
Large Language Model as a Policy Teacher for Training
Reinforcement Learning Agents

Zihao Zhou , Bin Hu , Chenyang Zhao , Pu Zhang and Bin Liu∗

Zhejiang Lab
{zhouzihao,hubin,c.zhao,puz,liubin}@zhejianglab.com

Abstract
Recent studies have uncovered the potential of
Large Language Models (LLMs) in addressing
complex sequential decision-making tasks through
the provision of high-level instructions. However,
LLM-based agents lack specialization in tackling
specific target problems, particularly in real-time
dynamic environments. Additionally, deploying an
LLM-based agent in practical scenarios can be both
costly and time-consuming. On the other hand, re-
inforcement learning (RL) approaches train agents
that specialize in the target task but often suffer
from low sampling efficiency and high exploration
costs. In this paper, we introduce a novel frame-
work that addresses these challenges by training
a smaller, specialized student RL agent using in-
structions from an LLM-based teacher agent. By
incorporating the guidance from the teacher agent,
the student agent can distill the prior knowledge of
the LLM into its own model. Consequently, the
student agent can be trained with significantly less
data. Moreover, through further training with envi-
ronment feedback, the student agent surpasses the
capabilities of its teacher for completing the target
task. We conducted experiments on challenging
MiniGrid and Habitat environments, specifically
designed for embodied AI research, to evaluate the
effectiveness of our framework. The results clearly
demonstrate that our approach achieves superior
performance compared to strong baseline methods.
Our code is available at https://github.com/ZJLAB-
AMMI/LLM4Teach.

1 Introduction
Large Language Models (LLMs) have revolutionized the field
of artificial intelligence. These models are trained with an
internet-scale text corpus, enabling them to exhibit remark-
able capabilities such as natural language generation, ques-
tion answering, and translation [Brown et al., 2020; Du et
al., 2022; Chiang et al., 2023]. Previous work suggests that
these models contain vast general knowledge about the world

∗Corresponding author (Email:bins@ieee.org)

and are capable of solving complex reasoning problems [Rad-
ford et al., 2019; Brown et al., 2020; Wei et al., 2022]. Re-
cently, several works have attempted to use LLMs to generate
action plans in an embodied environment [Ahn et al., 2022;
Wang et al., 2023a; Driess et al., 2023; Song et al., 2023; Sha
et al., 2023; Mao et al., 2023]. However, LLMs face chal-
lenges in generating effective end-to-end instructions for spe-
cific embodied tasks, especially in real-world dynamic sce-
narios. This limitation arises from two key factors. Firstly,
LLMs do not possess the appropriate task incentives during
the training process. Secondly, these models lack the capabil-
ity to actively interact with the environment and gather real-
time data [Carta et al., 2023]. Furthermore, the utilization
of LLMs often requires substantial computational resources,
e.g., memory and power. These requirements render their de-
ployment impractical and expensive, especially when consid-
ering their use on lightweight edge devices. These challenges
motivate us to address the following question:

How do we develop a lightweight, specialized agent that
can quickly acquire the capabilities of LLMs for a specific
sequential decision-making task?

A commonly used solution is to train a specialized rein-
forcement learning (RL) based agent that starts learning from
scratch. However, this approach often incurs a significant ex-
ploration cost, especially in high-dimensional and complex
embodied environments with sparse reward signals, due to
the low sampling efficiency of RL methods.

In this paper, we propose a novel approach called LLM for
policy teaching (LLM4Teach), which utilizes a pre-trained
LLM to expedite the training process of a small-scale RL-
based student agent specialized for a target task. Specifically,
in the early stage of training, the student agent queries the
LLM-based teacher agent for action instructions and learns to
mimic the behavior of its teacher through minimizing a dis-
tillation loss. As the learning process proceeds, the student
gradually shifts from learning from its teacher to learning
from the environment by upweighting a conventional RL loss.
In another word, the objective function used for policy train-
ing is defined as a weighted average of the distillation loss
and the RL loss. Since it allows the student agent to not only
incorporate guidance from its LLM teacher but also learn
from online interactions with the environment, LLM4Teach
enables the student agent to identify and correct any mistakes
made by its teacher, leading to improved performance on the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5671

target task compared to its teacher. Note that only the student
agent is deployed and it shall not interact with the LLM in
the test phase. That means the model finally deployed is very
lightweight compared to an LLM.

To summarize, our main contributions are:

• We propose LLM4Teach, a policy distillation approach
to address the limitations of LLM and RL-based agents
for embodied sequential decision making.

• We demonstrate the performance of our approach empir-
ically by extensive experiments conducted on challeng-
ing embodied environments. In contrast to LLM-based
agents, our approach shows improved accuracy and de-
creased computational workload. In comparison to RL-
based agents, it has much greater sample efficiency.

• As a byproduct, we demonstrate that relying solely on
LLM can result in various types of incorrect decisions
in embodied settings, while LLM4Teach offers an effec-
tive approach to mitigate or avoid the influence caused
by such incorrect decisions. We also verify that offer-
ing uncertainty-aware rather than deterministic guidance
through LLM can improve the sample efficiency for the
student agent.

2 Related Work
In this paper, we consider an algorithmic agent operating in
an open dynamic environment. The agent is required to make
a series of decisions and take actions based on the current
state of the environment, employing a specific policy to suc-
cessfully complete a designated task. Here we provide a brief
overview of relevant research in the literature.

2.1 LLM-based Agents
LLMs have exhibited impressive reasoning abilities, moti-
vating researchers to employ them as fundamental compo-
nents for constructing LLM-based agents in diverse decision-
making scenarios [Xi et al., 2023; Yang et al., 2023; Wang
et al., 2023b; Biggie et al., 2023; Zhen et al., 2023]. Recent
research has demonstrated that LLMs can generate high-level
plans in response to natural language descriptions of a given
situation [Huang et al., 2022; Shinn et al., 2023; Yao et al.,
2022] . However, these plans may propose actions that are
not compatible with the acting agent or the environment due
to a lack of grounding in the specific problem domain. In
addressing this issue, Ahn et al. [2022] proposed grounding
LLMs through an affordance function of pre-trained skills,
which assists LLMs in formulating feasible plans for execu-
tion by the agents. Additionally, Carta et al. [2023] proposed
an approach in which the agent interacts with the environment
and subsequently fine-tunes the LLMs using online collected
data, thereby enhancing adaptation to the target task. How-
ever, frequent interaction with an LLM can be costly. There-
fore, Hu et al. [2024] suggested an intelligent interaction ap-
proach that employs RL to determine when it is necessary to
query the LLM, thus avoiding unnecessary interactions. Fur-
thermore, Nottingham et al. [2023] optimized the selection of
information presented to LLMs, thereby reducing the length
of input contexts. While these methods reduce the cost of

utilizing LLMs for decision-making tasks, they all necessi-
tate online access to a pre-trained LLM when the agent is
deployed online during the testing phase.

In contrast, our approach involves utilizing the LLM solely
during the training phase to distill task-specific knowledge
from the LLM into a RL-based agent. Subsequently, during
the testing phase, only the lightweight student agent is de-
ployed, which works independently without dependence on
the LLM.

2.2 LLM Assisted RL

Several studies have investigated the potential of utilizing
LLMs to support the standard RL process by tapping into the
general knowledge embedded in LLMs. For example, Kwon
et al. [2023]; Yu et al. [2023] and Klissarov et al. [2023] em-
ploy LLMs to assist in assigning rewards. Kwon et al. [2023]
use LLMs as proxy reward functions to automatically label
trajectory data with rewards, while Yu et al. [2023] utilize
LLMs to flexibly define reward parameters for optimizing and
completing various robot tasks. In a different approach, Klis-
sarov et al. [2023] leverage an offline dataset of behaviors
and use LLMs’ preferences over pairs of randomly sampled
trajectories to construct a reward model. Furthermore, Du et
al. [2023] and Colas et al. [2023] focus on learning diverse
behaviors without relying on reward supervision, employing
LLMs to generate novel goals during exploration in the en-
vironment. In contrast to these previous works, our approach
focuses on leveraging prior knowledge about the target task to
enhance the initial exploration stage of an RL agent. This al-
lows us to train the policy model with significantly less data,
thereby improving the efficiency of the learning process.

2.3 Learning from Teacher Agents

Prior research has sought to improve the inefficiencies of tab-
ula rasa RL by utilizing existing teacher agents to guide the
learning process of a specialized RL agent for a specific tar-
get problem [Da Silva et al., 2020; Agarwal et al., 2022].
These instructions can manifest as demonstrations [Schaal,
1996], scalar feedback [Knox and Stone, 2009], or action
advice [Da Silva et al., 2017]. Jump-start RL involves the
use of a teacher agent to assist in gathering high-quality data
during the initial exploration phase of RL [Uchendu et al.,
2023]. Kickstarting RL combines on-policy distillation with
RL, prompting the student agent to emulate the teacher’s be-
havior while optimizing for accumulated returns [Schmitt et
al., 2018]. Matthews et al. [2022] further extends this ap-
proach to hierarchical policies, transferring pre-trained low-
level skill policies as teachers and training the student agent
alongside a policy-over-teachers from scratch, which weighs
the advice from each teacher agent at every time step.

In contrast, our approach does not rely on specialized
teacher agents for the target problem. Instead, we harness the
extensive general knowledge embedded in LLMs to expedite
the learning process of the student agent through on-policy
distillation for combining pre-trained fundamental skills to
complete the target task.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5672

Student Observation

Teachers

Student Reward

Observation:
Agent saw red key,

blue key
Action :___ LLM

Explore

Go to <blue key>

Go to <red key>

0.12

0.44

0.01

Option 2:
Go to obj

Option 3:
Pickup obj

translator pickup <red key>

0.43

Option 4:
Open obj

Param:
<red key>

Param:
<blue key>

Option1:
Explore

Param:
<red key>

Student Action Policy

Student

Student Observation

Env

Figure 1: An illustration of our LLM4Teach framework using the MiniGrid environment as an exemplar. The LLM-based teacher agent
responds to observations of the state provided by the environment by offering soft instructions. These instructions take the form of a distribu-
tion over a set of suggested actions. The student agent is trained to optimize two objectives simultaneously. The first one is to maximize the
expected return, the same as in traditional RL algorithms. The other one is to encourage the student agent to follow the guidance provided
by the teacher. As the student agent’s expertise increases during the training process, the weight assigned to the second objective gradually
decreases over time, reducing its reliance on the teacher.

3 LLM4Teach

In this section, we present our methodology LLM4Teach. To
begin with, we fix the notations as follows.

We consider a sequential decision-making problem for-
malized as a Markov Decision Process (MDP), denoted by
〈S,A, T ,R, γ〉, where S and A denote the state and action
spaces, respectively. The transition probability function is de-
noted as T : S × A → P(S), and the reward function is de-
noted asR : S ×A×S → R. Additionally, γ represents the
discount factor. The primary objective is to learn an optimal
policy π : S → P(A), which maximizes the expected cumu-
lative return over time: maxπ E[

∑
t γ

trt]. The parameter of
the policy π is denoted as θ. A standard gradient-based RL
algorithm minimizes a surrogate loss, LRL(θ), using gradient
descent with respect to θ. This loss is estimated using sam-
pled trajectories, where each trajectory consists of a sequence
of tuples of state, action, and reward.

3.1 The LLM4Teach Framework

The core principle of LLM4Teach involves the utilization of
a pre-trained LLM as a teacher agent to guide a lightweight
student RL agent in swiftly acquiring a policy for real-time
decision-making to accomplish a specific embodied task. The
student agent is allowed to interact with the environment and
receive feedback from these interactions to rectify any errors
provided by the teacher agent. Following the training phase,
only the lightweight student agent is utilized during the test-
ing phase, yet it owns superior capability in accomplishing
the target task compared to its teacher. The conceptual frame-
work of this approach is depicted in Figure 1.

3.2 On the LLM-based Teacher Agent
In accordance with Ahn et al. [2022], we first notify the LLM
of a set of K option policies Π : {πk : S → P(A)} re-
lated to the current task using appropriate prompts, where
k ∈ {1, 2, ...,K} denotes the option index. When presented
with a state s, the student agent requests guidance from the
teacher agent for the next step action. The teacher agent ini-
tially selects a high-level option πk from the set Π, prompted
by a textual description c(s) of the state s. Subsequently, an
action suggestion a ∼ πk(s) is generated based on the chosen
option, serving as an instruction provided by the teacher.

Generating Uncertainty-aware Instructions Using LLM
The process of the student agent learning policies from the
teacher agent can be seen as distilling important task-related
knowledge from the LLM agent. As demonstrated in Hin-
ton et al. [2015], incorporating uncertainty into knowledge
distillation can improve sample efficiency and prevent model
over-fitting. Consequently, we propose having the LLM of-
fer uncertainty-aware soft instructions to the student agent.
When the student agent sends a text description c(s) to the
teacher agent, the teacher agent responds by providing a soft
decision πT (·|s), i.e., a distribution over available options, in
the following way:

πT (·|s) =
∑
k

PrLLM(k|c(s))πk(·|s), (1)

where PrLLM(k|c(s)) represents the probability of the LLM
teacher selecting the kth option given the textual description
c(s) of the current state s, and πk(·|s) denotes the policy as-
sociated with the kth option. To estimate the uncertainties

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5673

Algorithm 1 The student agent’s policy learning algorithm
Require: an LLM agent, pre-trained option policies {πk},
initial policy parameter value θ, maximum allowable number
of iterations T

1: for i = 1, 2, ..., T do
2: Collecting rollouts following the student agent’s initial

policy and stores the data in a buffer D
3: for each transition (s, a, r) ∈ D do
4: Generate a prompt with a textual description c(s) of

the state s for the LLM-based teacher agent
5: Get the soft decision of the LLM-based teacher

agent according to Equation (1)
6: end for
7: for each gradient descent step do
8: θ ← θ− α∇θ(LRL(θ) + λiEsH (πT (·|s)||πθ(·|s)))
9: end for

10: end for

PrLLM(k|c(s)) in our experiments, we query the LLM multi-
ple times with the same prompt to estimate the probability of
each decision, similar to Wang et al. [2022]. An alternative
approach is to access the logits of tokens relevant to option
plans and convert them into probabilities [Carta et al., 2023;
Ahn et al., 2022]. We conduct an ablation study on these two
approaches in subsection 4.1.

3.3 On the Learning Process of the Student Agent

The learning process is summarized in Algorithm 1. The pol-
icy of the student agent, denoted as πθ(·|s), is learned by min-
imizing the following loss function:

L(θ) = LRL(θ) + λEs∼πθ
H (πT (·|s)||πθ(·|s)) , (2)

where LRL(θ) denotes the traditional loss used in RL algo-
rithms to encode the feedback from the environment. This
loss is typically designed to maximize the expected return or
rewards obtained by the agent. We incorporate the teacher
agent’s guidance into the student agent’s learning process by
introducing the regularization term H (πT (·|s)||πθ(·|s)) that
describes the difference between the teacher policy πT (·|s)
and the student policy. This term captures the Kullback-
Leibler (KL) divergence or Wasserstein distance between
those two policies. To control the extent to which the student
agent relies on the teacher agent, we introduce an annealing
parameter λ. When λ is set to zero, the learning process of
the student agent reduces to a standard RL process without
any influence from the teacher agent.

We initialize the annealing parameter λ with larger values
during the initial stages of training. This setup ensures that
the student agent pays more attention to the guidance pro-
vided by the LLM-based teacher agent, aiming to align its
policy with that of the teacher. As the training progresses,
we gradually decay λ, allowing the student agent to shift its
focus towards maximizing its expected return. By reducing
the influence of the teacher’s guidance, the student agent be-
comes more independent in its decision-making process and
emphasizes its own learned policy. Specially, the annealing

schedule used is designed as follow:

λi =

{
λ0 − ki if i < i1
λc if i1 < i < i2
0 otherwise

, (3)

where i represents the index of the training iteration, k repre-
sents the decay rate, λ0 is the initial value of λ, λc is a con-
stant value smaller than λ0, which is maintained from the i1th
iteration to the i2th iteration, i2 indicates the point at which
the connection to the LLM-based teacher agent is closed. For
more details on the annealing schedule used in our experi-
ments, see Appendix A.7 of Zhou et al. [2023].

This linear reduction of λ enables a smooth transition for
the student agent from heavily relying on the teacher’s guid-
ance to prioritizing the RL objective. It provides a balance
between learning from the teacher and acquiring autonomy
in decision-making. When λ eventually reaches 0, we effec-
tively remove the influence of the teacher’s instructions on
the student agent’s policy, then the student agent no longer
requires the teacher’s guidance.

4 Experiments
We validated the performance of our method, LLM4Teach,
through extensive experiments. The aim of the experiments is
to demonstrate the specific advantages of LLM4Teach com-
pared to RL baseline methods and approaches that solely rely
on LLM for decision-making, and to test its potential in han-
dling real-world sequential decision making problems.

Simulation Platforms
MiniGrid offers a customizable grid world environment
with various sizes, object types, and objectives, making it a
simple representation of grid-based tasks [Chevalier-Boisvert
et al., 2023]. These tasks pose a challenge for RL methods
because of their sparse rewards.

Habitat is a simulation platform specifically created to sup-
port the development of embodied AI systems [Szot et al.,
2021]. It provides a comprehensive framework for defining
and executing various embodied AI tasks, such as navigation,
object rearrangement, and question-answering. Additionally,
Habitat enables detailed configuration of embodied agents,
including their physical attributes and sensor specifications.

Baseline Methods
In the experiments, we include three baseline approaches to
assess the performance of LLM4Teach.

LLM soly operates in two stages. First, the LLM selects
an option from a set of available pre-trained options. Then,
a low-level action is generated following the selected option
policy. In this configuration, only an LLM-based agent is uti-
lized to make real-time decisions, without the involvement of
the student agent. This approach allows us to investigate the
potential of our proposed LLM4Teach framework in enabling
the student agent to outperform its teacher in completing the
desired task.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5674

Hierarchical RL is an RL baseline approach that involves
training the student agent with pre-trained option policies
[Matthews et al., 2022]. In light of the hierarchical nature
of the tasks, we explore such hierarchical RL approach in
our experiments, so that we can assess the benefits of knowl-
edge distillation from a pre-trained LLM that captures world
knowledge.

Baseline RL is a Tabula rasa RL baseline trained from
scratch using the proximal policy optimization (PPO) algo-
rithm [Schulman et al., 2017]. The policy model structure
and the training loss function are set the same as our student
agent in LLM4Teach.

4.1 Experiments on MiniGrid

Experimental Setting

We created 4 procedurally generated tasks in the Min-
iGrid environment: {SimpleDoorKey, ColoredDoorKey,
LavaDoorKey and DivergedDoorKey}. In each task, the
agents are situated in rooms with varying layouts and their
goal is to unlock the exit door using the correct key. In Sim-
pleDoorKey, the agent must explore the room, find a key, and
use it to unlock the exit door. In ColoredDoorKey, the exit
door can only be unlocked with a key that matches its color,
adding complexity for the agent to understand task-specific
rules. LavaDoorKey introduces hazard grids (Lava) to the
room, requiring the agent to quickly adapt to new elements.
DivergedDoorKey presents two exit doors instead of one, al-
lowing the agent to choose either door to escape, emphasizing
the importance of using uncertainty-aware instructions to im-
prove overall sample efficiency.

For every task, we incorporate 5 specialized options, which
are: {explore, go to, pickup, drop, open}. All options, with
the exception of explore, are dependent on specific condi-
tions, such as interacting with an object, for example, pickup
the red key. These expert policies are compiled under the
fundamental task of SimpleDoorKey. Each option policy pro-
duces a Dirac delta distribution over actions based on the
state. Additional information about the environments and op-
tions can be found in Appendix A.4 of Zhou et al. [2023].

We use ChatGLM-turbo [Du et al., 2022] as the LLM to
construct our teacher agent. This powerful model enables
our teacher agent to possess complex reasoning capabilities.
To leverage these capabilities, we employ Chain-of-thought
(CoT) [Wei et al., 2022] style prompts. The CoT prompts
consist of multiple stages that guide the LLM’s decision-
making process. Firstly, the LLM is prompted to summarize
the scene, providing a condensed description of the environ-
ment. Secondly, it is instructed to reason about the appro-
priate course of action based on the given context. Finally,
the LLM outputs its decision for the given task. To aid the
LLM in understanding the reasoning process and ensuring
correct output formatting, an arbitrary example is included
in the prompt. This example serves as a reference point and
helps the LLM grasp the desired output structure. Figure 2
illustrates an example of the dialogues generated by the LLM
using this prompt setup in the ColoredDoorKey task.

Figure 2: An example of a prefix prompt and an interaction between
the student agent and the LLM-based teacher agent for the task Col-
oredDoorKey. The Prefix prompt consists of two blocks: the in-
struction block briefly introduces the target problem and the CoT
reasoning process; and the example block provides one arbitrary ex-
ample of the expected format of the response from the LLM.

Results on MiniGrid
The main results in Figure 3 show that the baseline RL
struggles to complete tasks, even the simplest one (Simple-
DoorKey), due to highly sparse rewards. In contrast, hi-
erarchical RL eventually succeeds in the tasks but requires
over 10,000 training iterations across all tasks. However,
LLM4Teach, guided by the LLM-based teacher, effectively
leverages the world knowledge embedded in the LLM, lead-
ing to significantly higher sample efficiency compared to
prior art RL baselines with sparse rewards.

Results also show that LLM4Teach outperforms LLM soly
in terms of accumulated returns for all tasks, except for Sim-
pleDoorKey. SimpleDoorKey is the simplest one, with low
reasoning difficulty for LLM. Moreover, all option policies
are designed based on this environment, so there is no issue
of option policy transfer. Therefore, LLM soly can achieve a
success rate of nearly 100% for the task.

For the other tasks which are more complex than Sim-
pleDoorKey, LLM soly performs unsatisfactorily due to the
lack of enough task-grounding knowledge. In comparison,
LLM4Teach allows the student agent to learn task-grounding
knowledge from the environmental feedback, thus performs
much better than LLM soly. For example, in Colored-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5675

0k 2k 4k 6k 8k 10k
0.0

0.2

0.4

0.6

0.8

M
ea

n
Re

tu
rn

SimpleDoorKey

0k 4k 8k 12k 16k 20k
0.0

0.2

0.4

0.6

0.8
LavaDoorKey

0k 4k 8k 12k 16k 20k
0.0

0.2

0.4

0.6

0.8
ColoredDoorKey

0k 4k 8k 12k 16k 20k
0.0

0.2

0.4

0.6

0.8 DivergedDoorKey

0k 2k 4k 6k 8k 10k
Training Iterations

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

0k 4k 8k 12k 16k 20k
Training Iterations

0.0
0.2
0.4
0.6
0.8
1.0

0k 4k 8k 12k 16k 20k
Training Iterations

0.0
0.2
0.4
0.6
0.8
1.0

0k 4k 8k 12k 16k 20k
Training Iterations

0.0
0.2
0.4
0.6
0.8
1.0

LLM4Teach Hierarchical RL Baseline RL LLM soly

Figure 3: The tested average returns (top row) and task completion success rates (bottom row) vs. the training iteration index of the compared
methods across four environments. The dotted vertical line indicates the point at which the teacher’s guidance is diminished, i.e., when
λi = 0. LLM soly does not involve any learning, hence we report its average performance over 500 testing seeds, represented by a dashed
horizontal line. For other approaches, we evaluate their policies every 10 iterations with 10 randomly generated testing seeds and report the
averaged testing performance here. With our approach, the student agent effectively leverages the knowledge of the LLM-based teacher to
bootstrap the early learning stage. Except for the SimpleDoorKey task, the student agent in LLM4Teach ultimately outperforms the LLM-
based agent by learning from environment feedback through minimizing a traditional RL loss.

DoorKey, given the observation “Agent sees a red key, a blue
key, a blue door.”, an LLM can suggest “pickup the red key”,
while the right option is “pickup the blue key”, since only the
the key with the same color of the door can be used to un-
lock the door. As a result, LLM soly only achieves an average
return of 0.52. In contrast, utilizing the student agent within
LLM4Teach leads to a significantly higher average return of
0.77, as illustrated in Figure 3. This is due to the student
agent’s ability to rectify its teacher’s errors and adjust its be-
havior according to environmental feedback.

We have identified three major categories for the error poli-
cies generated by the LLM:

• Incorrect policies, which are executable but result in
task failure. For example, an incorrect policy could in-
volve moving into the lava, leading to the failure of task
completion.

• Inefficient policies, which are executable but not neces-
sary for task completion. They can increase the number
of steps required to accomplish the task, potentially re-
sulting in time-out errors. For instance, an inefficient
policy could involve continuously exploring even after
finding the correct key and door, instead of directly pro-
ceeding to the door.

• Inconsistent policies, which are not executable due to
non-compliance with behavioral logic or contextual con-
straints, e.g., attempting to pick up a new key without
first dropping the key that the agent is currently holding.

Ablation Study on Uncertainty-aware Instructions
As presented in subsection 3.2, the teacher agent in
LLM4Teach offers uncertainty-aware instructions to the stu-
dent agent, which is a distinguishing feature compared to pre-
vious LLM-based agents (e.g., in Ahn et al. [2022]), where

0k 1k 2k 3k 4k 5k
Training Iterations

0.0

0.2

0.4

0.6

0.8

M
ea

n
Re

tu
rn

DivergedDoorKey

0k 1k 2k 3k 4k 5k
Training Iterations

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

DivergedDoorKey

Soft (Statistical) Soft (Logits) Hard

Figure 4: Ablation study on uncertainty-aware instructions. It shows
that two types of uncertainty-aware instructions by the teacher both
lead to improved sample efficiency for the student agent.

deterministic feedback is provided upon receiving a query.
We conducted ablation studies to investigate the benefits

of using uncertainty-aware instructions instead of determin-
istic ones in the DivergedDoorKey task. We considered two
approaches for the LLM to provide uncertainty-aware soft in-
structions. The first one is to query the LLM multiple times
with the same prompt to statistically estimate the probabil-
ity of each decision, similar to Wang et al. [2022]. The other
approach is to access the logits of tokens relevant to option
plans and convert them into probabilities [Carta et al., 2023;
Ahn et al., 2022]. We compare these two approaches with
a hard instruction baseline, where the LLM’s responses are
directly used as deterministic instructions.

The result of the ablation study is shown in Figure 4.
It is shown that utilizing uncertainty-aware instructions im-
proves the overall sample efficiency compared to using de-
terministic ones. Moreover, there is no significant disparity

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5676

Figure 5: Habitat environment. Left: The visual observation from
the onboard camera. Right: A view of the acting robot and its
workspace from a third-party camera. Note that the third-party cam-
era mentioned is purely for illustrative purposes and is not utilized
during either the training or testing phases.

in performance between the two approaches for generating
uncertainty-aware instructions. The first approach is simpler
to implement in practical scenarios but consumes more com-
putational resources due to multiple queries to LLMs, par-
ticularly when the observation space is large. The second ap-
proach necessitates access to logits, making it applicable only
to open-source LLMs.

4.2 Experiments on Habitat
To evaluate the potential applicability of our method in real-
world scenarios, we conducted additional experiments using
Habitat [Szot et al., 2021], which involves continuous action
spaces and high-dimensional observations.

Experimental Setting
We focus on a manipulation task called Nav & Pick. The
objective of the robotic agent is to navigate to the table with-
out any collisions and subsequently perform a precise object
pickup. Refer to Figure 5 for a visual representation.

We conduct separate pre-training for two high-level op-
tions, namely Navigate and Pick. These options are uti-
lized by both LLM4Teach and the hierarchical RL baseline
[Matthews et al., 2022]. To ensure the effectiveness of option
training, we employ ten distinct training environment speci-
fications, each with varying object and target locations. Fur-
thermore, the agent’s initial positions are randomly generated
upon environment reset, ensuring diverse training scenarios.
For each option, we utilize a ResNet18 backbone in conjunc-
tion with a 2-layer MLP architecture to train the correspond-
ing models. For more detailed information about the envi-
ronments and training parameters, refer to Appendix A.5 of
Zhou et al. [2023].

We select the Vicuna-7b model [Chiang et al., 2023] as
the LLM used in LLM4Teach, following a similar prompt
design as in previous experiments on Minigrid. We utilize
visual observations captured by the on-board camera as input
queries for the LLM. To enable the LLM-based teacher agent
to comprehend these visual inputs, we utilize a pre-configured
translator in the same way as in Hu et al. [2024] to generate
natural language descriptions which list identified objects in
the visual inputs.

Results on Habitat
Due to the task being limited to home scenarios, the LLM
effectively covers the common-sense reasoning abilities re-

0M 2M 4M 6M 8M 10M
Training Iterations

-15

-10

-5

0

5

M
ea

n
Re

w
ar

d

Nav&Pick

0M 2M 4M 6M 8M 10M
Training Iterations

0.0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s

Ra
te

Nav&Pick

LLM4Teach Hierarchical RL Baseline RL LLM soly

Figure 6: The tested average returns (left) and task completion suc-
cess rates (right) vs. the training iteration index of the compared
methods on the Nav&Pick task. For explanations of the lines and
curves in the figure, see the caption of Figure 3.

quired to successfully complete the task. This results in few
erroneous decision-making during option selection. Conse-
quently, the task completion rate and average returns for LLM
soly, as depicted in Figure 6, are relatively high. In con-
trast, the RL baselines struggle to complete the task due to the
scarcity of rewards. Our approach, LLM4Teach, consistently
outperforms all RL-based baselines in terms of both sample
efficiency and asymptotic performance. This highlights the
effective utilization of the LLM-based teacher’s knowledge
by the student agent in LLM4Teach, facilitating the learn-
ing of appropriate policies. Given enough training iterations,
our approach exhibits a higher success rate compared to LLM
soly. The primary advantage of LLM4Teach is that it is an ex-
tremely lightweight RL-based student agent specifically de-
signed for utilization in the final online testing phase.

5 Concluding Remarks

Both RL and LLMs have limitations in handling complex
sequential decision-making problems. RL often lacks sam-
ple efficiency and incurs high exploration costs, while LLMs
are prone to decision errors and have high deployment costs.
Combining LLMs with RL to overcome these limitations is a
natural idea, but creating an effective interface between them
poses challenges. LLMs utilize texts as input and output,
making them suitable for providing high-level instructions,
whereas RL operates at a much lower fine-grained level and
uses numerical vectors instead of texts as inputs and outputs.

Here we present LLM4Teach, a novel framework that
combines LLMs and RL for embodied sequential decision-
making tasks. Our approach leverages the reasoning capabil-
ities of LLMs to develop a highly capable RL-based student
agent. In particular, we use the LLM to provide high-level
suggestions on available options for policy training of the stu-
dent agent. Extensive experiments demonstrate that our stu-
dent agent outperforms all RL baselines in sample efficiency.
Meanwhile, it achieves superior performance to LLM soly in
terms of task completion success rate with much fewer com-
putational resources during online testing. For instance, in
MiniGrid experiments, the student agent’s model size is 24K
compared to LLM’s 130B. Similarly, in Habitat experiments,
the student agent’s model size is 10M while an LLM’s is 7B.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5677

Ethical Statement
There are no ethical issues.

Acknowledgments
This work was supported by Exploratory Research Project
(No.2022RC0AN02) of Zhejiang Lab.

Contribution Statement
Z. Zhou, B. Hu, C. Zhao and P. Zhang contribute equally. B.
Liu is project lead.

References
[Agarwal et al., 2022] Rishabh Agarwal, Max Schwarzer,

Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Reincarnating reinforcement learning: Reusing prior
computation to accelerate progress. Advances in Neural In-
formation Processing Systems, 35:28955–28971, 2022.

[Ahn et al., 2022] Michael Ahn, Anthony Brohan, Noah
Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan,
Karol Hausman, et al. Do as I can, not as I say:
Grounding language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022.

[Biggie et al., 2023] Harel Biggie, Ajay Narasimha Mopi-
devi, Dusty Woods, and Christoffer Heckman. Tell
me where to go: A composable framework for context-
aware embodied robot navigation. arXiv preprint
arXiv:2306.09523, 2023.

[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ry-
der, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[Carta et al., 2023] Thomas Carta, Clément Romac, Thomas
Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive
environments with online reinforcement learning. arXiv
preprint arXiv:2302.02662, 2023.

[Chevalier-Boisvert et al., 2023] Maxime Chevalier-
Boisvert, Bolun Dai, and al et. Minigrid & miniworld:
Modular & customizable reinforcement learning environ-
ments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

[Chiang et al., 2023] Wei-Lin Chiang, Zhuohan Li, Zi Lin,
and et. al. Vicuna: An open-source chatbot impressing gpt-
4 with 90%* chatgpt quality, March 2023.

[Colas et al., 2023] Cédric Colas, Laetitia Teodorescu,
Pierre-Yves Oudeyer, Xingdi Yuan, and Marc-Alexandre
Côté. Augmenting autotelic agents with large language
models. arXiv preprint arXiv:2305.12487, 2023.

[Da Silva et al., 2017] Felipe Leno Da Silva, Ruben Glatt,
and Anna Helena Reali Costa. Simultaneously learning

and advising in multiagent reinforcement learning. In Pro-
ceedings of the 16th conference on autonomous agents and
multiagent systems, pages 1100–1108, 2017.

[Da Silva et al., 2020] Felipe Leno Da Silva, Garrett War-
nell, Anna Helena Reali Costa, and Peter Stone. Agents
teaching agents: a survey on inter-agent transfer learn-
ing. Autonomous Agents and Multi-Agent Systems, 34:1–
17, 2020.

[Driess et al., 2023] Danny Driess, Fei Xia, Mehdi SM Saj-
jadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, et al. Palm-e: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378, 2023.

[Du et al., 2022] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming
Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm: Gen-
eral language model pretraining with autoregressive blank
infilling. In Proc. of the 60th Annual Meeting of the As-
sociation for Computational Linguistics, pages 320–335,
2022.

[Du et al., 2023] Yuqing Du, Olivia Watkins, Zihan Wang,
Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in re-
inforcement learning with large language models. arXiv
preprint arXiv:2302.06692, 2023.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[Hu et al., 2023] Bin Hu, Chenyang Zhao, Pu Zhang, Zi-
hao Zhou, Yuanhang Yang, Zenglin Xu, and Bin Liu.
Enabling efficient interaction between an agent and an
llm: A reinforcement learning approach. arXiv preprint
arXiv:2306.03604, 2023.

[Hu et al., 2024] Bin Hu, Chenyang Zhao, Pu Zhang, Zihao
Zhou, Yuanhang Yang, Zenglin Xu, and Bin Liu. Enabling
intelligent interactions between an agent and an llm: A re-
inforcement learning approach. Reinforcement Learning
Conference (RLC), 2024.

[Huang et al., 2022] Wenlong Huang, Pieter Abbeel,
Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for
embodied agents. In International Conference on Machine
Learning, pages 9118–9147. PMLR, 2022.

[Klissarov et al., 2023] Martin Klissarov, Pierluca D’Oro,
Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon,
Pascal Vincent, Amy Zhang, and Mikael Henaff. Motif:
Intrinsic motivation from artificial intelligence feedback.
arXiv preprint arXiv:2310.00166, 2023.

[Knox and Stone, 2009] W Bradley Knox and Peter Stone.
Interactively shaping agents via human reinforcement: The
tamer framework. In Proceedings of the tth International
conference on Knowledge capture, pages 9–16, 2009.

[Kwon et al., 2023] Minae Kwon, Sang Michael Xie, Kale-
sha Bullard, and Dorsa Sadigh. Reward design with lan-
guage models. arXiv preprint arXiv:2303.00001, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5678

[Mao et al., 2023] Jiageng Mao, Yuxi Qian, Hang Zhao, and
Yue Wang. Gpt-driver: Learning to drive with gpt. arXiv
preprint arXiv:2310.01415, 2023.

[Matthews et al., 2022] Michael Matthews, Mikayel
Samvelyan, Jack Parker-Holder, Edward Grefenstette,
and Tim Rocktäschel. Hierarchical kickstarting for
skill transfer in reinforcement learning. arXiv preprint
arXiv:2207.11584, 2022.

[Nottingham et al., 2023] Kolby Nottingham, Yasaman
Razeghi, Kyungmin Kim, JB Lanier, Pierre Baldi, Roy
Fox, and Sameer Singh. Selective perception: Optimizing
state descriptions with reinforcement learning for language
model actors. arXiv preprint arXiv:2307.11922, 2023.

[Radford et al., 2019] Alec Radford, Jeffrey Wu, Rewon
Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, and
al et. Learning transferable visual models from natural lan-
guage supervision. In International conference on machine
learning, pages 8748–8763. PMLR, 2021.

[Schaal, 1996] Stefan Schaal. Learning from demonstra-
tion. Advances in neural information processing systems,
9, 1996.

[Schmitt et al., 2018] Simon Schmitt, Jonathan J Hudson,
Augustin Zidek, Simon Osindero, Carl Doersch, Woj-
ciech M Czarnecki, Joel Z Leibo, Heinrich Kuttler, An-
drew Zisserman, Karen Simonyan, et al. Kickstarting deep
reinforcement learning. arXiv preprint arXiv:1803.03835,
2018.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Sha et al., 2023] Hao Sha, Yao Mu, Yuxuan Jiang, Li Chen,
Chenfeng Xu, Ping Luo, Shengbo Eben Li, Masayoshi
Tomizuka, Wei Zhan, and Mingyu Ding. Languagempc:
Large language models as decision makers for autonomous
driving. arXiv preprint arXiv:2310.03026, 2023.

[Shinn et al., 2023] Noah Shinn, Federico Cassano, Ashwin
Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learn-
ing. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[Song et al., 2023] Chan Hee Song, Jiaman Wu, Clayton
Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied
agents with large language models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 2998–3009, 2023.

[Szot et al., 2021] Andrew Szot, Alexander Clegg, and al et.
Habitat 2.0: Training home assistants to rearrange their
habitat. Advances in Neural Information Processing Sys-
tems, 34:251–266, 2021.

[Uchendu et al., 2023] Ikechukwu Uchendu, Ted Xiao, Yao
Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon,
Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao,
et al. Jump-start reinforcement learning. In International
Conference on Machine Learning, pages 34556–34583.
PMLR, 2023.

[Wang et al., 2022] Xuezhi Wang, Jason Wei, and al et. Self-
consistency improves chain of thought reasoning in lan-
guage models. arXiv preprint arXiv:2203.11171, 2022.

[Wang et al., 2023a] Guanzhi Wang, Yuqi Xie, Yunfan
Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

[Wang et al., 2023b] Lei Wang, Chen Ma, Xueyang Feng,
Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, et al. A survey on large
language model based autonomous agents. arXiv preprint
arXiv:2308.11432, 2023.

[Wei et al., 2022] Jason Wei, Xuezhi Wang, Dale Schuur-
mans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large lan-
guage models. arXiv preprint arXiv:2201.11903, 2022.

[Xi et al., 2023] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei
He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and poten-
tial of large language model based agents: A survey. arXiv
preprint arXiv:2309.07864, 2023.

[Yang et al., 2023] Sherry Yang, Ofir Nachum, Yilun Du, Ja-
son Wei, Pieter Abbeel, and Dale Schuurmans. Foundation
models for decision making: Problems, methods, and op-
portunities. arXiv preprint arXiv:2303.04129, 2023.

[Yao et al., 2022] Shunyu Yao, Jeffrey Zhao, Dian Yu, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. In
NeurIPS 2022 Foundation Models for Decision Making
Workshop, 2022.

[Yu et al., 2023] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu,
Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever,
Jan Humplik, et al. Language to rewards for robotic skill
synthesis. arXiv preprint arXiv:2306.08647, 2023.

[Zhen et al., 2023] Yue Zhen, Sheng Bi, Lu Xing-tong, Pan
Wei-qin, Shi Hai-peng, Chen Zi-rui, and Fang Yi-shu.
Robot task planning based on large language model rep-
resenting knowledge with directed graph structures. arXiv
preprint arXiv:2306.05171, 2023.

[Zhou et al., 2023] Zihao Zhou, Bin Hu, Pu Zhang,
Chenyang Zhao, and Bin Liu. Large language model as a
policy teacher for training reinforcement learning agents.
arXiv preprint arXiv:2311.13373, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5679

	Introduction
	Related Work
	LLM-based Agents
	LLM Assisted RL
	Learning from Teacher Agents

	LLM4Teach
	The LLM4Teach Framework
	On the LLM-based Teacher Agent
	Generating Uncertainty-aware Instructions Using LLM

	On the Learning Process of the Student Agent

	Experiments
	Simulation Platforms
	Baseline Methods

	Experiments on MiniGrid
	Experimental Setting
	Results on MiniGrid
	Ablation Study on Uncertainty-aware Instructions

	Experiments on Habitat
	Experimental Setting
	Results on Habitat

	Concluding Remarks

