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Abstract
Heart diseases rank among the leading causes of
global mortality, demonstrating a crucial need for
early diagnosis and intervention. Most traditional
electrocardiogram (ECG) based automated diagno-
sis methods are trained at population level, neglect-
ing the customization of personalized ECGs to en-
hance individual healthcare management. A poten-
tial solution to address this limitation is to employ
digital twins to simulate symptoms of diseases in
real patients. In this paper, we present an inno-
vative prospective learning approach for personal-
ized heart disease detection, which generates digi-
tal twins of healthy individuals’ anomalous ECGs
and enhances the model sensitivity to the personal-
ized symptoms. In our approach, a vector quan-
tized feature separator is proposed to locate and
isolate the disease symptom and normal segments
in ECG signals with ECG report guidance. Thus,
the ECG digital twins can simulate specific heart
diseases used to train a personalized heart disease
detection model. Experiments demonstrate that our
approach not only excels in generating high-fidelity
ECG signals but also improves personalized heart
disease detection. Moreover, our approach ensures
robust privacy protection, safeguarding patient data
in model development. The code can be found at
https://github.com/huyjj/LAVQ-Editor.

1 Introduction
Heart disease stands as a leading cause of global mortal-
ity [Roth et al., 2018]. In clinical practice, the electrocar-
diogram (ECG) is the most routinely-used tool for heart
disease detection due to its affordability, convenience, and
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non-invasiveness. However, the lengthy ECG signals (e.g.,
records that may span several hours from Holter monitors)
pose challenges for manual inspection, and cutting-edge
deep learning techniques [Li et al., 2023, Chen et al., 2020,
Chen et al., 2024] are widely employed to automatically find
anomalous signals. Nevertheless, the application of ECG sig-
nals in deep learning is constrained by high annotation costs
and data privacy concerns. In addition, given the variability
of disease symptoms among individual patients, current data-
driven deep learning approaches face challenges in ensuring
the reliability across diverse patient profiles.

An obvious solution to the data dilemma is to gener-
ate more data by deep generative networks. Deep gen-
erative networks such as generative adversarial networks
(GANs) [Goodfellow et al., 2014] and variational autoen-
coders (VAEs) [Kingma and Welling, 2013] have been used
to synthetic ECGs [Hossain et al., 2021, Chen et al., 2022].
Nevertheless, most prior researches [Golany et al., 2020,
Chen et al., 2022, Chen et al., 2021] have predominantly
concentrated on generating ECGs following population dis-
tributions, largely neglecting the creation of tailored ECGs
for individual patients. Such limitation suggests that the gen-
erated ECGs are more aptly utilized as supplementary data for
training models rather than for direct application in personal-
ized patient care within clinical practice. Digital twins are vir-
tual constructs designed to mirror real-world objects, allow-
ing for rapid and non-invasive simulation of disease progres-
sion and treatment trials [Das et al., 2023]. It also involves
preserving unique patient information to ensure that subse-
quent simulations and predictive modeling are meaningful.
To specify, the primary goal of this paper is to generate per-
sonalized ECG digital twins, thereby facilitating the individ-
ualized management of heart conditions.

We create personalized ECG digital twins by editing an
individual’s ECG signals to simulate the heart disease symp-
toms prospectively for heart disease detection improvement.
Our purpose is to ensure that the created ECG digital twins
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can assist clinicians and automated diagnosis machine learn-
ing approaches in gaining prospective insight into individual
symptoms, thereby enhancing the quality of personalized di-
agnosis. The representations of most heart diseases in ECG
signals typically exhibit locality, attributed to the different
signal wave segments reflecting conditions at specific parts on
the heart [Chen et al., 2022]. Hence, when simulating a target
disease, our approach separates the ECG features into normal
segments and disease-indicative segments guided by the tex-
tual description of the disease. The disease-indicative com-
ponents are then edited to align with the features of the tar-
get disease. In this paper, we define “disease-indicative fea-
ture” as the ECG features wherein abnormalities may mani-
fest, serving as the basis upon which clinicians rely for diag-
nosing the heart disease. Notably, distinct heart diseases may
exhibit on different disease-indicative segments.

Our proposed model comprises three components: the VQ-
Separator for text-guided separation of different segments of
the ECG, a generator employing a feature mapper to incor-
porate disease information into the ECG signals, and a dis-
criminator to discern authenticity. In the training process, we
employ ECG-text pairs from a pre-diagnosis patient whose
ECG digital twins are to be constructed (potentially healthy
or otherwise) and a reference patient already diagnosed with
a specific disease. According to the guidance of the heart
disease descriptive text, VQ-Separator picks out the disease-
indicative features from the personal normal features. Subse-
quently, we leverage the normal feature of the pre-diagnosis
patient and reference the disease-indicative feature from the
reference patient to adjust the ECGs of the pre-diagnosis pa-
tient, aligning the disease condition with that of the reference
patient. In addition, to preserve personalized characteristics
in the ECG signals, the generator not only learns to generate
edited ECGs but also possesses the capability to reconstruct
ECGs with their own disease-indicative features. The dis-
criminator is trained to discern both the validity and whether
the edited ECGs have integrated the desired disease features.
Our main contributions are summarized as follows:

• We introduce a novel prospective learning concept for
personalized heart detection by creating personalized
ECG digital twins that simulate heart disease symptoms.
This method provides prospective information to en-
hance the cognition of heart diseases, thereby improving
subsequent detection performance.

• We propose a location-aware model called LAVQ-Editor
for personalized ECG digital twins generation, which
localizes and separates personal normal features and
disease-indicative features guided by textual disease de-
scriptions. This is achieved through the novel VQ-
Separator that operates with a Disease Embedding Code-
book to precisely model the disease features.

• Empirically, our controlled experiments have demon-
strated that patients who provided prospective cognition
to the heart disease detection model via ECG digital
twins achieved significantly better diagnostic accuracy
than those who did not. Furthermore, our experiments
also validate that our methodology not only efficiently
leverages patient information but also enhances patient

privacy to a greater extent.

2 Related Work
2.1 Generative Adversarial Networks
Currently, generative adversarial networks have made
great achievements in the areas of image synthe-
sis [Karras et al., 2019], text generation [Yu et al., 2017]
and scientific discovery [Repecka et al., 2021]. In addition,
GANs have been instrumental in enabling interactive image
editing where users can provide input to guide the generation
process. For instance, GauGAN [Park et al., 2019] allowed
users to create complex scenes by painting a segmentation
map that the network converts into a photorealistic image, ef-
fectively turning sketches into detailed landscapes. Patashnik
et al. [Patashnik et al., 2021] introduced StyleCLIP, which
utilizes the capabilities of StyleGAN and CLIP to manip-
ulate images based on textual descriptions. The method is
known for its intuitive nature, allowing non-experts to make
significant, detailed changes to images using simple text
prompts. Hertz et al. [Hertz et al., 2022] presented a novel
approach that refines the interaction between text prompts
and the generated images using a cross-attention within
transformer [Vaswani et al., 2017]. This advancement allows
for more precise and localized control over the image editing
process, facilitating detailed adjustments without extensive
collateral impacts on the image. Similarly, our method
separates disease-indicative and normal features in ECGs
through text-guidance and cross-attention, and then edits the
ECG by fusing the target disease-indicative features.

2.2 Vector Quantization Based Methods
The Vector Quantized Variational Autoencoder (VQ-
VAE) [Van Den Oord et al., 2017] is a significant advance-
ment in the field of generative models, blending the concepts
of auto encoding and vector quantization to achieve impres-
sive results in data compression and generation. In VQ-VAE,
the encoder maps the input data to a discrete latent repre-
sentation using vector quantization, and the decoder recon-
structs the input data from this discrete representation. Its
ability to learn meaningful discrete representations has made
it a popular choice for tasks that require high-quality, diverse
sample generation [Esser et al., 2021, Razavi et al., 2019]. In
our work, we build a learnable Disease Embedding Codebook
for preserving disease latent space and mapping the disease-
indicative features to it by vector quantization. However, we
use only the discrete representations of the disease and the
output of the encoder for the rest to reconstruct in decoder.

2.3 Generation Methods for Electrocardiograms
Electrocardiograms (ECGs) are a cornerstone in diagnos-
ing heart diseases, yet their interpretation hinges on the
discernment of clinical physicians, placing a considerable
demand on their expertise and time. The imperative for
more streamlined and effective automated systems for ECG
analysis is driven by the need for rapid and precise heart
health assessments. Efforts have been made to create auto-
mated ECG classifiers [Baloglu et al., 2019, Li et al., 2023,
Chen et al., 2020], but they are often hampered by the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5873



VQ-Separator

VQ-Separator

Discriminator

ℒ!"#$ + ℒ%&'$

ℒ	'(

Report: sinus 
rhythm. normal ecg.

Pre-diagnosis patient

Report: QS 
complexes in v2. ST 

segments are slight…. 

Reference

normal feature

ℒ	'(

Ad
aI

N

C
on

v

Ad
aI

N

noise noise
Ad

aI
N

C
on

v

Ad
aI

N

noise noise

U
ps

am
pl

e

de
co

de
r  

bl
oc

k 2

…

de
co

de
r  

bl
oc

k 3

de
co

de
r  

bl
oc

k 9

Reconstructed ECGdecoder block1

DecoderM
ap
pe
r

Decoder

ℒ	)*+

Share Weights

ℒ!"#, +	ℒ%&',

ECG Digital Twin 

Reconstructed ECG

M
ap
pe
r

disease-indicative feature

disease-indicative feature

disease-indicative feature

normal 
feature

Figure 1: Overall framework of our LAVQ-Editor for ECG digital twin generation. Our method utilizes ECG-text pairs of the pre-diagnosis
patient and the reference patient, merging personalized normal features and disease-indicative features to create ECG digital twins represent-
ing target heart disease symptoms.

scarcity of annotated ECG data and concerns over patient
privacy. The synthesis of ECG signals emerges as a vi-
tal solution, enhancing the variety and volume of train-
ing samples while also mitigating privacy issues. Re-
cent advancements, such as SimGAN [Golany et al., 2020],
leverage Ordinary Differential Equations (ODEs) to cap-
ture cardiac dynamics and generate ECGs, whereas
methodologies like Nef-Net [Chen et al., 2021] and ME-
GAN [Chen et al., 2022] focus on the synthesis of multi-view
ECG signals grounded in cardiac electrical activity. Besides,
Chung et al. [Chung et al., 2023] introduced Auto-TTE, an
autoregressive generative model informed by clinical text re-
ports. Golany et al. [Golany and Radinsky, 2019] gener-
ated personalized heartbeats by adding constraints on patient-
relevant wave values. While existing studies often generate
entirely new ECGs using disease-related information, our ap-
proach diverges by directly editing a patient’s normal ECGs
to incorporate specific disease features instead of construct-
ing ECGs from noise.

3 Methods
The manifestation of most heart diseases in ECG signals typi-
cally exhibits localized patterns, and such information is com-
monly included in ECG reports. Our objective is to generate
ECGs with disease-specific characteristics while preserving
the patient’s individual traits according to the guidance pro-
vided in ECG reports. Refer to Figure 1, our model, LAVQ-
Editor, comprises three components: a Vector Quantized Fea-
ture Separator (VQ-Separator) with a Disease Embedding
Codebook, a generator G consisting of a feature mapper and a
decoder Gdec, and a discriminator D. Subsequently, we will

introduce each of these three components individually.

3.1 Vector Quantized Feature Separator
The role of the Vector Quantized Feature Separator is to
separate the ECG features into normal features and disease-
indicative features, guided by descriptive text. As shown in
Figure 2, we first encode the ECGs with an encoder Genc

based on 1D ResNet-34. This process can be represented as

fecg = Genc(Xecg), fecg ∈ RC×Le (1)

where Xecg is the input of normalized ECG signals. Here,
C and Le indicate the channel and the embedding dimen-
sions, respectively. In practice, clinicians detect heart dis-
eases by recognizing the disease-specific characteristics and
properties of ECG signals, and document a rich source of in-
formation in the report. Inspired by [Li et al., 2023], we en-
code the ECG report texts with a pre-trained ClinicalBERT
Gtext [Alsentzer et al., 2019], which is frozen in the training
process. We further use a linear layer to compress ftext to
one dimension. Formally, the process can be formulated by

ftext = Linear(Gtext(Xtext)), ftext ∈ RLt (2)

where Xtext is the descriptive text of the input ECG signals
and Lt indicate the embedding dimensions.

Here we utilize the textual feature to guide the
separation of features in ECG signals through cross-
attention [Hou et al., 2019]. Specifically, full ECG feature
fecg is refined into a query, while ftext serves as both key
and value. Then we define a criterion to determine whether
a feature segment exhibits disease symptoms, simply imple-
mented by a threshold l for the cross-attention elements. Con-
versely, element values below this threshold are recognized as
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Figure 2: Overall Structure of Vector Quantized Feature Separator.
Here, A represents the cross-attention and I represents an all-one
matrix of the same size of A. “ECGs” represent the preprocessed
input from 12-lead ECG data, and “Reports” refer to the texts of
their corresponding diagnostic reports.

the normal features. This process can be defined as

A = 1[MHCA(fecg, ftext) ≥ l], (3)

where 1[· ≥ l] binarizes the matrix elements based on
whether they are larger than the threshold l, and MHCA
means Multi-Head Cross-Attention module. The outcome
A ∈ RC×Le is a binary mask indicating the segments pre-
senting the disease symptoms.

Utilizing the vector quantization technique, we compress
and quantize the disease-indicative embedding within fecg
to remove personal information while accentuating disease
symptoms. This process involves Disease Embedding Code-
book (DEC), comprising a series of embedding vectors vk ∈
RK×L for k ∈ {1, 2, . . . ,K}, where K represents the size of
the embedding book. To isolate disease-indicative features,
we select the nearest quantized discrete feature Q(e) from
the DEC. This procedure can be represented as:

Q(e) := (argmin ∥ ei − vk ∥22 for i in C). (4)

Given that many ECG segments may not exhibit disease
symptoms, we specifically choose segments corresponding
to disease symptoms as the disease-indicative feature from
Q(e) calculated as fd = Q(e) ∗ A, where “*” denotes point-
wise multiplication. Conversely, segments devoid of disease
symptoms are selected as personal normal features from e,
computed as fp = e∗ (I−A), with I being an all-one matrix
matching A’s shape. In this way, we effectively preserve nor-
mal features to retain individual information of pre-diagnosis
patients, while leveraging feature quantization to eliminate
personal features from the reference patient to maximize the
retention of disease-related features.

Different from existing methods, our objective focuses on
retaining the quantized latent disease embeddings within the
DEC. Thus, there is no necessity to use the entirety of Q(e).
Instead, we selectively utilize only those segments identified
as disease-indicative features. This is done with a loss func-
tion defined by:

Lvq = [∥ (sg[e]−Q(e)) ∗A ∥22 + ∥ (sg[Q(e)]− e) ∗A ∥22] (5)

where sg[·] means stop-gradient and “*” indicates the point-
wise multiplication.

3.2 Generator
After obtaining disease-indicative features and personal nor-
mal features, we aim to fuse the target predicted disease-
indicative features with personal normal features in the gen-
erator. In the training process, we use the reference patient’s
disease-indicative feature f t

d as the target disease, which is
extracted in the same way as fd. Before fusion, the disease-
indicative features fd and f t

d are transformed into f̄d and
f̄ t
d by a mapper with eight sequential linear layers. Fol-

lowing [Karras et al., 2019, Chen et al., 2022], we introduce
adaptive instance normalization (AdaIN) to fuse f̄ t

d and fp in
the decoder. We first add the learnable noise embedding to the
personal normal features fp and then transform the disease-
indicative features f̄ t

d to the control vectors, and finally per-
form AdaIN to obtain f̄0

p . Subsequently, we upsample f̄0
p and

further fuse it with f̄ t
d by nine decoder blocks with AdaIN

and convolution layers, as shown in Figure 1. In each de-
coder block, the features are firstly upsampled with the near-
est neighbor interpolation approach, and we inject f̄ t

d by two
AdaIN operations.

Unlike conventional generative models, our generator is
tasked with producing not merely realistic ECGs but also with
ensuring that the synthesized ECG digital twins accurately
represent both the specific disease symptoms and the individ-
ual patient characteristics. To achieve this, we employ both
reconstruction loss and disease similarity loss to optimize the
generator. In order to accurately represent disease-indicative
features, we try to ensure ECGs associated with the same
symptoms to present similar features from DEC after process-
ing by the VQ-Separator. Hence, we constrain the generated
ECG digital twin to have target disease-indicative features by
comparing the disease-indicative features separated from the
reference ECG. Here we use the cosine similarity between the
two to design the disease similarity loss, which is formally
defined by:

fG
d , fG

p = VQ-Separator(X̂t
ecg, X

t
text), (6)

LG
sim = 1− fG

d · f t
d

∥ fG
d ∥∥ f t

d ∥
(7)

where Xt
text represents the reports of the reference ECG.

Additionally, to ensure that a maximum amount of char-
acteristics about the pre-diagnosis patient is retained during
the ECG editing process, we formulate a reconstruction loss.
We use the disease-indicative feature fd of the ECG from the
pre-diagnosis patient instead of the target disease-indicative
feature f t

d from the reference to reconstruct ECG by the gen-
erator. This process is defined as:

Lrec =∥ X̂rec
ecg −Xecg ∥2 (8)

where X̂rec
ecg means the reconstructed ECG by the generator.

In line with established generative adversarial networks, we
also employ an adversarial loss to optimize the generator, by:

LG
adv = Ez∼pz(z)(log(1 + exp(−D(G(z))))) (9)

where pz represents the distribution of the pre-diagnosis pa-
tients’ ECGs. Thus, the total optimization objective of the
generator can be represented as:

LG = LG
adv + Lrec + LG

sim + Lvq. (10)
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3.3 Discriminator
Our discriminator architecture, featuring ten blocks and two
heads, is designed for authenticity verification. In the archi-
tecture, each block contains two convolution layers with a
3-sized kernel, followed by a ReLU activation function for
non-linearity, and a Gaussian blur layer with a kernel size of
2 for feature smoothing.

The output head, responsible for verifying the authen-
ticity of the ECG, incorporates a layer of Standard Devia-
tion [Karras et al., 2019], a convolution layer and two linear
layers that finally determines the authenticity of the ECG. The
optimization objective for the discriminator also includes the
conventional discriminator loss, by:

LD
adv = Ex∼pdata(x)(log(1 + exp(−D(x))))+

Ez∼pg(z)(log(1 + exp(D(z))))
(11)

where pdata represents the distribution of the real ECGs and
pg represents the distribution of the generated ECGs.

In our study, generating realistic ECGs that precisely
capture the symptoms of specific heart diseases is also
paramount. To achieve this, we designed the disease-
indicative feature extraction head that has the similar struc-
ture with the output head, but with a key distinction in the
output size of the final linear layer. To equip the discrimi-
nator with the ability to assess disease-indicative features in
ECGs, we optimize it by maximizing the similarity between
fd extracted from the pre-diagnosis patient and fD

d extracted
from the reconstructed ECG by the disease-indicative feature
extraction head, as:

LD
sim = 1− fD

d · fd
∥ fD

d ∥∥ fd ∥
. (12)

The optimization objective of the discriminator is:

LD = LD
adv + LD

sim. (13)

4 Experiments
Our evaluation of the proposed method is organized on
three aspects: effectiveness, fidelity, and privacy secu-
rity. To assess effectiveness, we incorporate our prospec-
tive learning method into a data augmentation model for
heart disease detection. We then introduce two special-
ized evaluation metrics to measure the fidelity of our syn-
thesized ECG digital twins, drawing parallels with estab-
lished benchmarks in image generation. Additionally, we
compute the “membership inference risk” metric to as-
sess the privacy security of the generated results. Our
study includes comparisons with conventional generative
methods condition GAN [Mirza and Osindero, 2014], VQ-
VAE2 [Razavi et al., 2019], WGAN [Arjovsky et al., 2017],
StyleGAN [Karras et al., 2019], and personalized generative
method PGANs [Golany and Radinsky, 2019].

4.1 Implementation Details
In our experiments, we utilize the PTB-XL dataset, a com-
prehensive and publicly accessible collection of electrocar-
diograms, which contains 21,837 clinical 12-lead ECGs from

18,885 individuals. Accompanying each ECG is an extensive
report and a set of diagnostic labels. These labels are cate-
gorized into 5 overarching superclasses and an additional 24
subclasses. Our research strictly focuses on the superclasses,
using them as the basis for all analyses presented in this study.
Given the importance of clear disease differentiation, our ex-
periments are conducted exclusively with single-label data.
To ensure a robust test of our model’s capabilities, we se-
lected 291 patients who have both normal and disease ECG
records for testing, while allocating the remaining patients’
data for training and validation purposes.

For raw ECG data, preprocessing is performed to align
the positions. The peak detection algorithm from the Python
package NeuroKit2 is utilized to extract the indices of the R
peaks in the ECG. The segments from 100 points before the
first R peak to 100 points after the seventh R peak are ex-
tracted. These segments are then scaled proportionally to a
fixed length of 4096 points for the following experiments.

For the training process of LAVQ-Editor, we employ the
Adam optimization algorithm, with a learning rate set at
0.00001 and a weight decay of 0.001. The model undergo
a rigorous training regime spanning 500 epochs and is pro-
cessed with a batch size of 128. The threshold l is set as 0.5
in the following experiments and we provide ablation study of
the threshold in the supplements. All subsequent experiments
are executed using the PyTorch 1.9 on an NVIDIA GeForce
RTX-3090 GPU. We benchmark our method against the exist-
ing generative models tailored to accommodate the data and
maintain consistency in the training configuration to ensure
fairness in comparison.

4.2 Personalized Heart Disease Detection
To verify the utility of our method, we test whether there is a
benefit of prospective learning for personalized heart disease
detection models. We use 1D ResNet-34 and 1D GoogleNet
as the base model and compare the performance of the base
model enhanced with and without the results of different gen-
erative models. In this study, we randomly divide the pa-
tients in the test set into two even groups for a comprehensive
evaluation of our prospective learning methodology. The first
group, designed as the experimental group, is subjected to our
prospective learning approach, providing prospective cogni-
tion into the heart disease detection model. The second group
is assigned as the control group, serving as a baseline against
which the effectiveness of our methodology could be com-
pared. For every normal ECG in the experimental group of
the test set, we generate 50 ECGs with diseases and add them
to the training set. We optimize the base model by the Adam
optimizer with a learning rate of 0.001 and weight decay of
0.001, and train 256 epochs with a batch size of 64.

Evaluation at the patient level. To evaluate the perfor-
mance of our methodology for personalized heart disease de-
tection, we implement metrics of personalized accuracy, F1-
score, and Average Treatment Effect (ATE). Personalized ac-
curacy and F1-score represent the aggregate of individual pa-
tient accuracies and F1-scores, respectively. The ATE metric
is particularly insightful, quantifying the differential in ex-
pected accuracy outcomes when a specific treatment is ap-
plied across a patient cohort, as opposed to when it is with-
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Method Patient Wise ECG Wise
Accuracy(↑) F1-score(↑) ATE(↑) Accuracy(↑) F1-score(↑) AUROC(↑)

ResNet-34 w/o generator 69.13% 0.6358 0.41% 66.41% 0.5259 0.7604
ResNet-34+CGAN 70.13% 0.6309 1.09% 67.97% 0.5160 0.8332
ResNet-34+WGAN 70.94% 0.6370 0.19% 68.75% 0.5289 0.8450
ResNet-34+StyleGAN 70.62% 0.6409 0.63% 68.36% 0.4702 0.8637
ResNet-34+VQ-VAE2 69.54% 0.6124 2.14% 69.53% 0.5699 0.8193
ResNet-34+PGANs 69.67% 0.6296 1.87% 68.36% 0.4748 0.8539
ResNet-34+LAVQ-Editor(Ours) 72.21% 0.6717 5.13% 70.70% 0.5988 0.8450
GoogleNet w/o generator 67.19% 0.6088 0.48% 66.02% 0.5858 0.8474
GoogleNet+CGAN 67.90% 0.6198 1.34% 65.63% 0.5157 0.8026
GoogleNet+WGAN 67.43% 0.6217 1.66% 67.83% 0.5475 0.8710
GoogleNet+StyleGAN 67.60% 0.6136 1.28% 65.63% 0.4867 0.8011
GoogleNet+VQ-VAE2 69.73% 0.6371 1.63% 66.80% 0.5142 0.7862
GoogleNet+PGANs 69.31% 0.6234 0.25% 66.80% 0.5689 0.8578
GoogleNet+LAVQ-Editor(Ours) 70.73% 0.6500 1.94% 67.97% 0.5476 0.8605

Table 1: Evaluation of the Classification Performance of Several Base Models Trained on Augmented Training Sets Synthesized via Various
Techniques. The best performances are marked in bold.

held. Mathematically, ATE is defined as:

ATE = E[Accuracy(W = 1)−Accuracy(W = 0)], (14)

where W = 1 denotes the application of generated related
ECGs and W = 0 signifies its absence. The higher the Aver-
age Treatment Effect (ATE) score, the more the method im-
proves the average effectiveness of the diagnosis of a pre-
diagnosis patient’s disease.

As shown in Table 1, our prospective learning method cul-
minates in the most commendable patient-wise accuracy and
F1-score among all tested configurations. Regarding the ATE
metric, our method demonstrates substantial benefits, indi-
cating that the personalized ECG digital twins can signifi-
cantly bolster disease diagnosis. It is worth noting that the in-
crease in accuracy is not as marked as the enhancement seen
in ATE. This disparity is largely attributable to sample for-
getting [Toneva et al., 2019] observed in the control group,
which occurred after the augmentation of generated results
by our method. This leads to a reduction in accuracy among
the control group, thereby widening the performance gap be-
tween it and the experimental group. In clinical application,
our primary objective is to improve the diagnostic outcomes
for pre-diagnosis patients. Therefore, the decrease within the
control group is of lesser consequence.

Evaluation at the ECG level. We use traditional metrics
evaluated on ECG levels for heart disease detection models,
i.e., classification accuracy, F1-score, and Area Under the Re-
ceiver Operating Characteristic (AUROC). In the right-hand
section of Table 1, it is obvious that our method achieves the
best ECG-wise accuracy and F1-score among all evaluated
methods. While our AUROC score isn’t the highest, it still
signifies a robust ability to differentiate between classes. No-
tably, even though models like PGANs and StyleGAN regis-
ter higher AUROC scores than ours, their F1-scores are sig-
nificantly lower. As reflected in the F1-score, our method
balances both precision and recall. Therefore, these results
collectively demonstrate that our method markedly enhances
the overall efficacy of ECG analysis in the context of heart
disease detection.

Impacts of the quantity of generated ECG digital twins.
Here we conducted an experiment to validate the impact of
the quantity of generated ECG digital twins on the results.
We trained a 1D ResNet model with varying amounts of dig-
ital twins and examined the performance discrepancies. As
shown in Table 2, it is evident that increasing the quantity of
digital twins improves accuracy at both the patient and ECG
levels. However, on ATE, it appears that having more gener-
ated digital twins does not yield better results. This could be
attributed to duplicated cases introducing redundant informa-
tion, thus compromising the model’s effectiveness in captur-
ing disease-related patterns.

Data Num Patient Wise ECG Wise
Real Generated Acc(↑) F1(↑) ATE(↑) Acc(↑) F1(↑) AUROC(↑)

15553 8600 72.21% 0.6717 5.13% 70.70% 0.5988 0.8450
15553 17200 73.55% 0.6690 2.05% 70.70% 0.5919 0.8555
15553 34400 73.81% 0.6759 2.33% 71.48% 0.5392 0.8605

Table 2: The impact of the quantity of generated ECG digital twins
on performance.

4.3 Generated ECG Fidelity Evaluation
To evaluate the authenticity of the ECGs, we adapt metrics
from image generation tasks, specifically the Fréchet Incep-
tion Distance (FID) [Heusel et al., 2017] and the Inception
Score (IS) [Salimans et al., 2016], traditionally used for as-
sessing the quality of generated images. Diverging from the
conventional approach, we utilize a pre-trained 1D ResNet-
101 model instead of the Inception V3 [Szegedy et al., 2016]
as the backbone for feature extraction from ECG data. Conse-
quently, we introduce the “Fréchet ResNet Distance” (FRD)
and “ResNet Score” (RS) as our novel metrics for quanti-
fying the fidelity of ECG synthesis. Lower FRD scores are
indicative of a closer resemblance between the distribution
of generated and real ECGs, signifying a higher level of au-
thenticity in the synthesized data. As outlined in Table 3,
our method distinguishes itself among various generative ap-
proaches by achieving the lowest FRD score, markedly sur-
passing its counterparts. In terms of the RS, where higher
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Method FRD(↓) RS(↑) Precision(↑) Recall(↑) F1-Score(↑)
Real 0.3014 16.8195 - - -
CGAN 4.2389 1.7866 0.9968 0.0688 0.1287
WGAN 3.9171 1.8853 0.9000 0.2250 0.3600
StyleGAN 5.4443 1.8412 0.8969 0.0781 0.1437
VQ-VAE2 4.2539 3.5462 0.9094 0.4187 0.6240
PGANs 3.8477 2.0853 0.7781 0.4750 0.5899
Ours 1.6286 9.9771 0.8719 0.6438 0.7407

Table 3: Evaluation of the fidelity of ECGs generated by diverse
generative models. The best performances are marked in bold.

values are indicative of better performance, our method regis-
ters an impressive RS of 9.9771, significantly exceeding those
achieved by other methods. This underscores our method’s
effectiveness in closely mirroring the actual ECG distribution.

We further adopt Precision and Recall proposed by
Kynkaanniemi et al. [Kynkäänniemi et al., 2019] and the per-
formances are shown in Table 3. In addition, we also report
the comprehensive F1-score balancing the Precision and Re-
call. Evidently, our method exhibits significant advantages
in both F1-Score and Recall, suggesting that ECGs generated
by our approach ensure sample quality and provide extensive
coverage. While CGAN demonstrates superior Precision, the
markedly low Recall suggests that it generates homogeneous
ECG replicating training data.

To straightforward assess the fidelity of our model, we con-
duct a direct analysis of ECGs generated by various mod-
els, as shown in Figure 3. Overall, StyleGAN-generated
ECGs exhibit regular rhythms but suffer from excessive noise
and lack realism. ECGs produced by PGANs designed for
personalized generation, struggle with identification in wave
peak. Our method, however, not only captures the fundamen-
tal characteristics of a heartbeat but also significantly reduces
noise, thus enhancing the realism of the ECGs. Focusing on
the STTC category disease symptoms, marked by the orange
rectangles, we observe that while StyleGAN’s results promi-
nently feature T-wave inversion, it’s difficult to determine
whether this is due to noise or an actual anomaly. The out-
puts of PGANs, are also marred by considerable noise across
three leads, blurring the line between noise and real T-wave
anomalies. In sharp contrast, our approach clearly demon-
strates a significant ST segment elevation in the V3 lead, a
definitive indication of a pathological feature. This stark dis-
tinction indicates that our method generates results with great
advantages in terms of fidelity as well as accuracy of disease
characterization. In addition, we will provide more examples
in the supplements.

4.4 Privacy Security Performance
In clinical practice and machine learning development, safe-
guarding patient privacy is also important. We rigorously
assess the synthetic ECG digital twins for any risk of pres-
ence disclosure, ensuring that the information within these
digital twins is non-sensitive and cannot be linked back to
the original patient data. To assess the risk of presence dis-
closure, a scenario where an adversary could deduce the in-
clusion of specific samples in the model’s training set from
synthetic ECGs, we employ the concept of membership in-
ference risk [Shokri et al., 2017]. This type of disclosure be-
comes a potential issue when an attacker, possessing a sub-
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Figure 3: Visualization of ECG generated of STTC (ST/T Change)
category by different models. For clarity in comparison, we only use
the electrocardiogram of three leads: I, aVR, and V3.

set of target ECGs from the training set, attempts to analyze
synthetic ECGs to confirm the presence of these target sam-
ples in the training data. Given a distance threshold ϵ, the
adversary claims that a target ECG is in the real training set
if there exists at least one ECG with a distance less than the
threshold. In our experiments, we set the threshold ϵ based
on the mean value of the distance between all ECGs, which
can be expressed as ϵ = τ × mean. To compute the dis-
tance between ECGs, we first extract the ECG features using
1D ResNet-101 pretrained on training set and then compute
the Euclidean distance between the features. Finally, we use
F1-score as membership inference risk. The higher the F1-
score, the higher the risk. As shown in Figure 4, Our method
demonstrates a lower risk of presence disclosure compared
to the other methods across the most of thresholds. Notably,
although our model uses samples from the training set when
generating ECGs, our risk is still lower than other models
that do not use samples from the training set, indicating that
our model is effective in preventing presence disclosure. Ad-
ditionally, the line LAVQ-Editor(w/o VQ) shows the perfor-
mance of the model without VQ-Separator. When compared
with the full LAVQ-Editor, there is a heightened risk of pres-
ence disclosure. This suggests that the VQ-Separator effec-
tively separates the personal normal feature of the reference
patient from their disease-indicative feature, thereby enhanc-
ing privacy security.

4.5 Personal Information Retention Performance
To further demonstrate the retention of personal information
in the digital twins, we utilized t-SNE to visualize differences
between ECG digital twins created using the same reference
but for different pre-diagnosis patients. As depicted in Fig-
ure 5, “Patient1-MI” represents the reference ECG with My-
ocardial Infarction derived from Patient1, while “Patient1-MI
Digital Twin” refers to an ECG generated for Patient1’s nor-
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Figure 4: The F1-score for the membership inference risk. The hor-
izontal coordinate indicates τ , and the vertical coordinate indicates
the F1-score. The higher the F1-score, the higher the risk.

Figure 5: t-SNE visualization demonstrating the distinction between
ECG digital twins created using the same reference but for different
pre-diagnosis patients.

mal ECG using “Patient1-MI” ECG as a reference. Similarly,
“Patient2-MI Digital Twin” indicates that Patient2’s normal
ECG is used as the pre-diagnosis patient’s ECG. Figure 5
clearly shows greater overlap between the “Patient1-MI” and
“Patient1-MI Digital Twin” distributions, whereas “Patient2-
MI Digital Twin” is distinctly separated from both, highlight-
ing that the “Patient1-MI Digital Twin” successfully retains
personal information of Patient1. Remarkably, this section
prioritizes retaining personal information in pre-diagnosis pa-
tients’ ECGs. In contrast, Section 4.4 is focused on remov-
ing identifiable information from the references. The marked
similarity between “Patient1-MI” and “Patient1-MI Digital
Twin” and their pronounced distinction from “Patient2-MI
Digital Twin” exemplify this strategy effectively.

4.6 Ablation Study
In addition, we also perform ablation study to validate the
rationale of our framework. By employing Dynamic Time
Warping (DTW) [Keogh and Pazzani, 2001] which is ac-
claimed for its precision in aligning varying temporal se-
quences, we evaluate the distance between generated ECG
digital twin and the real ECGs from pre-diagnosis patients

VQ LG
sim LD

sim Lrec DTW (×103, ↓) ATE (↑)
✓ ✓ ✓ 6.664 1.24%

✓ ✓ ✓ 44.096 2.76%
✓ 12.264 1.98%
✓ ✓ 5.772 1.52%
✓ ✓ ✓ 5.519 1.35%
✓ ✓ ✓ 5.674 2.55%
✓ ✓ ✓ ✓ 5.322 5.13%

Table 4: Evaluation of the significance of different components of
the proposed framework. The best performances are marked in
bold. VQ: Vector Quantized Feature Separator; DTW: Dynamic
Time Warping; ATE: Average Treatment Effect.

with the same disease which indicates similarity to the pre-
diagnosis patients. Given that ECGs naturally differ in length
and rhythm, DTW is particularly adept at adapting these time
series to closely align their patterns, enhancing the reliabil-
ity of the comparison. As detailed in Table 4, our ablation
study results suggest that vector quantization is pivotal for the
retention of personalized disease characteristics in the heart
disease detection model. Without it, the model may produce
ECGs that closely mirror the original but fail to enhance the
detection model effectively. The implementation of both gen-
erator’s and discriminator’s disease similarity losses is instru-
mental in imbuing the generated ECGs with disease traits.
However, this narrowly focused approach comes at the ex-
pense of individualized patient information, as reflected by
the diminished ATE and high DTW observed in the third
line of Table 4. As shown in the second and third lines, re-
construction loss ensures the synthesized ECG digital twins
retain patient-specific characteristics and are not dispropor-
tionately influenced by disease features, which is crucial for
achieving lower DTW scores. In addition, the absence of ei-
ther similarity loss in the generator or discriminator results in
unstable adversarial learning dynamics, preventing the model
from reaching its optimal performance.

5 Conclusions

In this paper, we introduce a novel prospective learning
framework for creating personalized ECG digital twins that
simulate the heart conditions of diagnosed individuals. For
the purpose of realistic ECG generation, we propose a
location-aware ECG digital twin generation model based on
vector quantization, termed LAVQ-Editor. The model skill-
fully segregates and edits normal and disease-indicative fea-
tures in ECGs, preserving individual characteristics while in-
jecting target disease information. This enhances understand-
ing of personalized heart diseases prospectively while safe-
guarding privacy in model development. To the best of our
knowledge, our LAVQ-Editor is the first framework for per-
sonalized ECG digital twin generation in contrast to previous
work that only generated data at population level. The ver-
satility of our approach extends beyond diagnostics, holding
potential for application in ethically-conducted scientific re-
search, such as clinical trial simulation.
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