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Abstract
Recommender systems have been successfully ap-
plied in many applications. Nonetheless, re-
cent studies demonstrate that recommender sys-
tems are vulnerable to membership inference at-
tacks (MIAs), leading to the leakage of users’ mem-
bership privacy. However, existing MIAs relying
on shadow training suffer a large performance drop
when the attacker lacks knowledge of the training
data distribution and the model architecture of the
target recommender system. To better understand
the privacy risks of recommender systems, we pro-
pose shadow-free MIAs that directly leverage a
user’s recommendations for membership inference.
Without shadow training, the proposed attack can
conduct MIAs efficiently and effectively under a
practice scenario where the attacker is given only
black-box access to the target recommender sys-
tem. The proposed attack leverages an intuition
that the recommender system personalizes a user’s
recommendations if his historical interactions are
used by it. Thus, an attacker can infer membership
privacy by determining whether the recommenda-
tions are more similar to the interactions or the gen-
eral popular items. We conduct extensive experi-
ments on benchmark datasets across various recom-
mender systems. Remarkably, our attack achieves
far better attack accuracy with low false positive
rates than baselines while with a much lower com-
putational cost.

1 Introduction
Recommender systems aim to accurately predict and sug-
gest items or contents for users, which are widely applied in
many real-world applications [Zhang et al., 2019], such as e-
commerce sites [Zhou et al., 2018], healthcare domains [Nar-
ducci et al., 2015], and social platforms [Tang et al., 2016;
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Wu et al., 2019; Fan et al., 2019]. The success of rec-
ommender systems is largely attributed to the increasing
availability of large-scale data generated by or associated
with end users. The data often contain user profiles or be-
havioral information like age, gender, and shopping pref-
erence, thereby requiring strong protection on user privacy
in terms of many recently issued laws and regulations like
GDPR [Rosen, 2011] and CCPA [Pardau, 2018]. How-
ever, recent studies [Zhang et al., 2021; Wang et al., 2022;
Zhu et al., 2023] demonstrate that recommender systems are
vulnerable to membership inference attacks (MIAs) [Shokri
et al., 2017], where an attacker can infer the membership pri-
vacy of a user, i.e., distinguish member users whose data was
used for training the recommender system from non-member
users of the model. MIAs can directly reveal the privacy
of a user in recommender systems. For example, if an at-
tacker identifies that a user’s data has been used for training
a healthcare recommender system for treatment plans, the
attacker can infer the user is a patient with a high chance.
In addition, MIAs can be the foundations of other types of
attacks, e.g., data extraction attacks [Carlini et al., 2019;
Carlini et al., 2021]. Because of such abilities, MIAs have
been widely used for measuring the privacy risks of machine
learning models [Carlini et al., 2022; Hu et al., 2022].

To implement MIAs, a common approach is shadow train-
ing, where the attacker trains a shadow model to mimic the
behavior of the target model. Because the shadow model
is trained by the attacker, the attacker can collect the fea-
tures of members and non-members of the shadow model,
which can be used for training a binary classifier as the attack
model. Because the shadow model mimics the target model,
the attack model trained on the shadow model will also work
on the target model, which is often referred to as the attack
transferability [Salem et al., 2019]. Following the pipeline
of shadow training, existing studies on MIAs targeting rec-
ommender systems [Zhang et al., 2021; Wang et al., 2022;
Zhu et al., 2023] are highly effective in inferring whether an
individual’s data was used to train a recommender system or
not, e.g., the work in [Zhang et al., 2021] shows that MIAs
with the use of shadow training can achieve attack accuracy
near 100% against an item-based collaborative filtering rec-
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ommender system trained on the Movielens-1M dataset. As
a pre-requisite of shadow training, existing MIAs on recom-
mender systems have a key assumption that the attacker owns
the prior knowledge about the training data distribution and
the model architecture of the target model to ensure the at-
tack transferability. [Zhang et al., 2021; Wang et al., 2022;
Zhu et al., 2023]. With this assumption, the shadow model
can be expected to behave similarly to the target model. How-
ever, it is often difficult for an attacker to obtain the prior
knowledge in practice and the assumption fails to hold, since
recommender systems are usually deployed under MLaaS
(Machine Learning as a Service) environments [Ribeiro et
al., 2015] and only black-box access is available to the pub-
lic. Besides, a shadow dataset from the same distribution
of the training dataset is very difficult to satisfy completely.
While existing works [Zhang et al., 2021; Wang et al., 2022;
Zhu et al., 2023] claim their abilities to generate a shadow
dataset through querying the target model or using marginal
distributions of training data, they often simply set a part of
training dataset aside as the shadow dataset in empirical eval-
uations. In addition to this limitation, MIAs with shadow
training are computationally expensive, requiring consider-
able computational resources for training both the shadow
model and the attack model. Therefore, how to address these
two drawbacks is still a challenge in existing MIAs with
shadow training.

From a defence perspective, the above-mentioned imprac-
tical assumption may give a sense of security in recommender
systems: They can stay safe from MIAs as long as the at-
tacker does not have the assumed prior attack knowledge. In-
deed, existing works [Zhang et al., 2021; Wang et al., 2022;
Zhu et al., 2023] have tried to train a shadow model with-
out the prior attack knowledge. Instead, they make use of
a different shadow model architecture and a shadow dataset
from a different distribution, but the resultant attack model
suffers from a large performance drop, sometimes even to a
level of randomly guessing. This demonstrates failure to have
the assumption hold will disable MIAs with shadow training.
However, this sense of security is false as existing MIAs on
recommender systems fail to take the special aspects of rec-
ommender systems into consideration. Recommender sys-
tems usually recommend personalized items to members, as
their historical interactions were used for training the model.
Such personalized items, through meticulously chosen by the
recommender system, are similar to members’ historical in-
teractions. However, for non-members, recommender sys-
tems usually recommend generally popular items, because
the model has not seen their historical interactions [Sedhain
et al., 2014].

In regard of this, in this paper we propose shadow-free
MIAs without any process of shadow training with only
black-box access to the model. The attack intuition is to ex-
amine whether a user’s recommendations are more similar to
his historical interactions or general popular items. If the rec-
ommendations are more similar to historical interactions, the
attacker can infer the user as a member, and infer the user as
a non-member otherwise. The challenge here is how to ob-
tain general popular items of a recommender system, which
serves as an important reference for the similarity compari-

son. To solve this challenge, we skillfully leverage the char-
acteristics of recommender system scenarios. Specifically, an
attacker can generate an empty user account without histori-
cal interactions with the target recommender system. Then,
the attacker can collect the recommendations of the empty
user and consider them as general popular items. This imple-
mentation is easy for the attacker to achieve in practice, e.g.,
creating a new account in Amazon. Being lightweight, the
newly proposed attacks can efficiently and effectively con-
duct MIAs against recommender systems.

Our contribution is summarized as follows:

• This paper is the first to investigate shadow-free MIAs
against recommender systems. The proposed new attack
is lightweight and can effectively infer the membership pri-
vacy of a user with only black-box access to the recom-
mender system.

• Extensive experiments are conducted on three benchmark
datasets across various recommender systems and com-
pared with representative baseline attacks. Experimental
results demonstrate that the newly proposed attacks achieve
far better performance than baselines in terms of attack ef-
fectiveness, reliability, and attack efficiency.

• The source code of the shadow-free MIAs is released at
https://github.com/XiaoxiaoChi-code/shadow-free-MIAs.
git, which creates a new tool for measuring the privacy
vulnerability of recommender systems and sheds light on
the design of future defense methods.

2 Related Work
Recommender Systems. Recommender systems enrich
user experiences by predicting and suggesting items within
a vast array of content. Among various recommendation al-
gorithms [Burke, 2002; Chen et al., 2017], traditional col-
laborative filtering recommendation algorithm [Koren et al.,
2009] is the main stream, which aims to recommend items
to users based on their preferences and behaviors of other
users with similar tastes. In recent years, deep learning tech-
niques have been widely applied to recommender systems.
Advanced deep learning based recommender systems lever-
age neural networks to model complex patterns and repre-
sentations of user-item interactions. Techniques such as au-
toencoders [Sedhain et al., 2015], neural collaborative filter-
ing [He et al., 2017], recurrent neural networks [Hidasi et
al., 2015], and long short-term memory networks [Liu et al.,
2018; Zhou et al., 2019] have demonstrated significant suc-
cess in improving recommendation accuracy and addressing
challenges associated with sparse and high-dimensional data.

Membership Inference Attacks. MIAs aim to infer
whether a data sample was used to train a target model or
not. The work [Shokri et al., 2017] firstly investigates MIAs
on classification models. Later works [Hayes et al., 2017;
Song and Shmatikov, 2019; He et al., 2020; He et al., 2021]
further investigate the feasibility of MIAs on other types of
models such as image generative and segmentation models.
Given the simplicity of the definition, MIAs have been con-
sidered as a standard metric for measuring the privacy of ma-
chine learning models [Carlini et al., 2022; Ye et al., 2022;
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Song and Mittal, 2021]. A few works [Zhang et al., 2021;
Zhu et al., 2023; Wang et al., 2022] have investigated
the membership privacy risks on recommender systems and
demonstrated that MIAs are less effective if an attacker does
not know the prior knowledge of the training data distribu-
tion and the model architecture of target recommender sys-
tem. This phenomenon is reasonable because existing MIAs
rely on shadow training. Once the shadow recommender sys-
tem is not similar enough to the target one, the attack model
built on the shadow recommender system cannot transfer well
to the target one. In addition, shadow training is usually asso-
ciated with high computational costs for training the shadow
and attack models. In this paper, we fulfill this research gap
by proposing shadow-free MIAs, which can efficiently and
effectively conduct the MIAs without shadow training.

3 Methodology
In this section, we first introduce the threat model of MIAs
in recommender systems. Then, we introduce shadow-based
MIAs and analyze their limitations, which serve as a motiva-
tion for proposing more powerful and practical MIAs. Last,
we introduce our proposed method for shadow-free MIAs.

3.1 Threat Model
In this paper, we study MIAs under the black-box settings,
i.e., we assume an attacker can only query the target recom-
mender system and obtain the recommended items. Follow-
ing previous works [Zhang et al., 2021; Wang et al., 2022],
we assume the attacker has a dataset that contains users’ rat-
ings of items. This dataset can be obtained via generative
methods or crawled from the internet [Zhu et al., 2023], and
it is used for generating item features using matrix factoriza-
tion [Koren et al., 2009]. Unlike the existing works in [Zhang
et al., 2021; Wang et al., 2022], we do not assume the at-
tacker has a shadow dataset that comes from the same dis-
tribution as the training dataset of the recommender system.
In addition, we do not assume the attacker has knowledge of
the model architecture of the recommender system. In con-
trast, the availability of such knowledge is a key factor for
the success of MIAs in existing works [Zhang et al., 2021;
Wang et al., 2022] following shadow training.

3.2 Shadow-based MIAs and Their Limitations
Notations. Let Mp×q be a user-item matrix that contains p
users’ ratings of q items. Using the matrix factorization [Ko-
ren et al., 2009] technique, we can divide Mp×q into the
product of two lower dimensional matrices:

M̂p×q = Hp×l ·W l×q, (1)

by minimizing the following loss function:

min ||Mp×q − M̂p×q||2, (2)

where || · ||2 is the l-2 norm. H contains the user’s latent
factors, W T contains item’s latent factors. We denote W T =
(w1; · · · ;wq), where each wi is a l-dimensional vector and
represents the feature of an item. Let x = [x1, · · · , xm] be m
historical interactions of a user, where each xi is an item. A
recommender system is a function f(·) that takes as input the

historial interactions of a user and outputs n recommended
items Y = f(x) to the user. Specifically, Y = [y1, · · · , yn]
is a n-dimensional vector and each yi represents a recom-
mended item.
Existing Shadow-based Membership Inference. Shadow-
based MIAs aim to train a binary classifier h(·) that takes as
an input a user’s feature vector v and outputs 0 or 1:

h : V → {0, 1}, (3)
where V represents users’ feature vector space and v ∈ V ,
0 represents that the attack classifier predicts the user as a
non-member, and 1 as a member. To train the binary attack
classifier, the attacker requires to obtain the features of mem-
ber users and non-member users.

Existing shadow-based MIAs assume the attacker can have
a shadow dataset Ds that comes from the same distribution of
the training data of the target recommender system. In addi-
tion, the attacker is assumed to know the model architecture
A of the target recommender system. There are three steps
in the shadow-based MIAs: i) The attacker splits Ds into two
disjoint datasets: Dtrain

s and Dtest
s . Following the same model

architecture of A, the attacker trains a shadow model fs(·)
on Dtrain

s to mimic the behavior of the target model; ii) Af-
ter the training of fs(·), for each user’s historical interactions
x ∈ Dtrain

s , the attacker queries the shadow model and records
the corresponding recommended items Ytrain = [y1, · · · , yn].
Since the attacker has W T, the attacker can obtain a feature
vector as:

v =
1

m

m∑
m=1

wxm
− 1

n

n∑
n=1

wyn
, (4)

where v is a l-dimensional vector and wi is the corresponding
feature vector of the item i. The attacker considers such a vec-
tor as the feature vector of a user since it encodes information
on both recommendations and historical interactions. Based
on x ∈ Dtrain

s and x ∈ Dtest
s , the attacker can obtain fea-

ture vectors of member and non-member users by querying
the shadow model; iii) Since the attacker has collected fea-
tures of users in the previous step, the attacker now can train
a binary classifier using standard machine learning training
procedures. After training, the binary classifier works as an
attack model for predicting the membership status of a target
user of the target recommender system.
Limitations of Existing Attacks. There are two limitations
of existing shadow-based MIAs. First, shadow-based MIAs
can not work effectively when the target dataset is not avail-
able or when the model architecture of the target recom-
mender system is unknown. This is because, under this sce-
nario, the shadow model cannot mimic the behavior of the
target model well. Second, constructing the attack model is
relatively computationally expensive because the attacker is
required to train a shadow model and an attack model. When
both of the models are complex, following the same archi-
tecture, the attacker requires large computational resources
for training the shadow model. In Section 4.2, we demon-
strate that in some cases where the target model is a deep
learning-based recommender system, it takes a long time to
train the attack model. To solve the two limitations, we pro-
pose shadow-free MIAs: an attacker is able to efficiently and
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Recommender 
SystemEmpty profile

Recommender 
System

Query Recommend

Query Recommend

Historical interactions Recommendations

General popular items 

Target user

Created user

Attacker

Membership inference: Are the recommendations of the target user
more similar to historical interactions or the general popular items?

Figure 1: An overview of shadow-free MIAs. The attacker creates a user with an empty profile to obtain the general popular items of the
recommender system. For a target user, the attacker examines whether the recommendations of the target user are more similar to his historical
interactions or the general popular items to determine the membership status of the target user.

effectively conduct membership inference without the train-
ing of a shadow model and the requirements of the target
dataset or knowledge of the target recommender system.

3.3 Shadow-free Membership Inference
Key Intuition. Figure 1 shows an overview of shadow-free
MIAs. The key of the attack is to compare the recommen-
dations of the target user to his historical interactions and the
general popular items. A key observation is leveraged to de-
termine the membership status of a user: A member user’s
recommendations provided by the recommender system are
similar to his interactions because such interactions are used
by the recommender system to find relevant items. As de-
picted in Figure 1, if a user likes Marvel movies and his data
was used by the recommender system, it is highly likely to
recommend other Marvel movies to the user. This makes the
recommendations of a member user much more similar to the
interactions than the general popular items recommended by
the recommender system, e.g., general high-rated movies de-
picted in Figure 1. Thus, the attacker can infer a user as a
member if the recommendations are more similar to the in-
teractions than the general popular items, and infer the user
as a non-member otherwise.

Formally, there are three steps for conducting shadow-free
MIAs, described as follows:
i) Creating an Empty User. To obtain the general popular
items of the recommender system, the attacker first creates a
user account with no interactions with the recommender sys-
tem. This is not difficult to achieve in practice, e.g., the at-
tacker can easily register a new account in IMDB. Because
the attacker has black-box access to the recommender sys-
tem, the attacker can obtain n popular items using the newly
created user account. We define these popular items as:

Yp = [y1, · · · , yn]. (5)

Using the item’s latent matrix W T and each yi in Yp, the
attacker can obtain a feature vector of Yp:

vp =
1

n

n∑
n=1

wyn
. (6)

ii) Query the Recommender System. For a target user
with historical interactions X = [x1, · · · , xm], the attacker
queries the target model and obtains n recommended items.
We define these recommendations as:

Yt = [y1, · · · , yn]. (7)

Using the item’s latent matrix W T, each xi in X , and each
yi in Yt, the attacker can obtain a feature vector of X and Yt,
respectively:

vx =
1

m

m∑
m=1

wxm
, (8)

vt =
1

n

n∑
n=1

wyn . (9)

iii) Infer the Membership Privacy. To determine the
membership status of the target user, the attacker needs to
determine whether the recommendations are more similar to
the interactions or the general popular items. This can be
done by calculating the corresponding similarities and com-
paring them. Given the feature vectors vp, vx, and vt, the
attacker calculates two distances:

α1 = ||vp − vt||2, (10)

α2 = ||vx − vt||2. (11)
In the context of recommender systems, α1 represents how

close the recommendations are to the general popular items,
while α2 represents how similar the recommendations are to
the interactions of the target user. In general, a larger α rep-
resents a smaller similarity. If α1 > α2, indicating that the
recommendations are more similar to the interactions of the
target user, the attacker considers the user as a member. Oth-
erwise, the attacker considers the user as a non-member. For-
mally, the attack M(·, ·) is defined as follows:

M(α1, α2) =

{
1 if α1 > α2,

0 otherwise.
(12)

Essentially, our shadow-free MIA is metric-based MIA,
analogous to metric-based MIAs in the context of classifi-
cation models [Yeom et al., 2018; Song and Mittal, 2021]
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Target recommender systems

Attacks ICF NCF BERT4Rec Caser GRU4Rec

Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR

SF-MIAs (Ours) 0.793 0.611 0.025 0.968 0.960 0.025 0.808 0.675 0.059 0.986 0.997 0.025 0.983 0.999 0.033

ST-MIA BT 0.500 0.999 1.000 BT 0.499 0.997 1.000 GA 0.403 0.451 0.645 BA 0.500 1.000 1.000 CA 0.503 1.000 0.995
NT 0.500 1.000 1.000 IT 0.502 1.000 0.996 CA 0.493 0.982 0.997 GA 0.670 0.999 0.658 BA 0.500 1.000 1.000

DL-MIA BT 0.582 1.000 0.839 BT 0.502 1.000 1.000 GA 0.340 0.001 0.199 BA 0.930 0.860 0.124 CA 0.950 1.000 0.032
NT 0.504 1.000 0.991 IT 0.502 1.000 1.000 CA 0.868 1.000 0.266 GA 0.984 1.000 0.032 BA 0.884 1.000 0.233

Table 1: Attack accuracy, TPR, and FPR of the shadow-free MIAs (SF-MIAs) and the two attack baselines across five recommender systems
on the MovieLens-1M dataset.

where prediction vectors of data records are used for calculat-
ing metrics and the calculated metrics are then compared with
a preset threshold to determine the membership status of data
records. However, different from these metric-based MIAs,
the metric (i.e., comparing α1 with α2) in our attacks is self-
adaptive as it is calculated in a user-specific manner. Thus,
in our attacks, preset threshold is unnecessary. The self-
adaptiveness is a big advantage of our method compared to
other metric-based approaches where determining the thresh-
old value is a non-trivial job for an attacker. The technical
innovations of shadow-free MIAs bring substantial benefits
including a simplified methodology design, wide applicabil-
ity with a practical black-box assumption, improved attack
accuracy, and low computation cost.

4 Experiments
4.1 Experimental Setup
We conduct extensive experiments on three benchmark
datasets across five different recommender systems, which
include traditional recommender system and advanced deep
learning based ones. Due to page limits, the detailed descrip-
tion of datasets, dataset partition, main parameter settings
in recommender systems, detailed introduction of baselines,
baseline attack setting descriptions, and facilities utilized for
experiments are available in Appendix A.11.

Datasets. In the experiments, three benchmark datasets
are leveraged: MovieLens-1M [Harper and Konstan, 2015],
Amazon Beauty [McAuley et al., 2015], and Ta-feng 2. All
these datasets are benchmark datasets for evaluating the per-
formance of recommender systems.

Recommender Systems. We select five representative rec-
ommender systems to comprehensively evaluate our pro-
posed attacks. These recommender systems including the
traditional recommender system of the Item-based Collab-
orative Filtering (ICF) [Sarwar et al., 2001], as well as the
advanced deep learning based ones of the Neural Collabora-
tive Filtering (NCF) [He et al., 2017], BERT4Rec [Sun et al.,
2019], Caser [Tang and Wang, 2018], and GRU4Rec [Hidasi
et al., 2015]. Following previous works [Zhang et al., 2021;
Wang et al., 2022], personalized recommendation lists are
generated for existing users via recommendation algorithms

1Please refer to the version of this paper with Appendix in arXiv.
2https://www.kaggle.com/datasets/chiranjivdas09/ta-feng-

grocery-dataset

of the recommender systems. For new users, due to a lack of
their data, recommender systems recommend the most popu-
lar items to them.

Baselines. We compare the proposed shadow-free MIAs
(SF-MIAs) with two state-of-the-art attack methods: shadow-
based MIAs (ST-MIAs) [Zhang et al., 2021] and Debiasing
learning for MIAs (DL-MIAs) [Wang et al., 2022]. The two
baselines in our experiments are with the same black-box as-
sumption as our approach.

Evaluation Metrics. We evaluate MIAs from two perspec-
tives: effectiveness and efficiency. In terms of effectiveness,
since membership inference is a binary classification prob-
lem, we use accuracy to evaluate the attack performance,
which is one of the most widely used metrics in existing
studies of MIAs [Hu et al., 2022]. In addition, as suggested
by [Carlini et al., 2022] that a powerful and reliable MIA
should have a high true positive rate (TPR) at a low false pos-
itive rate (FPR), we report TPR and FPR of our attacks and
the two baselines. An attack is considered to be reliable if it
can achieve a high true positive rate at a very low false posi-
tive rate. In terms of efficiency, we record the overall compu-
tational time of the attack model of different approaches. An
attack that has a short overall computational time is consid-
ered as efficient.

Attack Settings. For baseline methods, we run experiments
against combinations of different shadow models and shadow
datasets to achieve a comprehensive and fair evaluation.

4.2 Efficacy of The Proposed Attack
Attack Effectiveness. Table 1, Table 2, and Table 3 show
attack accuracy, TPR, and FPR of our attack and the two base-
line attacks. Based on the experimental results, we can ob-
serve that: (i) In general, our proposed shadow-free MIAs
have very high attack accuracy. The accuracy scores of our
method across all attack settings are above 60%. In addition,
the accuracy of our proposed attack is above 80% across 70%
of attack settings, demonstrating the vulnerabilities of recom-
mender systems in most settings. In some cases, our attacks
achieve perfect performance with an accuracy close to 100%.
For example, in Table 1, the highest accuracy of our method
can be achieved at 98.6% when the Caser recommender sys-
tem is trained on MovieLens-1M; (ii) Our shadow-free MIAs
consistently outperform the baselines in all experimental set-
tings in Table 1 with respect to accuracy. For Table 2 and
Table 3, the accuracy of our attacks is higher than the two
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Target recommender systems

Attacks ICF NCF BERT4Rec Caser GRU4Rec

Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR

SF-MIAs (Ours) 0.815 0.630 0.000 0.620 0.241 0.000 0.693 0.386 0.000 0.727 0.453 0.000 0.923 0.845 0.000

ST-MIA BM 0.520 0.517 0.478 IM 0.571 0.602 0.461 CM 0.543 0.117 0.031 BM 0.584 0.472 0.304 CM 0.890 0.796 0.016
BT 0.330 0.636 0.976 BT 0.414 0.804 0.976 GM 0.553 0.153 0.048 GM 0.736 0.510 0.038 BM 0.673 0.633 0.287

DL-MIA BM 0.468 0.280 0.343 IM 0.503 0.938 0.933 CM 0.509 0.922 0.904 BM 0.519 0.991 0.954 CM 0.503 0.913 0.894
BT 0.498 0.007 0.010 BT 0.505 0.014 0.005 GM 0.572 0.958 0.816 GM 0.916 0.951 0.120 BM 0.346 0.314 0.623

Table 2: Attack accuracy, TPR, and FPR of the shadow-free MIAs (SF-MIAs) and the two attack baselines across five recommender systems
on the Amazon Beauty dataset.

Target recommender systems

Attacks ICF NCF BERT4Rec Caser GRU4Rec

Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR

SF-MIAs (Ours) 0.981 0.961 0.000 0.856 0.713 0.000 0.645 0.210 0.000 0.977 0.954 0.000 0.991 0.983 0.000

ST-MIA CA 0.950 0.998 0.098 GA 0.875 0.916 0.165 CA 0.579 0.244 0.087 GA 0.897 0.959 0.165 BA 0.572 1.000 0.855
BM 0.897 0.829 0.036 BM 0.673 0.381 0.036 GM 0.495 0.002 0.013 NM 0.522 0.947 0.902 BM 0.922 0.875 0.031

DL-MIA CA 0.500 1.000 1.000 GA 0.939 0.991 0.113 CA 0.499 0.999 0.999 GA 0.889 0.895 0.117 BA 0.939 0.904 0.105
BM 0.682 0.724 0.360 BM 0.947 0.993 0.099 GM 0.449 0.005 0.006 NM 0.703 0.682 0.277 BM 0.696 0.679 0.288

Table 3: Attack accuracy, TPR, and FPR of the shadow-free MIAs (SF-MIAs) and the two attack baselines across five recommender systems
on the Ta-feng dataset.

Method Shadow-free MIAs ST-MIA DL-MIA

Time cost (avg) 3.7s 128.8s (≈ 35×) 9,760s (≈ 2, 637×)

Table 4: The computational cost of shadow-free MIAs and baseline
attacks, measured by seconds. (T×) represents T times faster of the
shadow-free MIAs than the baselines.

baselines in almost 80% experimental settings. In addition,
in some cases, our attack can achieve near-perfect perfor-
mance, while the baselines have performance close to ran-
dom guess. For example, in Table 1, when NCF is trained on
MovieLens-1M, the accuracy of our attacks is 96.8%, while
the attack accuracy of baselines is nearly close to 50%. (iii)
MIAs based on shadow training (i.e., the two baselines) have
severe limitations when the attacker does not know the train-
ing data distribution and the model architecture of the target
recommender system. For example, in Table 1, the accuracy
of ST-MIA is close to 50% (random guess) in almost 80% ex-
perimental settings. For DL-MIAs, although attack accuracy
is improved in most cases, they still perform worse than our
attacks.
Takeaway 1. The proposed shadow-free MIAs are more ef-
fective than the two baselines. In most cases, the proposed
attacks achieve an attack accuracy higher than 0.8, while the
baseline attacks can only achieve performance close to ran-
dom guess with an accuracy of around 0.5.

Attack Reliability. As suggested by [Carlini et al., 2022],
a powerful and reliable MIA should have a high TPR at a low
FPR. From the experimental results in Table 1, Table 2, and
Table 3, our attack can achieve high TPRs at low FPRs close
to 0. For instance, in Table 1, when GRU4Rec is trained on
MovieLens-1M, our attack achieves a TPR of 99.9% with an
FPR of 3.3%. In Table 2, when GRU4Rec is trained on Ama-
zon Beauty, our attack achieves a TPR of 84.5% with an FPR

of 0, demonstrating that no non-member users are mistak-
enly predicted as member users. In Table 3, when the target
recommender system is ICF, NCF, Caser, and GRU4Rec, the
TPR of our attack is 96.1%, 71.3%, 95.4%, and 98.3% with
FPRs of 0. In contrast, the FPR values tend to be high for
baselines. For instance, in Table 2, when target recommender
NCF is trained on the target dataset Amazon Beauty and
shadow recommender BERT4Rec is trained on Ta-feng, ST-
MIA attack achieves a TPR of 80.4% with an FPR of 97.6%.
When the target recommender model of NCF is trained on the
target dataset Amazon Beauty, the shadow model using ICF
trained on MovieLens-1M, DL-MIA attack achieves a TPR
of 93.8% with an FPR of 93.3%. The experimental results
demonstrate that our proposed SF-MIA is more powerful and
reliable.
Takeaway 2. The shadow-free MIAs are more reliable than
baseline attacks. In most cases, the proposed attacks achieve
high TPRs with low FPRs close to 0, while the baselines have
high FPRs in most cases.

Attack Efficiency. To compare the efficiency of attack
methods, we record the overall computational time cost of
different attack methods. For each method, we select five
experimental settings to run, and the average time cost is cal-
culated. For instance, we select “(BERT., Ama.)”, “(BERT.,
Mov.)”, “(BERT., Ta.)”, “(Cas., Ama.)”, and “(Cas., Mov.)”
settings to calculate the time cost for SF-MIA. For ST-MIA
and DL-MIA, we select settings “IM” from Table 2, settings
“NT”, “IT” from Table 1, and settings “NM” and “BA” from
Table 3 as experimental settings to calculate time cost. As
we can see in Table 4, our attack method takes only about 3.7
seconds to complete the attack. In contrast, ST-MIA takes al-
most 128.8 seconds to implement the attack, and DL-MIA is
rather expensive in terms of time cost, with around 9,760 sec-
onds. This validates that our attacks are much more efficient
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compared with baseline attacks.
Takeaway 3. The shadow-free MIAs are more efficient than
baseline attacks.

4.3 Why Shadow-free MIAs Work
In shadow-free MIAs, the attacker needs to calculate and
compare two distances for a target user to determine the mem-
bership status. To understand why the proposed attacks work,
we provide a visualization of α1−α2 (see Section 3.3 for the
definition of α) for member users and non-member users in
Figure 2. In our proposed attacks, 0 essentially is the thresh-
old of α1−α2 to determine whether a target user is a member
or a non-member. We select four attack settings and calculate
the difference value between α1 and α2, i.e., α1 − α2. From
the visualization, we can see that the distributions of mem-
ber and non-member users are very different, explaining why
our proposed attacks are highly effective. Specifically, we
can observe that in the setting where GRU4Rec is trained on
Amazon Beauty, all non-members’ data is less than 0, which
means that all non-members are correctly classified, which
explains that in Table 2, the FPR of the setting is equal to 0. In
addition, the dotted line almost overlapped with the mid-line
of data distribution of member data in the setting where ICF
is trained on MovieLens-1M, which shows that shadow-free
MIA can predict about 50% of members correctly for this set-
ting. For the settings where Caser is trained on MovieLens-
1M and GRU4Rec is trained on MovieLens-1M, a high por-
tion of members are correctly classified, and less than half of
non-members are predicted as members. Due to page limits,
we provide the corresponding experimental quantity results
in Appendix A.3.

4.4 Ablation Study
We analyse how different parameters of the number of rec-
ommends and the length of items’ latent feature vectors can
influence the attack performance of the proposed attack. Due
to page limits, we present the findings from the experiments,
while providing the quantity results in Appendix A.3.

The Number of Recommendations n. We use GRU4Rec
trained on MovieLens-1M to study how the number of rec-
ommendations can influence the attack performance. We vary
the number of recommendations from 10 to 100. Experimen-
tal results show that increasing the number of recommenda-
tions slightly decreases the attack accuracy. This might be be-
cause more recommendations can add general popular items
to member users’ recommendations, making it more difficult
to distinguish member users from non-members. Nonethe-
less, the attack accuracy remains above 97.5% in all cases,
demonstrating the high effectiveness of the attack.

The Length of Vectors l. We use GRU4Rec trained on Ta-
feng to study how the length of the item feature vector can in-
fluence the attack performance. We vary the number of length
of item feature vectors from 10 to 100. Similar to the study
of the number of recommendations, the attack performance is
stable at different lengths, and the attack accuracy is all above
98%, demonstrating the high effectiveness of the attack.
Takeaway 4. The shadow-free MIAs are stable and effective
under different attack settings. The number of recommenda-

tions and the length of the item feature vector only slightly
influence the attack performance.

5 Discussion
As demonstrated in Section 4, shadow-free MIAs can infer
the membership privacy of a user efficiently and effectively.
As our attacks only need black-box access to the model, the
experimental results in this paper shed light on the vulnera-
bilities of recommender systems in leaking the membership
privacy of their member users. Two possible defenses can
be considered to mitigate MIAs. The first one is leverag-
ing differential privacy [Dwork et al., 2006], the most widely
used privacy mechanism, to train a differentially private rec-
ommender system that should not remember the details of
a specific user. For deep learning-based recommender sys-
tems, DP-SGD [Abadi et al., 2016] can be leveraged dur-
ing the training process. Another potential defense is to add
randomness to the recommendations for non-members. For
example, except for recommending general popular items to
non-member users, the recommender system can randomly
select some items from the whole recommendation lists and
add them to the final recommendations. This can make non-
member users’ recommendations similar to personalized rec-
ommendations of member users, which may make the at-
tacker mistakenly predict non-members as members, reduc-
ing the reliability of the MIAs.
Limitations. One limitation of our method is that the tar-
get recommender system leverages the popularity-based rec-
ommendation strategy to handle the cold-start problem for
new users. While this simple yet effective strategy is still a
mainstream solution [Sedhain et al., 2014], more strategies
employing the information from other sources (e.g., users’
social data [Sedhain et al., 2017]) to approximate user pref-
erence have also been proposed. We believe that the attack
principle in our method can also be applied in such a setting,
but some tweaks might be necessary. We leave this part of
research in our future work.

6 Conclusion
In this paper, we proposed shadow-free MIAs that can ef-
fectively and efficiently infer the membership privacy of a
user in recommender systems. Compared to existing works
that require training a shadow model on a shadow dataset,
our attack requires only black-box access to the target rec-
ommender system. We conduct extensive experiments on
three benchmark datasets across five recommender systems
under different attack settings. The experimental results val-
idate that our attack can efficiently and effectively achieve
high attack accuracy at a low false positive rate, which is far
better than baseline attacks. The findings in this paper shed
light on the vulnerability of recommender systems, empha-
sizing the importance of comprehensively evaluating the pri-
vacy risks of recommender systems. Two possible defenses
that can mitigate the membership privacy leakage of recom-
mender systems are discussed. We leave the evaluation of the
effectiveness of such defenses in future works.
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