final attention layer
as the representation for each observation, denoted as h(L+1)

tm .
Following the computation of representations for each ob-

servation, we aggregate the entire observed trajectory into a
vector to provide conditional distribution of the environment
representation, i.e., p(ue|Context, ξe) = N (µu,σ

2
u), as

µu,σ
2
u = encφu

(
1

K

∑
tm

σ
(
(ae)⊤ĥtm ĥtm

))
, (5)

where ae = tanh
((

1
K

∑
ĥtm

)
Wa

)
is the average of obser-

vation representations with a non-linear transformation and
ĥtm = h

(L+1)
tm + TE(t), Wa is the weights, K is the num-

ber of observations for each trajectory, and encφu is imple-
mented via the MLP with trainable parameters φu. Note that
the environment representation ue is a random control vector
for generating diverse governing equations of dynamical sys-
tems, further enhancing the generalization in sparse settings.

The process of solving initial value problems. After ob-
taining two conditional distributions, namely p(zt0 |xe

t0) and
p(ue|Context, ξe), we sample an initial latent state zt0 and
an environment representation ue from these distributions.
Subsequently, we can predict the latent states at any time t
by solving an initial value problem in the latent space as

zt = zt0 +

∫ t

t0

f{θc,θe}(zτ , τ)dτ, (6)

where θc is the shared parameters across environments and
θe is environment-specific parameters generated by a control
network with parameters φm, i.e., θe = conφm

(ue).
Due to the sparsity of observed data, it becomes challeng-

ing to uniquely determine a dynamical equation and ensure
that the data reveals all (or at least most) of the features of the
environment. However, existing methods typically only learn
a deterministic dynamical process from observed data [Yin et
al., 2021; Kirchmeyer et al., 2022] and are unable to capture
the uncertainty and multiple solutions in the systems caused
by low-resource data. Fortunately, uncertainty modeling can
alleviate this issue [Norcliffe et al., 2020]. This is why we
use random vectors to model initial signals and environment
representations.

State decoder. Using latent states zt1 , zt2 , · · · , ztT and
placing a Gaussian distribution on system states, we can ob-
tain the predicted system states by employing a decoder as

µxtj
,σ2

xtj
= decφd

(ztj ), (7)

where, j = 1, 2, · · · , T and µxtj
and σ2

xtj
are the mean and

variance of the predictive distribution of system state, i.e.,
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Transductive Inductive
LV GO GS NS HEAT LV GO GS NS HEAT

(×10−5) (×10−4) (×10−4) (×10−4) (×10−2) (×10−5) (×10−4) (×10−3) (×10−4) (×10−2)
GRU 7.56 141.52 8.41 173.70 367.66 274.37 7312.40 64.62 121.24 274.42

LSTM 7.54 132.58 8.18 167.39 428.03 256.79 7286.87 70.69 118.01 274.47
Neural ODE 8.01 130.43 7.84 169.44 417.31 299.41 7435.18 64.61 118.19 278.50
ODE-RNN 7.66 138.24 8.45 170.11 384.97 282.75 7951.86 63.58 115.20 293.72

LEADS 3.75 49.96 3.34 35.23 113.30 85.12 212.31 2.46 33.02 175.49
CoDA 1.69 2.58 1.55 9.87 5.07 2.26 5.72 1.83 10.70 7.21

CoNDP 1.54 2.41 1.48 9.33 4.74 2.16 5.54 1.73 10.02 6.98
↓ 8.88% ↓ 6.59% ↓ 4.52% ↓ 5.47% ↓ 5.95% ↓ 4.42% ↓ 3.15% ↓ 5.46% ↓ 6.36% ↓ 3.19%

Table 1: The average of Mean Square Error (MSE) between predictions and ground truth from various dynamical systems across all testing
environments and sparsity levels for both transductive and inductive tasks. The best results are bolded.

p(xe
1:T |zt0 ,ue, t1:T ) = N (µxt1:T

,σ2
xt1:T

). This predictive
distribution can accommodate system noise.

3.3 CoNDP as Stochastic Process
From a probabilistic perspective, our proposed CoNDP is a
type of neural network-parameterized stochastic process for
system states. The Kolmogorov Extension Theorem states
that exchangeability and consistency conditions are sufficient
to define a stochastic process [Oksendal, 2013]. We demon-
strate that the CoNDP satisfies these conditions and present
the following proposition.
Proposition 1 CoNDP satisfies the exchangeability and con-
sistency conditions.
In other words, the stochastic processes we have established
exist, and the CoNDP is its family of finite-dimensional dis-
tributions. As a stochastic process, it should theoretically
have excellent generalization power for sparse settings. The
detailed proof can be found in supplementary material1.

3.4 Training and Adpating
Now, we introduce the overall training procedure of the
CoNDP. We randomly generate multiple environments E =
{e1, e2, ...} for a dynamical system and obtain sparse trajec-
tories through irregularly sampling observations under each
environment. These trajectories are divided into two halves
along the time, where the first half is [t−K , t−1] for learning
environment representation, and the second half, i.e., [t0, tT ],
is to predict system states. We denote the collected data as
De = {xe

t−K
,xe

t−K+1
, · · · ,xe

t−1
,xe

t0 ,x
e
t1 , · · · ,x

e
tT } for en-

vironment e. Based on observed data from multiple environ-
ments, i.e., De1 , De2 , ..., we jointly train all parts in an end-
to-end way to achieve a generalized neural simulator. Specif-
ically, following [Norcliffe et al., 2020], we learn the model
by maximizing the following variational lower bound∑

e=e1,e2,...

Eqzt0
,ue

[ ∑
0⩽i⩽T

log p(xe
ti |zt0 ,u

e, ti)

+ log
p(ue|Context, ξe)

p(ue|De \ Context, ξe)

]
,

(8)

1https://github.com/ljqjlu/CoNDP/blob/main/supp-material.pdf

where qzt0 ,u
e = p(zt0 |xe

t0)p(u
e|Context, ξe). Detailed im-

plementations, such as neural network architectures, can be
found in supplementary material.

For adaptation, we assume that a small number of sparse
trajectories are observed under the new environment e′ (not
more than 10 in experiments). To adapt to the new envi-
ronment, we freeze all the parameters of the model except
the environment-specific parameter ξe. Using the same loss
function as in the training procedure, we only tune the ξe in
the adaptation phase. After convergence, the entire model is
frozen and deployed for testing in the new environment.

4 Experiments
We test the CoNDP2 on five complex dynamical systems in
various fields to answer the following questions: 1) Can the
introduction of uncertainty improve model performance, es-
pecially in the sparse setting? 2) What factors in our model
have an impact on performance? 3) Has our model learned
appropriate environment representations and reasonable gov-
erning laws of dynamical systems?

Dynamical systems. We consider several complex dy-
namical systems: Lotka-Volterra (LV) predator-prey system
[Lotka, 1925] is to describe the dynamics of biological sys-
tems where two species interact. Glycolitic-Oscillator (GO)
system [Ruoff et al., 2003] is to describe the dynamics of
yeast glycolysis in biology. Gray-Scott (GS) [Pearson, 1993]
is a reaction-diffusion system where two chemicals react
while spreading over space, forming Turing patterns [Horváth
et al., 2009]. Navier-Stokes equation (NS) is a fluid dynamics
equation [Constantin and Foiaş, 1988] describing the wave-
form of the fluid system. The heat diffusion equation (HEAT)
describes the diffusion of thermal energy [Widder, 1976].
Different parameters in dynamical systems correspond to dif-
ferent environments.

Building training, tuning, and testing sets. For the train-
ing set, we sample Nenv

tr environments per system and N tra
tr

trajectories per environment. In addition, we sample N tra
tu

(up to 10) and N tra
te (∼ 100) trajectories per new environ-

ment for tuning and testing, respectively. A large number of
environments from each system are collected as testing en-
vironments. If the testing environments have already been

2Our code is available at https://github.com/ljqjlu/CoNDP.
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Figure 3: Comparison of predictive trajectories for a sampled unseen environment of Lotka-Volterra (LV) system under various sparsity
levels. ρtrain and ρtest denote the ratio of observed data in the training and testing sets, respectively. Due to the uncertainty of our model,
the solid line of our model is the mean of predictive trajectories, while the shaded area is twice the standard deviation approximating a 95%
confidence interval. It can be seen that our CoNDP performs best even with few observations, and as the number of observations decreases,
the uncertainty of the model increases, partially covering the truth.

Figure 4: Comparison of prediction errors under different sparsity
levels on Lotka-Volterra (LV) system.

encountered during training, the task of predicting trajecto-
ries becomes a transductive task. Otherwise, if the testing
environments are entirely new and outside the scope of the
training set, it becomes an inductive task. To evaluate the
model’s performance in a sparse setting, we randomly drop
a fraction of environments and observed points of trajectories
for the training, tuning, and testing sets. Additional details re-
garding the dynamical systems and experimental settings can
be found in the supplementary material.

Baselines. We compare our model against several rep-
resentative neural simulators for a single environment, in-
cluding discrete models such as GRU [Cho et al., 2014] and
LSTM [Hochreiter and Schmidhuber, 1997], as well as con-
tinuous models such as Neural ODE [Chen et al., 2018] and
ODE-RNN [Chen et al., 2018]. Additionally, we compare
with state-of-the-art models for learning dynamical systems
across environments, namely LEADS [Yin et al., 2021] and
CoDA [Kirchmeyer et al., 2022]. Note that both are unable
to utilize contextual historical trajectories during the testing
phase, but make predictions directly from time t0. Therefore,
we fed the context into their tuning phase to ensure fairness.

4.1 Performance Evaluation under Sparse Settings
We conducted tests on five systems under different testing en-
vironments and sparsity levels. Specifically, for each type
of task per system, we tested on 100 environments with the
ratio of observed data ranging from 4% to 100%. From Ta-

Figure 5: Ablation study and sensitivity analysis for CoNDP.

ble 1, it is evident that the models across environments signif-
icantly outperform the single environment models in all dy-
namical systems. This demonstrates that the former can ef-
fectively distinguish and utilize the commonalities across en-
vironments and environment-specific differences, leading to
better performance in sparse settings, while the latter suffers
from the i.i.d. assumption. Thanks to uncertainty modeling
and the introduction of contextual information, our CoNDP
achieves optimal results, reducing prediction errors by 3.15%
to 8.88% compared to the second-best method. The per-
formance on the inductive task is generally worse than that
on the transductive task, which also indicates that adapting
to completely new environments in sparse settings is diffi-
cult. However, our model still demonstrates generalization
power for unseen environments. Fig. 3 provides a visualiza-
tion of the predictive trajectories for a sampled unseen en-
vironment of the LV system under various sparsity levels.
We also present predictive errors at different sparsity levels
in Fig. 4. The sparse scenarios do indeed weaken model
performance. Sufficient training data enables the models
to learn the commonalities and differences among environ-
ments, thereby improving performance. And, the sparsity of
testing data makes it difficult to capture features for new envi-
ronments. Our CoNDP outperforms both LEADS and CoDA,
and the gap becomes increasingly apparent as the setting be-
comes sparser. The results for other systems are similar and
can be found in supplementary material.
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Figure 6: T-SNE visualizations of the environment-specific param-
eter ξe from LV system (a) and the environment representations ue

also from LV system (b).

4.2 Ablation Study and Sensitivity Analysis
To analyze the rationality behind our design, we conducted
two variants of the CoNDP. One variant involved our model
without the environment-specific attention weight W e

q , re-
sulting in the removal of the hyper-network and making the
attention weights shared across all environments. The other
variant was our model without both the environment-specific
component and the ODE process in latent space, directly us-
ing neural networks to calculate solutions while bypassing
the integration process. These two variants can be viewed as
modified versions of Neural Processes [Garnelo et al., 2018]
and Neural ODE Processes [Norcliffe et al., 2020], respec-
tively. We tested them on the LV system. From Fig. 5(a), it is
evident that our CoNDP outperforms the variants under var-
ious levels of sparsity, demonstrating the effectiveness of the
design of the context-informed encoder and the ODE compo-
nent. We also tested the effect of different sizes of context for
our model and provided the prediction error for the inductive
task on the LV system in Fig. 5(b). Although intuitively, a
longer length of context would better reflect the features of
the trajectories in the environments, we found that sparsity
also affects model performance, with large and irregularly-
sampled intervals making it difficult to obtain obvious fea-
tures. Empirically, we observed that model performance was
already satisfactory when the context size was around 30.
Thus, the size of the context was set to 30 in our experiments.

4.3 Environment Representations
To confirm whether the context-informed encoder can acquire
reasonable environment representations and better distin-
guish the inherent commonalities and differences among en-
vironments, we visualize the optimized environment-specific
parameter ξe and the learned environment representation ue

for a variety of new testing environments by two-dimensional
projection. In terms of the optimized ξe, we observe that
they are distinguishable under different environments and are
close to each other for similar environments, as shown in
Fig. 6(a). For the learned ue, we conducted tests on the Gray-
Scott equations and only allowed the reaction rate of one
chemical to vary to form new environments. From Fig. 6(b),
we see that they are clustered within three reaction rates, in-
dicating that our model can effectively distinguish different
environments from the observed trajectories.

Figure 7: The average L1 error between the coefficients of the dis-
covered governing law and those of the true equation of LV system.
The lower the coefficient error, the closer the discovered equation is
to the truth.

4.4 Discovering Governing Law of Systems
To evaluate the capability of the CoNDP in capturing the
fundamental governing law of the system, we employed a
popular sparse symbolic regression, namely SINDy [Brun-
ton et al., 2016], to discover the governing law from the
predicted trajectories in unseen environments. However, the
relatively large and irregularly-sampled intervals in our set-
tings posed a significant challenge for symbolic regression
techniques when using the finite difference method [Perrone
and Kao, 1975] to approximate temporal derivatives. We,
thus, generated densely-sampled observations from the pre-
dictive trajectories to enable the discovery of the governing
law, which also serves to validate our model’s capacity for
temporal hyper-resolution sampling. As depicted in Fig. 7, it
becomes difficult to discover the governing law of the system
when fewer observations are provided. Our CoNDP demon-
strates the ability to discover more accurate equations com-
pared to others, particularly in sparse settings. The discovered
equations under different sparsity levels can be found in sup-
plementary material. This reveals that the adaptive attention
and probabilistic modeling offer greater flexibility in captur-
ing the essential governing law from limited observations.

5 Conclusion
In this study, we propose a novel stochastic neural simu-
lator (CoNDP) designed to learn dynamical systems across
environments, thereby overcoming the unrealistic i.i.d. as-
sumption on environments. Comprehensive experiments have
demonstrated that it outperforms several representative mod-
els designed for a single environment, as well as state-of-
the-art models focused on learning across environments. Our
analysis reveals that our model excels in distinguishing the in-
herent commonalities and differences among environments,
and the introduction of uncertainty enhances generalization
in sparse settings. Nevertheless, challenges persist in effec-
tively modeling counterfactual physical systems and integrat-
ing system control for decision-making support. Addition-
ally, the influence of different environments also exists in the
network dynamics of the real world. Addressing how to ex-
tend the model to high-dimensional network dynamics mod-
eling is an important topic for future research.
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Fantulin, and Thomas Asikis. Ai pontryagin or how
artificial neural networks learn to control dynamical
systems. Nature communications, 13(1):333, 2022.

[Brunton et al., 2016] Steven L Brunton, Joshua L Proctor,
and J Nathan Kutz. Discovering governing equations from
data by sparse identification of nonlinear dynamical sys-
tems. Proceedings of the national academy of sciences,
113(15):3932–3937, 2016.

[Chang et al., 2019] Bo Chang, Minmin Chen, Eldad Haber,
and Ed H. Chi. AntisymmetricRNN: A dynamical system
view on recurrent neural networks. In International Con-
ference on Learning Representations, 2019.

[Chen et al., 2018] Ricky TQ Chen, Yulia Rubanova, Jesse
Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. Advances in neural information pro-
cessing systems, 31, 2018.

[Cho et al., 2014] Kyunghyun Cho, Bart van Merrienboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Process-
ing (EMNLP), page 1724. Association for Computational
Linguistics, 2014.
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