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Abstract

Minimax problems have achieved success in ma-
chine learning such as adversarial training, robust
optimization, reinforcement learning. For theoret-
ical analysis, current optimal excess risk bounds,
which are composed by generalization error and
optimization error, present 1/n-rates in strongly-
convex-strongly-concave (SC-SC) settings. Exist-
ing studies mainly focus on minimax problems
with specific algorithms for optimization error,
with only a few studies on generalization perfor-
mance, which limit better excess risk bounds. In
this paper, we study the generalization bounds
measured by the gradients of primal functions us-
ing uniform localized convergence. We obtain a
sharper high probability generalization error bound
for nonconvex-strongly-concave (NC-SC) stochas-
tic minimax problems. Furthermore, we pro-
vide dimension-independent results under Polyak-
Lojasiewicz condition for the outer layer. Based on
our generalization error bound, we analyze some
popular algorithms such as empirical saddle point
(ESP), gradient descent ascent (GDA) and stochas-
tic gradient descent ascent (SGDA). We derive bet-
ter excess primal risk bounds with further reason-
able assumptions, which, to the best of our knowl-
edge, are n times faster than exist results in mini-
max problems.

1 Introduction
Modern machine learning settings such as reinforcement
learning [Du et al., 2017; Dai et al., 2018], adversarial learn-
ing [Goodfellow et al., 2016], robust optimization [Chen et
al., 2017; Namkoong and Duchi, 2017] often need to solve
minimax problems, which divide the training process into two
groups: one for minimization and one for maximization. To
solve the problems, various efficient optimization algorithms
such as gradient descent ascent (GDA), stochastic gradient
descent ascent (SGDA) have been proposed and widely used
in application.

∗Corresponding author.

In theoretical analysis, an essential issue is the excess risk,
which compares the risk of certain parameters to the Bayes
optimal parameters. The standard technique to bound excess
risk is to divide it into generalization error and optimization
error. Current optimal excess primal risk1 bounds are O(1/n)
in strongly-convex-strongly-concave (SC-SC) minimax prob-
lems, which are derived by [Li and Liu, 2021a]. In this paper,
we derive O(1/n2) excess primal risk bounds with some rea-
sonable assumptions, which is, to the best of our knowledge,
the optimal results in minimax problems.

Since excess risk can be bounded by generalization error
and optimization error, most of existing studies such as [Pala-
niappan and Bach, 2016; Hsieh et al., 2019; Lin et al., 2020;
Luo et al., 2020] were focused on iteration complexity for
certain algorithms, which only considered the optimization
error. In contrast, the generalization performance analysis
is less considered, which is an important measure to fore-
see their prediction behavior after training and limits better
excess risk bounds.

In this paper, our goal is to improve the generalization
error bounds and further derives better excess risk bounds.
We use local methods to consider variance information and
obtain a tighter generalization error bound comparing with
Rademacher complexity method [Zhang et al., 2022]. Note
that we introduce a novel “uniform localized convergence”
framework using generic chaining developed by [Xu and
Zeevi, 2020] to minimax problems which is different from
traditional local Rademacher complexity technique [Bartlett
et al., 2002].

Our contributions are summarized as follows:

• We introduce local uniform convergence using new
generic chaining techniques. Comparing with traditional
uniform convergence results in [Zhang et al., 2022], we
derive sharper generalization bounds measured by the
gradients of primal functions for NC-SC minimax prob-
lems. It provides problem independent results that can
be used in various minimax algorithms.

• Under the Polyak-Lojasiewicz condition for the outer
layer, we provide dimension-independent results and re-
move the dimension of parameters d from our general-
ization bound when the sample size n is large enough,

1Primal function is one of the common measures in minimax
problems. Please refer to Section 3 for details.
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which is, to our knowledge, the first result in minimax
problems.

• We extend our main theorems into various algorithms
such as ESP, GDA, SGDA. We gain O(1/n2) bounds
with further assumptions that the optimal population risk
is small. To our best knowledge, it is the first time to
gain O(1/n2) for PL-SC minimax problems with expec-
tation version and the first excess primal risk bounds for
O(1/n2) with high probability for SC-SC settings.

This paper is organized as follows. In Section 2, we review
the related work. In Section 3, we introduce the notations and
assumptions about the problems. Section 4 presents our im-
proved generalization error bounds. Then we apply our main
theorems into various algorithms and give sharper bounds for
different settings in Section 5. Section 6 concludes our paper.
All the proofs in our paper are given in Appendix.

2 Related Work
Minimax optimization. Minimax optimization analysis has
been widely studied in different settings. For example, one
of the most popular SGDA algorithm and its variants have
been analyzed in several recent works including [Palaniappan
and Bach, 2016; Hsieh et al., 2019] for SC-SC cases, [Nedić
and Ozdaglar, 2009; Nemirovski et al., 2009] for convex-
concave (C-C) cases, [Lin et al., 2020; Luo et al., 2020;
Yan et al., 2020; Rafique et al., 2022] for NC-SC prob-
lems, [Thekumparampil et al., 2019; Yan et al., 2020] for
nonconvex-concave (NC-C) cases and [Loizou et al., 2020;
Liu et al., 2021; Yang et al., 2020] for nonconvex-nonconcave
(NC-NC) minimax optimization problems. All these works
focus on the iteration complexity (or the gradient complexity)
of the algorithms, which only proved the optimization error
bounds for the sum of T iteration’s gradient of primal em-
pirical function in expectation. Recently [Li and Liu, 2021a;
Lei et al., 2021] gave optimization bounds with high proba-
bility for Primal-Dual risk. We notice that the optimization
error of the gradients of primal functions with high probabil-
ity haven’t been studied yet.

Algorithmic stability. Algorithmic stability is a clas-
sical approach in generalization analysis, which was pre-
sented by [Rogers and Wagner, 1978]. It gave the gen-
eralization bound by analyzing the sensitivity of a particu-
lar learning algorithm when changing one data point in the
dataset. Modern framework of stability analysis was estab-
lished by [Bousquet and Elisseeff, 2002], where they pre-
sented an important concept called uniform stability. Since
then, a lot of works based on uniform stability have emerged.
On one hand, generalization bounds with algorithmic stability
have been significantly improved by [Bousquet et al., 2020;
Feldman and Vondrak, 2018; Feldman and Vondrak, 2019;
Klochkov and Zhivotovskiy, 2021]. On the other hand, differ-
ent algorithmic stability measures such as uniform argument
stability [Liu et al., 2017; Bassily et al., 2020], on average
stability [Shalev-Shwartz et al., 2010; Kuzborskij and Lam-
pert, 2018], collective stability [London et al., 2016] have
been developed. For minimax problems, many useful stabil-
ity measures have also been extended, for example, weak sta-
bility [Lei et al., 2021], argument stability [Lei et al., 2021;

Li and Liu, 2021a], and uniform stability [Lei et al., 2021;
Li and Liu, 2021a; Zhang et al., 2021; Farnia and Ozdaglar,
2021; Ozdaglar et al., 2022]. Most of them focused on the
expectation generalization bounds and only [Lei et al., 2021;
Li and Liu, 2021a] established some high probability bounds.

Uniform convergence. Uniform convergence is another
popular approach in statistical learning theory to study gener-
alization bounds [Fisher, 1922; Vapnik, 1999; Van der Vaart,
2000]. The main idea is to bound the generalization gap by
its supremum over the whole (or a subset) of the hypothesis
space via some space complexity measures, such as VC di-
mension, covering number and Rademacher complexity. For
finite-dimensional problem, [Kleywegt et al., 2002] provided
that the generalization error is O(

√
d/n) depended on the

sample size n and the dimension of parameters d in high prob-
ability. For nonconvex settings, [Mei et al., 2018] showed that
the empirical of generalization error is O(

√
d/n). [Xu and

Zeevi, 2020] developed a novel “uniform localized conver-
gence” framework using generic chaining for the minimiza-
tion problems and [Li and Liu, 2021b] extended it to analyze
stochastic algorithms. In minimax problems, [Zhang et al.,
2022] established the first uniform convergence and showed
that the empirical generalization error of the gradients for pri-
mal functions is O(

√
d/n) under NC-SC settings.

3 Preliminaries
Let X ∈ Rd and Y ∈ Rd′

be two nonempty closed convex
parameters spaces. Let P be a probability measure defined
on a sample space Z . We consider the following minimax
optimization problem

min
x∈X

max
y∈Y

F (x,y) := Ez∼P[f(x,y; z)], (1)

where f : X × Y × Z → R is continuously differentiable
and Lipschitz smooth jointly in x and y for any z. This above
minimax objective called as the population minimax prob-
lem represents an expectation of a cost function f(x,y; z)
for minimization variable x, maximization variable y and
data variable z. In this paper, we focus on the NC-SC prob-
lem which means that f is nonconvex in x and strongly con-
cave in y. Obviously, our goal is to gain the optimal solution
(x∗,y∗) to (1). Since the distribution P is unavailable, we can
only gain a dataset S = {z1, . . . , zn} drawn n times indepen-
dently from P. Therefore, we solve the following empirical
minimax problem instead

min
x∈X

max
y∈Y

FS(x,y) :=
1

n

n∑
i=1

f(x,y; zi). (2)

Next we introduce one of the common measures in mini-
max problems called primal functions.
Definition 1 (Primal (empirical/population) function). The
primal empirical function and the primal population function
are given by

ΦS(x) := max
y∈Y

FS(x,y) and Φ(x) := max
y∈Y

F (x,y).

Since FS and F are nonconvex in x, it is difficult to find
the global optimal solution in general. In practice, we design

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5699



an algorithm A that finds an ϵ-stationary point

∥∇Φ(Ax(S))∥ ≤ ϵ, (3)

where Ax(S) is the x-component of the output using any
algorithm A(S) = (Ax(S),Ay(S)) for solving (2). Then the
optimization error for solve the population minimax problem
(1) can be decomposed into two terms:

∥∇Φ(Ax(S))∥ ≤ ∥∇ΦS(Ax(S))∥
+ ∥∇Φ(Ax(S))−∇ΦS(Ax(S))∥,

where the first term on the right-hand-side corresponds to the
optimization error of solving the empirical minimax problem
(2) and the second term corresponds to the generalization er-
ror of the gradients for primal functions. The above inequality
satisfies from the triangle inequality.

Let ∥ · ∥ be the Euclidean norm for simplicity and
B(x0, R) := {x ∈ Rd : ∥x − x0∥ ≤ R} denotes a ball
with center x0 ∈ Rd and radius R. For the closed con-
vex set X , we assume that there is a radius R1 such that
X ∈ B(x∗, R1). Let A(S) := (Ax(S),Ay(S)) denote the
output of an algorithm A for solving the empirical minimax
problem (2) with dataset S and ∇f = (∇xf,∇yf) denote
the gradient of a function f .
Definition 2 (Strongly convex function). Let µy > 0. A dif-
ferentiable function g : W → R is called µ-strongly-convex
in w if the following inequality holds for every w1, w2:

g(w1)− g(w2) ≥ ⟨∇g(w2),w1 −w2⟩+
µ

2
∥w1 −w2∥2,

we say g is µ-strongly-concave if −g is µ-strongly-convex.
Definition 3 (Smooth function). Let β > 0. A function f :
X × Y × Z → R is β-smooth in (x,y) if the function is
continuous differentiable and for any x1,x2 ∈ X , y1,y2 ∈
Y and z ∈ Z , f(x,y; z) satisfies∥∥∥∥(∇xf(x1,y1; z)−∇xf(x2,y2; z)

∇yf(x1,y1; z)−∇yf(x2,y2; z)

)∥∥∥∥ ≤ β

∥∥∥∥(x1 − x2

y1 − y2

)∥∥∥∥ .
Assumption 1 (Nonconvex-strongly-concave minimax prob-
lem). In order to obtain meaningful conclusions, we make the
following assumptions:

• Let µy > 0. The function f(x,y; z) is µy-strongly con-
cave in y ∈ Y for any x ∈ X and z ∈ Z .

• The function f(x,y; z) is β-smooth in (x,y) ∈ X × Y
for any z.

• X and Y are compact convex sets, which means that
there exist constants DX , DY > 0 such that for any
x ∈ X , ∥x∥2 ≤ DX and for any y ∈ Y , ∥y∥2 ≤ DY .

The first two assumptions in Assumption 1 are standard in
NC-SC minimax problems [Zhang et al., 2021; Farnia and
Ozdaglar, 2021; Lei et al., 2021; Li and Liu, 2021a] and the
last one in Assumption 1 is widely used in uniform conver-
gence analysis [Kleywegt et al., 2002; Davis and Drusvy-
atskiy, 2022; Zhang et al., 2022].
Assumption 2 (Lipschitz continuity). Let L > 0, assume
that for any x ∈ X and any y ∈ Y respectively for any z, the
function f(x,y; z) satisfies

∥∇xf(x,y; z)∥ ≤ L and ∥∇yf(x,y; z)∥ ≤ L.

Lipschitz assumption is also the standard assumption and
widely used in literature such as [Zhang et al., 2021; Farnia
and Ozdaglar, 2021; Lei et al., 2021; Li and Liu, 2021a]. But
we need to emphasize that our main Theorem 1 and Theo-
rem 3 do not require the Lipschitz assumption. Instead, we
introduce a weaker assumption called Bernstein condition in
minimax problems.
Definition 4 (Bernstein condition). Given a random variable
X with mean µ = E[X] and variance σ2 = E[X2] − µ2,
we say that Bernstein’s condition holds if there exists B > 0
such that for all k ≥ 2, k ∈ N,∣∣E [(X − µ)k

]∣∣ ≤ k!

2
σ2Bk−2.

Remark 1. Bernstein condition has been widely used to
obtain tail bounds that may be tighter than the Hoeffding
bounds. It is easy to verify that any bounded variable satisfies
Bernstein condition. Next, we introduce a straightforward
generalization of Bernstein condition to minimax problems.
We formally state these extension in the following assump-
tions.
Assumption 3. In minimax problems, the function f(x,y; z)
satisfies Bernstein condition in x∗ for y∗: there exists Bx∗ >
0 such that for all k ≥ 2, k ∈ N,

E
[
∥∇xf(x

∗,y∗; z)∥k
]
≤ k!

2
E
[
∥∇xf(x

∗,y∗; z)∥2
]
Bk−2

x∗ .

And the function f(x,y; z) satisfies Bernstein condition in
y∗(x) for any fixed x: there exists By∗ > 0 such that for all
k ≥ 2, k ∈ N,

E
[
∥∇yf(x

∗,y∗; z)∥k
]
≤ k!

2
E
[
∥∇yf(x

∗,y∗; z)∥2
]
Bk−2

y∗ ,

Remark 2. We can easily obtain that Assumption 2 can
derive Assumption 3. For example, if function f is L-
Lipschitz continuous, then ∥∇xf(x,y; z)∥ ≤ L. Thus for
any x ∈ X ,y ∈ Y and for all k ≥ 2, k ∈ N, we
have E

[
∥∇yf(x,y; z)∥k

]
≤ k!

2 E
[
∥∇yf(x,y; z)∥2

]
Lk−2,

which means that the function f satisfies Bernstein con-
dition for any x,y. Similarly, E

[
∥∇xf(x,y; z)∥k

]
≤

k!
2 E
[
∥∇xf(x,y; z)∥2

]
Lk−2 can be easily derived. More-

over, Bernstein condition is milder than the bounded as-
sumption of random variables and is also satisfied by vari-
ous unbounded variables. For example, a random variable
is sub-exponetial if it satisfies Bernstein condition [Wain-
wright, 2019]. Please refer to [Wainwright, 2019] for more
discussions. Furthermore, Bernstein condition assumption is
pretty mild since By∗ and Bx∗ only depends on gradients at
(x∗,y∗).

4 Uniform Localized Convergence and
Generalization Bounds

Uniform convergence of the gradients for primal functions
measures the deviation between the gradients of the primal
population function ∇Φ(x) and the gradients of the primal
empirical function ∇ΦS(x). In this section, we provide the
sharper uniform convergence of the gradients for primal func-
tions comparing with [Zhang et al., 2022].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5700



Theorem 1. Under Assumption 1 and 3, for any δ ∈ (0, 1),
with probability at least 1− δ, it holds for all x ∈ X that

∥∇Φ(x)−∇ΦS(x)∥

≤ β

µy

√
2E∥∇yf(x∗,y∗; z)∥2 log 8

δ

n
+

By∗ log 8
δ

n


+

√
2E∥∇xf(x∗,y∗; z)∥2 log 8

δ

n
+

Bx∗ log 8
δ

n

+
Cβ(µy + β)

µy

(µy + β)

µy
max

{
∥x− x∗∥, 1

n

}
×

√
d+ log 16 log2(

√
2R1n+1)

δ

n
+

d+ log 16 log2(
√
2R1n+1)

δ

n

 ,

where C is a absolute constant.
There is only one uniform convergence of gradients for pri-

mal functions in minimax problems given in [Zhang et al.,
2022]. Here is their main theorem in NC-SC settings.
Theorem 2 (Theorem in [Zhang et al., 2022]). Under As-
sumption 1 and 2, we have

E
[
max
x∈X

∥∇Φ(x)−∇ΦS(x)∥
]
= Õ

(
L(µy + β)

µy

√
d

n

)
,

where Õ(·) hides logarithmic factors.
Remark 3. We now compare our uniform convergence of
gradient for primal functions with [Zhang et al., 2022].
Firstly, our result is the only one with high-probability
format. Besides, we successfully relax the assumptions.
Theorem 2 requires the Lipschitz continuity assumption,
while our result only needs Bernstein condition assump-
tion. Please refer to Remark 1 Remark 2 for the detailed
comparison between these assumptions. Then, the factor
in Theorem 2 is L(µy+β)

µy
, while our result in Theorem 1

is Cβ(µy+β)
µy

(µy+β)
µy

max
{
∥x− x∗∥, 1

n

}
, not involving the

term L, which may be very large and even infinite without
Lipschitz continuity assumption. Finally, while [Zhang et al.,
2022] studied the worst-case upper bounds on the parame-
ters, results based on generic chaining yield upper bound re-
lated to the parameters. As shown Theorem 1, we have the
term max{∥x− x∗∥, 1

n} before the term O(
√

d/n), indicat-
ing that our results improve as the calculated parameters of
algorithms approach the optimal solution. For example, when
∥x − x∗∥ = O

(
1√
n

)
, our result is O(

√
d/n). In some op-

timal scenario, when ∥x − x∗∥ ≤ 1
n , we can attain the best

results.
Remark 4. In fact, [Zhang et al., 2022] derived an expec-
tation generalization error for primal functions in minimax
problems using complexity. Naturally, we want to use lo-
cal methods to introduce variance information and obtain a
tighter upper bound. A straightforward idea is that we can
continue with the traditional localized approach and solve the
problem with covering numbers [Bartlett et al., 2002]. How-
ever, these technologies require additional bounded assump-
tions (Assumption 2), or need certain distributional assump-
tions for unbounded condition. For example, [Mei et al.,

2018] introduced the “Hessian statistical noise” assumption
when using covering numbers. Fortunately, [Xu and Zeevi,
2020] developed a novel “uniform localized convergence”
framework using generic chaining for the minimization prob-
lems and [Li and Liu, 2021b] extended it to analyze stochastic
algorithms.

This novel framework can not only relax the bounded (or
specific distribution) assumptions but also impose fewer re-
strictions on the surrogate function for the localized method,
enabling us to design the measurement functional to achieve
a sharper bound. Consequently, we introduce this remark-
able framework into minimax problems. Our generalization
bound in Theorem 1 uses weaker assumptions comparing
with [Zhang et al., 2022] and is sharper in some conditions
due to our utilization of variance information.

Introducing this new framework into minimax problems is
not straightforward. [Zhang et al., 2022] indeed established a
connection between inner and outer layers with the loss of
primal functions, but we need do this with a new generic
chaining approach. Furthermore, it is noteworthy that the
optimal point y∗(x) := argmaxy∈Y F (x,y) for a given x
differs from y∗

S(x) := argmaxy∈Y FS(x,y), thus introduc-
ing an additional error term ∥y∗(x)− y∗

S(x)∥. Compared to
[Zhang et al., 2022], they only need to bound this term with
O(1/

√
n). But we need to reach the upper bound to O(1/n)

under certain assumptions.

Next, we provide a dimension-free uniform convergence
of gradients for primal functions when the PL condition
is satisfied. Firstly, we introduce the extension of the PL
condition to minimax problems used in [Guo et al., 2020;
Yang et al., 2020].

Assumption 4 (x-side µx-Polyak-Lojasiewicz condition).
For any y ∈ Y , the function F (x,y) satisfies the x-side µx-
Polyak-Lojasiewicz (PL) condition with parameter µx > 0
on all x ∈ X if

F (x,y)− inf
x′

F (x′,y) ≤ 1

2µx
∥∇xF (x,y)∥2.

Remark 5. Numerous studies have been conducted on deep
learning to provide evidence for the validity of the PL con-
dition in risk minimization problems. This condition has
been demonstrated to hold either globally or locally in cer-
tain networks with specific structural, activation, or loss func-
tion characteristics [Hardt and Ma, 2016; Li and Liang, 2018;
Arora et al., 2018; Charles and Papailiopoulos, 2018; Du et
al., 2018; Allen-Zhu et al., 2019]. For instance, [Du et al.,
2018] has exhibited that if a two-layer neural network pos-
sesses a sufficiently wide width, the PL condition is upheld
within a ball centered at the initial solution, and the global op-
timum is situated within this same ball. Additionally, [Allen-
Zhu et al., 2019] has further demonstrated that in overparam-
eterized deep neural networks utilizing ReLU activation, the
PL condition is applicable to a global optimum located in the
vicinity of a random initial solution.

Theorem 3. Under Assumption 1 and 3, assume that the
population risk F (x,y) satisfies Assumption 4 with param-
eter µx and let c = max{16C2, 1}. For any δ ∈ (0, 1)
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when n ≥ cβ2(µy+β)4(d+log
16 log2

√
2R1n+1

δ )

µ4
yµ

2
x

, with probability
at least 1− δ, it holds for all x ∈ X that

∥∇Φ(x)−∇ΦS(x)∥

≤∥∇ΦS(x)∥+ 2

√
2E [∥∇xf(x∗,y∗; z)∥2] log 8

δ

n
+

2Bx∗ log 8
δ

n

+
µx

n
+

2β

µy

√
2E [∥∇yf(x∗,y∗; z)∥2] log 8

δ

n
+

By∗ log 8
δ

n

 .

Remark 6. The following inequality can be easily derived
using triangle inequality and Cauchy–Bunyakovsky–Schwarz
inequality.

Φ(x)− Φ(x∗)

≤8∥∇ΦS(x)∥2

µx
+

16E
[
∥∇xf(x

∗,y∗; z)∥2
]
log 8

δ

µxn

+
16β2E

[
∥∇yf(x

∗,y∗; z)∥2
]
log 8

δ

µxµ2
yn

+
2
(

2βBy∗

µy
log 8

δ + 2Bx∗ log 8
δ + µx

)2
µxn2

.

(4)

We can easily derive (4) from Theorem 3 to gain the ex-
cess primal risk bound, where ∥∇ΦS(x)∥ is the empirical
optimization error of the primal function. In Theorem 3
and (4), ∥∇ΦS(x)∥ can be very tiny since most famous op-
timization algorithms such as GDA and SGDA, can opti-
mize it small enough. The term E

[
∥∇xf(x

∗,y∗; z)∥2
]

and
E
[
∥∇yf(x

∗,y∗; z)∥2
]

can be also tiny since they only de-
pend on the the gradient of the optima (x∗,y∗) w.r.t x and y.
We further analyze these two terms E

[
∥∇xf(x

∗,y∗; z)∥2
]

and E
[
∥∇yf(x

∗,y∗; z)∥2
]

using “self-bounding” property
for smooth functions [Srebro et al., 2010] and considering
specific algorithms in Section 5, which can derive to O(1/n2)
bounds. Thus, comparing with Theorem 2 in [Zhang et al.,
2022], this uniform localized convergence bound is clearly
tighter when relaxing Lipschitz continuity (Assumption 2)
and considering PL condition (Assumption 4). Addition-
ally, uniform convergence often implies results with a square-
root dependence on the dimension d such as Theorem 1 and
[Zhang et al., 2022]. Another distinctive improvement of
Theorem 3 is that we remove the dimension d when the pop-
ulation risk F (x,y) satisfies the x-side PL condition and the
sample size n is large enough.

5 Application
5.1 Empirical Saddle Point
Empirical saddle point (ESP) algorithm, which is also known
as sample average approximation (SAA) [Zhang et al., 2021]
refers to (2). We denote (x̂∗, ŷ∗) as one of the ESP solution
to (2). Then we can provide some important theorems in this
subsection.

Theorem 4. Suppose the empirical saddle point (x̂∗, ŷ∗) ex-
ists and Assumption 1 and 3 hold, for any δ ∈ (0, 1), with

probability at least 1− δ, we have

∥∇Φ(x̂∗)∥ = O

√d+ log logn
δ

n


Remark 7. When Assumption 1 and 3 hold, Theorem 4
shows that the population optimization error ∥∇Φ(x̂∗)∥ is

O

(√
d+log 1

δ

n

)
(log n is small and can be ignored typically).

Note that this result doesn’t require the Lipschitz continuity
assumption (Assumption 2). Although it may be hard to find
(x̂∗, ŷ∗) in NC-SC minimax problems, it is still meaningful
when assuming the ESP (x̂∗, ŷ∗) has been found.
Theorem 5. Suppose Assumption 1 and 3 hold. Assume that
the population risk F (x,y) satisfies Assumption 4 with pa-
rameter µx. For any δ ∈ (0, 1), with probability at least

1− δ, when n ≥ cβ2(µy+β)4(d+log
16 log2

√
2R1n+1

δ )

µ4
yµ

2
x

, where c is
an absolute constant, we have

Φ(x̂∗)− Φ(x∗) ≤
12β2E∥∇yf(x

∗,y∗; z)∥2 log 8
δ

µxµ2
yn

+
12E∥∇xf(x

∗,y∗; z)∥2 log 8
δ

µxn

+
3
(

2βBy∗
µy

log 8
δ
+ 2Bx∗ log 8

δ
+ µx

)2

2µxn2
.

Furthermore, if we assume the function f(x,y; z) is non-
negative, we have

Φ(x̂∗)− Φ(x∗) = O

(
Φ(x∗) log 1

δ

n
+

log2 1
δ

n2

)
.

When Φ(x∗) = O
(
1
n

)
, we have

Φ(x̂∗)− Φ(x∗) = O

(
log2 1

δ

n2

)
.

Remark 8. Theorem 5 shows that when the population min-
imax risk F (x,y) satisfies x-side PL condition, we can
provide a sharper excess risk bound for primal function,
which can be O(1/n2). Note that the optimal population
primal function Φ(x∗) = O (1/n) is a very common as-
sumption in many researches such as [Srebro et al., 2010;
Zhang et al., 2017; Liu et al., 2018; Zhang and Zhou, 2019;
Lei and Ying, 2020], which is natural because F (x∗,y∗) is
the minimal population risk. Now we compare our results
with recent related work [Li and Liu, 2021b], which stud-
ied the general machine learning settings for f(w) under PL
condition. Their empirical risk minimizer (ERM) excess risk
bound provided O

(
1/n2

)
order rates. We analyze the ex-

cess risk with primal functions in minimax problems and our
result for ESP is O

(
1/n2

)
, which is the same order as theirs.

5.2 Gradient Descent Ascent
Gradient descent ascent (GDA) presented in Algorithm 1 is
one of the most popular algorithms and has been widely used
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Algorithm 1 Two-timescale GDA for minimax problem
1: Input: (x1,y1) = (0,0), step sizes ηx > 0, ηy > 0

and dataset S = {z1, . . . , zn}
2: for t = 1, . . . , T do
3: update xt+1 = xt − ηx∇xFS(xt,yt)
4: update yt+1 = yt + ηy∇yFS(xt,yt)

Algorithm 2 Two-timescale SGDA for minimax problem
1: Input: (x1,y1) = (0,0), step sizes {ηxt

}t > 0,
{ηyt

}t > 0 and dataset S = {z1, . . . , zn}
2: for t = 1, . . . , T do
3: update xt+1 = xt − ηxt

∇xf(xt,yt; zit)
4: update yt+1 = yt + ηyt

∇yf(xt,yt; zit)

in minimax problems. In this subsection, we provide the pop-
ulation optimization error bound and the excess risk bounds
of primal functions with the two-timescale GDA algorithm
which is harder to analyze compared to GDMax and multi-
step GDA [Lin et al., 2020].
Theorem 6. Suppose Assumption 1 and 2 hold. Let {xt}t
be the sequence produced by Algorithm 1 with the step sizes
chosen as ηx = 1

16( β
µ+1)2β

and ηy = 1
β , for any δ ∈ (0, 1),

with probability at least 1− δ, we have

1

T

T∑
t=1

∥∇Φ(xt)∥2

≤O

(
1

T

)
+O

(
d+ log 16 log2(

√
2R1n+1)
δ

n
T

)
.

Furthermore, when T ≍ O
(√

n
d

)
, we have

1

T

T∑
t=1

∥∇Φ(xt)∥2 ≤ O

(
d+ log logn

δ√
nd

)
.

Remark 9. Theorem 6 also gives the population optimiza-
tion error which reveals that we need to balance the empirical
optimization error and the generalization error for GDA. Ac-
cording to the results, the iterative complexity of Algorithm 1
should be chosen as T ≍ O

(√
n
d

)
, which achieves the opti-

mal population optimization error of primal function.
In comparison to Theorem 4, Theorem 6 derives into popu-

lation optimization error w.r.t GDA, which is much more dif-
ficult. To establish population optimization error, we need to
bound the empirical optimization error, an area where no re-
search has been conducted in NC-SC settings with high prob-
ability. One possible approach is to construct the martingale
difference sequence of step T for primal functions, yet this
constitutes a separate topic warranting further exploration.
Theorem 6 aims to directly apply Theorem 1 to GDA. Com-
paring with Theorem 3, Theorem 6 only necessitates smooth
and Lipschitz conditions (Assumption 1 and 2) and doesn’t
require PL conditions.

Next, we provide the excess risk of primal func-
tions Φ(x̄T ) − Φ(x∗) for Algorithm 1, where x̄T =

1
T

∑T
t=1 xt. We need to know the empirical optimization er-

ror ∥∇ΦS(x̄T )∥ firstly.
Unfortunately, although the generalization bounds we

proved are in NC-SC settings, we require the SC-SC assump-
tions to derive the empirical optimization error bound of pri-
mal functions, to gain the high probability bound. We relax
this SC-SC assumption in Appendix E using existing opti-
mization error bound with expectation format.

Definition 5. A function g : X × Y → R is µx-strongly-
convex-µy-strongly-concave if g(·,y) is µx-strongly-convex
for any y ∈ Y and g(x, ·) is µy-strongly-concave for any
x ∈ X .

Assumption 5 (Strongly-convex-strongly-concave minimax
problem). Assume Assumption 1 holds and let µx > 0, µy >
0. The function f(x,y; z) is µx-strongly-convex-µy-strongly-
concave in y ∈ Y for any x ∈ X and z ∈ Z .

Remark 10. Assumption 5 is commonly used in SC-SC
problems [Zhang et al., 2021; Li and Liu, 2021a]. We require
this assumption to derive the empirical optimization error
bound of primal functions. The detailed proofs of the opti-
mization error bound ∥∇ΦS(x̄T )∥ are given in Section D.2
for GDA and in Section D.3 for SGDA.

Theorem 7. Suppose Assumption 3 and 5 hold. Let {xt}t be
the sequence produced by Algorithm 1 and x̄T = 1

T

∑T
t=1 xt

with the step sizes chosen as ηx = 1
16( β

µ+1)2β
and ηy = 1

β ,

for any δ ∈ (0, 1), with probability at least 1− δ, when T ≍

n and n ≥ cβ2(µy+β)4(d+log
16 log2

√
2R1n+1

δ )

µ4
yµ

2
x

, where c is an
absolute constant, we have

Φ(x̄T )− Φ(x∗) = O

(
E
[
∥∇xf(x

∗,y∗; z)∥2
]
log 1

δ

n

+
E
[
∥∇yf(x

∗,y∗; z)∥2
]
log 1

δ

n
+

log2 1
δ

n2

)
.

Furthermore, Let T ≍ n2. Assume the function f(x,y; z) is
non-negative, we have

Φ(x̄T )− Φ(x∗) = O

(
Φ(x∗) log 1

δ

n
+

log2 1
δ

n2

)
.

When Φ(x∗) = O
(
1
n

)
, we have

Φ(x̄T )− Φ(x∗) = O

(
log2 1

δ

n2

)
.

Remark 11. Theorem 7 shows that the excess risk for primal
functions can be bound by O

(
1/n2

)
comparing with the op-

timal result O(1/n) given in [Li and Liu, 2021a] when n is
large enough. Note that we require the SC-SC assumption to
derive the empirical optimization error. If we give this bound
in expectation, we can relax the SC-SC assumption with x-
side PL-strongly-concave assumption instead.
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Reference Algorithm Assumption Measure Bounds

[Lei et al., 2021] SGDA
C-SC, Lip, S (E.) Φ(x̄T )− Φ(x∗) O(1/

√
n)

C-SC, Lip, S (HP.) Φ(x̄T )− Φ(x∗) O(log n/
√
n)

AGDA PL-SC, Lip, S (E.) Φ(x̄T )− Φ(x∗) O
(
n− cβ+1

2cβ+1

)
[Li and Liu, 2021a]

ESP SC-SC, Lip, S, LN (HP.) Φ(x̂∗)− Φ(x∗) O(log n/n)

GDA SC-SC, Lip, S, LN (HP.) Φ(x̄T )− Φ(x∗) O(log n/n)

SGDA SC-SC, Lip, S, LN (HP.) Φ(x̄T )− Φ(x∗) O(log n/n)

This work

ESP PL-SC, B, S, LN (HP.) Φ(x̂∗)− Φ(x∗) O(1/n2)

GDA
PL-SC, B, S, LN (E.) Φ(x̄T )− Φ(x∗) O(1/n2)

SC-SC, B, S, LN (HP.) Φ(x̄T )− Φ(x∗) O(1/n2)

SGDA
PL-SC, B, S, LN (E.) Φ(x̄T )− Φ(x∗) O(1/n2)

SC-SC, Lip, S, LN (HP.) Φ(x̄T )− Φ(x∗) O(1/n2)

AGDA PL-SC, B, S, LN (E.) Φ(x̄T )− Φ(x∗) O(1/n2)

Table 1: Summary of the results. These bounds are established by choosing optimal iterate number T .

5.3 Stochastic Gradient Descent Ascent
We now analyze the excess risk bound of primal functions for
stochastic gradient descent ascent (SGDA). The algorithmic
scheme that we study is two-timescale SGDA (ηx ̸= ηy) with
variable step sizes, presented in Algorithm 2 which is more
nature in real problems.
Theorem 8. Suppose Assumption 2 and 5 hold, let {xt}t be
the sequence produced by Algorithm 2 and x̄T = 1

T

∑T
t=1 xt

with the step sizes chosen as ηxt = 1
µx(t+t0)

and ηyt
=

1
µy(t+t0)

, for any δ ∈ (0, 1), with probability at least 1 − δ,

when T ≍ n2 and n ≥ cβ2(µy+β)4(d+log
16 log2

√
2R1n+1

δ )

µ4
yµ

2
x

,
where c is an absolute constant, we have

Φ(x̄T )− Φ(x∗) = O

(
E
[
∥∇xf(x

∗,y∗; z)∥2
]
log 1

δ

n

+
E
[
∥∇yf(x

∗,y∗; z)∥2
]
log 1

δ

n
+

log2 1
δ

n2

)
.

Furthermore, Let T ≍ n4. Assume the function f(x,y; z) is
non-negative, we have

Φ(x̄T )− Φ(x∗) = O

(
Φ(x∗) log 1

δ

n
+

log2 1
δ

n2

)
.

When Φ(x∗) = O
(
1
n

)
, we have

Φ(x̄T )− Φ(x∗) = O

(
log2 1

δ

n2

)
.

Remark 12. Theorem 8 reveals that under the SC-SC set-
tings, the excess risk bound can be O(1/n2) comparing with
the optimal result O(1/n) given in [Li and Liu, 2021a]. Sim-
ilarly, since the SC-SC assumption is required to derive the
empirical optimization bound, we can relax the assumptions
when we only need expectation bounds instead of high prob-
ability bounds.

Table 1 gives the summary of existing results. AGDA
is alternating gradient descent ascent algorithm proposed in
[Yang et al., 2020]. Lip means Lipschitz continuity. S means
smoothness. B means Bernstein condition. LN means low
noise condition. PL-SC means x-side PL condition strongly
concave settings. E. means expectation results. HP. means
high probability results. Since most of existing works on opti-
mization errors are the expectation format, and our high prob-
ability results of generalization error can be transformed into
the expectation results. so we give the proofs of the expecta-
tion result to relax some assumptions such as SC-SC condi-
tion in Appendix E.

6 Conclusion
In this paper, we provide the improved generalization bounds
for minimax problems with uniform localized convergence.
We firstly provide a sharper bound measured by the gradi-
ents of primal functions with weaker assumptions in NC-SC
settings. Then we provide dimension-independent results un-
der PL-SC condition. Finally we extend our main theorems
into various algorithms to reach the optimal excess primal risk
bounds. Our excess primal risk bounds are O(1/n2) in SC-
SC settings with high probability format and O(1/n2) in PL-
SC settings with expectation version. We notice that most
optimization works focused on the gradient complexity with
expectation results. It would be interesting to give the opti-
mization error of x̄T or even xT with high probability under
weaker conditions (for example in PL-SC and even NC-SC
settings). Combining with our generalization work, we can
get a tighter excess primal risk bound with weaker conditions.
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