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Abstract
Time series self-supervised learning (SSL) aims to
exploit unlabeled data for pre-training to mitigate
the reliance on labels. Despite the great success in
recent years, there is limited discussion on the po-
tential noise in the time series, which can severely
impair the performance of existing SSL methods.
To mitigate the noise, the de facto strategy is to ap-
ply conventional denoising methods before model
training. However, this pre-processing approach
may not fully eliminate the effect of noise in SSL
for two reasons: (i) the diverse types of noise in
time series make it difficult to automatically deter-
mine suitable denoising methods; (ii) noise can be
amplified after mapping raw data into latent space.
In this paper, we propose denoising-aware con-
trastive learning (DECL), which uses contrastive
learning objectives to mitigate the noise in the rep-
resentation and automatically selects suitable de-
noising methods for every sample. Extensive ex-
periments on various datasets verify the effective-
ness of our method. The code is open-sourced.

1 Introduction
Time series learning has attached great importance in vari-
ous real-world applications [Ismail Fawaz et al., 2019], such
as heart failure diagnosis and fault detection in the industry.
Given the abundance of unlabeled time series data [Meng
et al., 2023b], there has been a surge in attention towards
time series self-supervised learning (SSL) that extracts infor-
mative representations from unlabelled time series data for
downstream tasks [Ma et al., 2023]. Many time series SSL
methods have been proposed in recent years [Zhang et al.,
2023a], including contrastive learning-based [Tonekaboni et
al., 2021], generative-based [Chowdhury et al., 2022], and
adversarial-based [Luo et al., 2019] approaches.

Despite the encouraging progress made in time series SSL,
the existing research often assumes that the given time series
is clean, with limited discussion on the potential noise in the
time series. Unfortunately, many time series (e.g., bio-signals
collected from sensors) naturally suffer from noises that can
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Figure 1: A motivating analysis (more details provided in Ap-
pendix). (a-c) show that the SSL methods achieve higher perfor-
mance after pre-processing the noisy time series in the PTB-XL
dataset with a suitable denoising method LOESS, while the perfor-
mance improvement is not obvious when processed by unsuitable
methods like median filter. (d) suggests SSL methods tend to am-
plify the noise in the representation.

severely change the data characteristics and impair represen-
tation learned by SSL algorithms [Zhang et al., 2023b]. For
instance, some samples in the ECG dataset PTB-XL [Wagner
et al., 2020] exhibit considerable high-frequency noise, de-
picted in Fig. 1(a). Directly applying the existing time series
SSL methods CA-TCC [Eldele et al., 2023] and TS2vec [Yue
et al., 2022] on this dataset for the classification task yields
poor accuracy, as illustrated on the left in Fig.1(c). In con-
trast, by employing an appropriate denoising method like
LOESS [Burguera, 2018], as illustrated in Fig.1(b), the accu-
racy experiences a significant improvement, as shown in the
middle of Fig.1(c). Motivated by this, we study the following
research question: How can we effectively denoise noisy time
series for SSL to learn better representations?

The de facto strategy to handle noises in time series is to
apply conventional denoising methods (e.g., LOESS men-
tioned above) and then perform model learning [Lai et al.,
2023]. However, we argue that this pre-processing approach
cannot fully eliminate the effect of noise in time series.
Firstly, the diverse types of noise in time series make it chal-
lenging to select the most suitable denoising methods [Zhang
et al., 2021a]. Many real-world datasets, e.g., ECG data, may
contain thousands of samples, where each sample involves
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different noises [He et al., 2015], such as high-frequency
noise, baseline wandering, and muscle artifacts [Zhang et
al., 2021b]. There is often no denoising method that can
universally handle all types of noise [Robbins et al., 2020;
Zheng et al., 2020], making it difficult to select suitable de-
noising methods in real-world applications. For example,
on the right-hand side of Fig.1(c), the accuracy drops when
we apply an unsuitable denoising method median filter. Sec-
ondly, noise can be amplified after mapping the raw data into
latent space. To illustrate this, we compare the signal-to-noise
ratio (SNR) [Chawla, 2011] of the raw time series, the de-
noised time series, and the representations learned upon the
denoised time series in Fig. 1(d). The results show that (i) the
SNR value of the denoised data is improved, meaning that
the noise is mitigated in the raw data; (ii) however, if fur-
ther mapping the denoised data into representations, the SNR
value drops, which suggests that the representation learning
process could amplify the noise. That is, even though the de-
noising methods can alleviate noise in the raw time series, the
noise could “come back” in the representation space and still
hamper SSL. Hence, how to mitigate the noise in time series
SSL remains an open challenge.

In this paper, we propose DEnoising-aware Contrastive
Learning (DECL), an end-to-end framework that can lever-
age any conventional denoising methods to guide noise mit-
igation in representations. Specifically, DECL involves two
novel designs. Firstly, building upon an auto-regressive en-
coder, we propose a novel denoiser-driven contrastive learn-
ing objective to mitigate the noise. The key idea is to con-
struct positive samples through the application of existing de-
noisers on raw time series, and concurrently generating neg-
ative samples by introducing noise into the same time series.
Subsequently, through optimization using a contrastive learn-
ing objective, we guide the representations toward positive
samples and distance them from negative samples, thereby
reducing the noise. Secondly, we introduce an automatic de-
noiser selection strategy to learn to select the most suitable
denoisers for each sample. Our motivation is that, in auto-
regressive learning, noisy data usually tend to have large re-
construction errors, and vice versa. As a result, we can use the
reconstruction error as a proxy for how suitable a denoiser is
to the sample. We further incorporate this denoiser selection
strategy into the proposed denoiser-driven contrastive learn-
ing and optimize them jointly. We summarize our contribu-
tion below.

• Problem: Motivated by the observation that removing
noise boosts the performance of SSL, we formulate the
problem of self-supervised learning on noisy time series.

• Algorithm: We propose a customized denoising-aware
contrastive learning method 1 that automatically selects
suitable denoising methods for each sample to guide
mitigating data noise in representation learning.

• Experimental Findings: Extensive experiments show
the effectiveness of our method. We also verify that
DECL is robust with varying degrees of noise and the
learned representations have less noise.

1https://github.com/betterzhou/DECL

2 Problem Statement
Self-Supervised Learning on Noisy Time Series. Given a
set of time series D = {x1,x2, . . . ,xN} of N instances
with a certain amount of noise S , the goal is learning a
nonlinear mapping function F in a self-supervised man-
ner that maps each time series xi to a representation zi
to best describe itself. Specifically, for a time series sam-
ple xi = [xi,1, xi,2, . . . , xi,T ] ∈ RT×d with T times-
tamps and d feature dimensions, it involves noise si =
[si,1, si,2, . . . , si,T ] ∈ RT×d and the denoised data is present
as vi = [(xi,1 − si,1), (xi,2 − si,2), . . . , (xi,T − si,T )]; the
mapping function F aims to learn a representation zi =
[zi,1, zi,2, . . . , zi,C ] ∈ RC×r, where zi,t ∈ Rr is represen-
tation at timestamp t with r dimensions.

3 Methodology
In this section, we present the proposed DEnoising-aware
Contrastive Learning (DECL), as shown in Fig. 2. It consists
of three components: (i) auto-regressive learning, which is
for generating informative representations in latent space; (ii)
denoiser-driven contrastive learning, which exploits denois-
ing methods to guide mitigating noise in representation learn-
ing; (iii) automatic denoiser selection, which selects suitable
denoising methods for every sample in learning.

3.1 Auto-regressive Learning
The purpose is to map raw data into latent space via an
encoder and exploit the obtained representations for self-
supervised learning. Specifically, it involves an encoder fenc,
which is a 3-block convolutional architecture, and an auto-
regressive (AR) module far. For an input xi, the encoder
maps it to a high-dimensional latent representation zi =
fenc(xi), where zi ∈ RC×r. Then, for the representation zi,
the AR module summarizes all zi,j≤t = {zi,1, zi,2, ..., zi,t}
into a context vector ci = far (zi,j≤t) , ci ∈ Rh, where h is
the hidden dimension of far. The context vector ci is used
to predict the future timesteps from zi,t+1 until zi,t+k(1 ≤
k < C), zi,t+k ∈ Rr, where k is the number of predicted
timesteps and r is the number of output channels in fenc.
Here, we use Transformer [Vaswani et al., 2017] as the far,
which is comprised of successive blocks of multi-headed at-
tention followed by an MLP block. We stack L identical lay-
ers to generate the prediction. To enable using ci to predict
the timesteps from zi,t+1 until zi,t+k, we adopt a linear layer
parameterized by W ∈ Rh×r to map ci back into the same
dimension as zi. Finally, we obtain the predicted timesteps
ẑi,t+1 until ẑi,t+k. Accordingly, the reconstruction loss ei for
xi can be computed by the mean square error between zi,t+j

and ẑi,t+j :

ei =
1

k

k∑
j=1

(zi,t+j − ẑi,t+j)
2
, (1)

where zi,t+j is from zi and ẑi,t+j is the prediction. Minimiz-
ing the reconstruction loss enables jointly learning fenc and
far for generating informative representations.
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Figure 2: Overview of the method DECL. It involves (i) auto-regressive learning, which maps raw data into latent space and exploits
the representations for SSL; (ii) denoiser-driven contrastive learning, which leverages denoising method ϕj to build positive sample z

(d)
i,j ,

amplifies the corresponding noise to build negative sample z
(n)
i,j , and mitigates noise in representation learning; (iii) automatic denoiser

selection, which injects Gaussian noise to data to avoid overfitting and determines suitable denoising methods for the contrastive learning.

3.2 Denoiser-driven Contrastive Learning
Considering that noise could be amplified in the latent space,
we propose to directly eliminate noise from representations
via denoiser-driven contrastive learning. Our motivation is
that conventional denoising methods have been proven effec-
tive for noise removal if they are properly used [Zheng et al.,
2020]; intuitively, the representations of the denoised data
suffer from less noise than that of raw data and can be ex-
ploited as positive samples to guide learning. Vice versa, it is
also viable to amplify noise in the raw data, and the represen-
tations of the noise-enhanced data are not desired and can act
as negative samples. Following this, we propose to exploit the
noise-reduced and noise-enhanced data in contrastive learn-
ing for better representations.

It involves two steps: (1) generating denoised and noise-
enhanced counterparts for raw data and obtaining the repre-
sentations; (2) mapping the representations of raw data close
to that of the denoised ones (i.e., positive samples) and far
away from the noise-enhanced counterparts (i.e., negative
samples). Specifically, we first conduct data augmentation
on raw data. Given a suitable denoising method ϕj for raw
data xi, we can generate the denoised data x

(d)
i,j . As for syn-

thesizing noise-enhanced data, the principle is to add more
noise w.r.t. the corresponding noise type. To this end, we
compare raw data xi with the denoised one x

(d)
i,j to identify

what are the “noises” and then amplify them. In particular,
we first obtain the data noise vi,j , which has been removed
by denoising method ϕj , by using xi subtracts x

(d)
i,j . Then,

we scale the values of vi,j to further amplify noise and later
add it back to xi. In this way, we obtain the noise-enhanced
counterpart x(n)

i,j for raw data xi.
After data augmentation, we obtain their representations

via the fenc and perform denoiser-driven contrastive learning.
Given a sample xi and a denoising method ϕj , we first build
a triplet of representations A(zi, ϕj) as follows:

A(zi, ϕj) = {z(n)i,j , zi, z
(d)
i,j } (2)

where z
(n)
i,j and z

(d)
i,j are the representation of x(n)

i,j and x
(d)
i,j ,

and are respectively taken as negative and positive sample in
contrastive learning. Then, by taking representation zi as an
anchor, we pull the anchor towards the positive sample while
pushing it far away from the negative sample in the latent
space. Furthermore, considering the triplet of {z(n)i,j , zi, z

(d)
i,j }

consists of the representations with a descending degree of
noise, the direction from large noise to trivial noise in the
latent space may indicate a better denoising effect. Accord-
ingly, we also enforce that the mapping direction of positive
and negative samples to the anchor shall be opposite for each
triplet. Overall, the contrastive learning loss Li,j for a data
xi and a denoising method ϕj is shown as:

Li,j = − log
exp

(
⟨zi, z(d)i,j ⟩/τ

)
∑

za∈A(zi,ϕj)
1za ̸=zi

exp (⟨zi, za⟩/τ)
− αLreg

i,j ,

Lreg
i,j = ⟨(zi − z

(n)
i,j ), (z

(d)
i,j − z

(n)
i,j )⟩,

(3)
where ⟨·, ·⟩ denotes cosine similarity, 1za ̸=zi ∈ {0, 1} is a
binary indicator that equals to 0 when za denotes zi, τ is a
temporal parameter, Lreg

i,j is a regularization term that maps
representation zi towards a noise-free direction.

3.3 Automatic Denoiser Selection
Notably, the above contrastive learning requires a suitable de-
noising method ϕj for sample xi. However, it is nontrivial to
fulfill this requirement. Although many conventional denois-
ing methods have been proven effective for noise removal,
they may not well handle noise for a given time series xi

when the noise type does not match. To address this issue, we
propose to collect a set of commonly used denoising methods
M = {ϕ1, ϕ2, . . . , ϕm} (shown in Appendix Table 2) in re-
lated works and automatically select suitable ones from them.

Here, we propose to exploit the reconstruction error from
far to determine suitable methods in M. Our inspiration is
that noisy data usually cause relatively large reconstruction
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errors. Following this, the data processed by suitable denois-
ing methods would have small reconstruction errors, while
the unsuitable methods would cause large errors. In this
way, suitable methods in M can be automatically determined
for every sample xi. However, directly using the above re-
construction error (Eq.(1)) as the learning objective may not
reach the goal. This is because the AR module may overfit
the noisy data, thus rendering raw data to have smaller recon-
struction errors than the denoised ones. To tackle the issue,
we propose another regularization term that encourages far
to learn global patterns from the noisy time series and avoid
overfitting. The key idea is to augment data with more noise,
feed their representations to far, and enforce reconstructing
the raw data that are of less noise. Specifically, we add Gaus-
sian noise to raw data for data augmentation and map it into
the latent space to get the representation z

(n)
i as follows:

z
(n)
i =

[
z
(n)
i,1 , z

(n)
i,2 , . . . , z

(n)
i,C

]
. (4)

Similarly, we feed the z
(n)
i,j≤t into far to obtain c

(n)
i and the

prediction ẑ
(n)
i,t+j . Formally, the overall learning objective for

auto-regressive learning is:

LAR =
1

N

N∑
i=1

(
ei + e

(n)
i

)
, e

(n)
i =

1

k

k∑
j=1

(
zi,t+j − ẑ

(n)
i,t+j

)2

,

(5)
where N is the number of training samples. During opti-
mization, LAR encourages capturing global patterns from the
noisy time series for prediction, which avoids overfitting the
raw data. Thereby, the samples processed by suitable denois-
ing methods would eventually own smaller reconstruction er-
rors than the raw data, and it is feasible to use reconstruction
errors for the automatic selection.

Considering that a data sample may contain multiple types
of noises and require different denoising methods, we lever-
age all the suitable methods in M by assigning them large
weights while setting small weights for the unsuitable ones.
Specifically, we first feed the processed sample x

(d)
i,j by a de-

noising method ϕj to the optimized far and obtain the recon-
struction error ei,j based on the Eq. (1). Then, we compute
the weight value wi,j for ϕj with a softmax function as below:

wi,j =
e−1
i,j∑m

j=1 e
−1
i,m

, (6)

where the m is the number of methods in M. Hence, the
contrastive learning objective LCL is a weighted combination
of Li, j for the denoising methods in M, i.e.,

LCL =
N∑
i=1

m∑
j=1

wi,jLi, j, (7)

where N is the number of the training samples, wi,j is the
weight score for method ϕj . By minimizing LCL, our method
encourages mapping the representations of raw data toward a
noise-free direction, thus mitigating the data noise in latent
space. Finally, we combine auto-regressive learning and con-
trastive learning for joint optimization:

L = γLAR + LCL, (8)

Datasets # Train # Valid # Test Length # Channel # Class
SleepEDF 16,923 8,462 16,923 3,000 1 5

FaultDiagnosis 5,456 2,728 5,456 5,120 1 3
CPSC18 13,754 6,877 13,754 2,000 12 9
PTB-XL 6,509 3,254 6,509 2,000 12 5
Georgia 6,334 3,167 6,334 2,000 12 6

Table 1: Statistics of the noisy time series datasets.

where γ is a weight value to balance the two terms.

4 Experiments
We perform empirical evaluations to answer the following re-
search questions: RQ1: How effective is DECL for unsuper-
vised representation learning? RQ2: Is the method effective
with fine-tuning? RQ3: What are the effects of each compo-
nent? RQ4: Is it robust with varied degrees of noise? RQ5:
How sensitive is it to the hyper-parameters? RQ6: How does
the method work in practice?

4.1 Dataset
We employ five noisy time series datasets. SleepEDF [Gold-
berger et al., 2000] is an EEG dataset in which each sam-
ple records human brain activity. The data in FaultDiagno-
sis [Lessmeier et al., 2016] are collected from sensor read-
ings of bearing machine under different working conditions.
CPSC18 [Liu et al., 2018], PTB-XL [Wagner et al., 2020],
and Georgia [Alday et al., 2020] are ECG datasets wherein
each sample reflects heart activity. The data statistics are
shown in Table 1. See Appendix A.1 for more details.

4.2 Experimental Settings

Comparative Methods. We compare our method with repre-
sentative SSL methods, including contrastive learning-based,
such as TF-C [Zhang et al., 2022], TS2vec [Yue et al., 2022],
TS-CoT [Zhang et al., 2023b], and CA-TCC [Eldele et al.,
2023], as well as generative-based methods, e.g., CRT [Zhang
et al., 2023c] and SimMTM [Dong et al., 2023]. We provide
detailed descriptions in Appendix A.2.
Evaluation Metrics. We follow previous works [Eldele
et al., 2023][Yue et al., 2022] and adopt Accuracy and
Weighted-F1 scores for classification performance evaluation.
Implementation Details. We split the data into 40%, 20%,
and 40% for training, validation, and test set. We set the
learning epochs as 100 and adopt a batch size of 128 for both
pre-training and downstream tasks, as we notice the training
loss does not further decrease. In the transformer, we set L as
4, the number of heads as 4, and the hidden dimension size
as 100. The details of the encoder and AR module can be
referred to in Appendix C.2. As for the hyper-parameters, we
set k as 30% of the total timestamps, assign α as 0.5, and
set γ as 0.1 for all the datasets. The method is optimized
with Adam optimizer; we set the learning rate as 1e-4 and
the weight decay as 5e-4. We collect the commonly used
denoising methods from related papers for different types of
time series and apply the reported hyper-parameters or the de-
fault ones for noise removal (see the details in Appendix Ta-
ble 2). For the baselines, we select the hyper-parameters with
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Methods SleepEDF FaultDiagnosis CPSC18 PTB-XL Georgia
Accuracy Weighted-F1 Accuracy Weighted-F1 Accuracy Weighted-F1 Accuracy Weighted-F1 Accuracy Weighted-F1

TF-C 62.07±0.61 61.24±0.54 76.82±0.72 74.69±0.71 38.46±0.50 35.91±0.64 51.21±0.62 40.93±0.37 48.97±0.34 33.43±0.38
TF-C + DN 65.49±0.67 64.83±0.61 78.39±0.64 77.54±0.75 40.53±0.57 37.15±0.52 53.19±0.65 43.24±0.48 51.29±0.45 35.18±0.39

TF-C + Merge 61.72±0.72 60.49±0.67 77.51±0.85 75.33±0.70 39.07±0.68 36.03±0.56 52.54±0.71 41.59±0.47 49.58±0.59 33.97±0.43
TS2vec 63.68±0.56 62.75±0.42 77.63±0.49 77.15±0.44 40.56±0.59 37.47±0.47 52.71±0.59 44.37±0.21 51.61±0.43 36.42±0.32

TS2vec + DN 67.41±0.63 67.92±0.47 81.15±0.33 80.39±0.25 42.83±0.63 39.08±0.51 55.14±0.32 46.18±0.16 53.27±0.28 38.48±0.17
TS2vec + Merge 63.07±0.70 62.38±0.56 79.29±0.56 78.24±0.48 40.98±0.72 37.63±0.69 53.48±0.54 45.24±0.32 52.19±0.41 36.93±0.34

CRT 62.25±0.48 61.03±0.38 75.82±0.58 76.07±0.32 39.25±0.65 36.34±0.34 52.32±0.58 42.31±0.35 49.92±0.27 34.51±0.15
CRT + DN 65.90±0.39 65.16±0.15 78.93±0.41 78.49±0.26 41.92±0.51 37.96±0.38 54.17±0.36 44.92±0.14 52.17±0.24 36.34±0.21

CRT + Merge 61.94±0.53 61.21±0.39 76.75±0.54 77.04±0.37 39.83±0.79 36.53±0.53 52.89±0.42 43.12±0.23 50.61±0.35 34.79±0.26
SimMTM 63.84±0.57 62.95±0.43 78.39±0.43 77.52±0.39 40.74±0.56 37.72±0.32 52.63±0.43 44.75±0.39 51.34±0.32 35.63±0.24

SimMTM + DN 68.62±0.41 68.19±0.24 81.07±0.32 80.93±0.08 43.21±0.44 39.65±0.25 55.18±0.37 46.39±0.16 53.82±0.29 38.15±0.23
SimMTM + Merge 63.31±0.52 62.27±0.36 79.64±0.50 78.43±0.33 41.30±0.62 38.14±0.41 53.41±0.51 45.17±0.40 52.19±0.23 36.32±0.32

TS-CoT 64.62±0.59 63.98±0.28 76.32±0.44 75.96±0.32 39.82±0.78 37.43±0.39 52.92±0.54 43.14±0.35 50.97±0.31 34.85±0.21
TS-CoT + DN 66.21±0.44 67.05±0.31 79.41±0.37 78.65±0.27 41.36±0.53 38.57±0.25 54.28±0.49 45.30±0.24 52.83±0.25 37.09±0.08

TS-CoT + Merge 64.29±0.52 63.17±0.45 77.83±0.46 76.42±0.31 40.27±0.74 37.64±0.46 53.32±0.66 43.85±0.27 51.38±0.46 35.41±0.16
CA-TCC 63.91±0.48 63.37±0.33 78.05±0.43 77.39±0.26 40.79±0.54 38.29±0.49 52.27±0.32 44.91±0.22 52.07±0.27 36.26±0.34

CA-TCC + DN 68.48±0.27 68.11±0.21 81.39±0.29 80.74±0.15 43.67±0.47 39.87±0.24 55.54±0.25 46.12±0.13 53.69±0.24 38.37±0.29
CA-TCC + Merge 63.67±0.43 63.09±0.37 79.81±0.35 78.26±0.28 41.18±0.61 38.95±0.43 53.11±0.38 45.33±0.18 52.43±0.33 36.84±0.37

Only AR- 62.35±0.51 61.77±0.42 76.95±0.41 75.81±0.32 38.64±0.56 36.26±0.32 51.80±0.53 41.39±0.35 50.42±0.28 34.29±0.35
Only AR 62.89±0.56 62.31±0.36 77.46±0.52 76.73±0.39 39.22±0.48 36.41±0.21 52.27±0.44 41.94±0.29 51.16±0.17 35.03±0.29

CL 67.63±0.39 67.34±0.19 80.84±0.36 80.21±0.11 42.65±0.52 38.93±0.37 54.89±0.52 45.72±0.24 52.98±0.25 37.62±0.27
DECL- 68.35±0.42 67.87±0.34 81.16±0.47 80.58±0.34 43.12±0.33 39.16±0.26 55.06±0.31 45.93±0.16 53.29±0.20 38.01±0.14
DECL* 70.19±0.48 69.52±0.30 81.53±0.33 81.26±0.29 43.96±0.49 39.84±0.34 56.30±0.37 48.24±0.18 54.65±0.12 39.48±0.23

DECL (Ours) 71.74±0.43 70.96±0.25 82.78±0.38 82.17±0.23 45.01±0.32 41.65±0.39 57.41±0.36 49.32±0.27 55.37±0.26 40.35±0.21

Table 2: Overall performance (%) comparison on the datasets. DN means pre-processed by a suitable denoising method.

the best performance on the validation set for the downstream
task. For a fair comparison, we pre-process the raw data for
all the baselines by (i) applying each denoising method in
M for the dataset and reporting the one with the best perfor-
mance (i.e., DN), and (ii) combining all the denoising meth-
ods for noise removal (i.e., Merge). We run experiments 10
times and report the averaged results.

4.3 Linear Evaluation of Representations (RQ1)
We first pre-train SSL methods with unlabeled data for rep-
resentation learning, then use a portion of labeled data (i.e.,
10% and 30%) to evaluate the effectiveness of the learned
representations. Following the standard linear evaluation
scheme [Eldele et al., 2023], we fix the parameters of the
self-supervised pre-trained model and regard it as an encoder,
and then train a linear classifier (single fully connected layer)
on top of the encoder. The results with 10% and 30% training
labels are shown in Table 2 and Appendix Table 1. We find
that existing SSL methods achieve sub-optimal performance
on noisy data and the performances get boosted after apply-
ing a suitable denoising method for noise mitigation. Be-
sides, directly combining all the denoising methods for pre-
processing causes unsatisfactory performance. This can be
explained by that certain denoising methods may induce ex-
tra noise into data when the noise type does not match. Ad-
ditionally, DECL achieves superior performance than other
SSL methods. Specifically, the performance boost over the
best baseline on the CPSC18 dataset is about 3%. This is
because our method exploits suitable denoising methods to
mitigate noise and guide representation learning.

4.4 Fine-tuning Performance Evaluation (RQ2)
To simulate real-world scenarios where a few labeled data are
accessible, we fine-tune our pre-trained model with the labels
and investigate its effectiveness. There are two setups.
Fine-tuning on the Source Dataset. Following previous
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Figure 3: Performance comparison for semi-supervised representa-
tion learning with different percentages of labeled data.

works [Lan et al., 2022], we pre-train the model with un-
labeled data and then fine-tune it with different amounts of
the training labels (i.e., 1%, 5%, 10%, 50%, 75%, and 100%)
from the same dataset. Fig. 3 shows the performance compar-
ison against its supervised learning counterpart and a strong
baseline on three datasets. We observe that supervised learn-
ing performs poorly with limited labeled data (e.g., 1%),
while the fine-tuned models achieve significantly better per-
formance. It verifies that self-supervised pre-training can al-
leviate the label scarcity issue. Besides, DECL outperforms
the strong baseline when using different ratios of training la-
bels in fine-tuning. In brief, it shows the effectiveness of our
method under the fine-tuning mode.
Fine-tuning on New Dataset. To evaluate the generalizabil-
ity of the learned representations, we further pre-train the
model on one dataset and perform supervised fine-tuning on
another dataset. Specifically, we follow the one-to-one eval-
uation scheme [Zhang et al., 2022] and use a portion of la-
beled data (10%) for fine-tuning. Table 3 shows the results
under six cross-dataset scenarios on the ECG data. Simi-
larly, we find that combining all the denoising methods would
render unsatisfactory performance for the baselines than that
of applying a suitable one. Besides, our fine-tuned model
consistently outperforms the strong baselines. Furthermore,
pre-training on a comprehensive dataset (e.g., CPSC18) usu-
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Methods P → C G → C C → P G → P C → G P → G
SimMTM + DN 43.74 42.59 55.48 54.59 54.73 52.62

SimMTM + Merge 41.62 40.81 53.96 52.18 52.80 50.91
CA-TCC + DN 44.17 42.83 57.43 56.21 54.52 52.47

CA-TCC + Merge 42.61 40.75 55.69 54.74 53.25 51.16
DECL (Ours) 46.23 44.25 60.21 59.03 56.41 55.69

Table 3: Performance (accuracy %) of the transferability evaluation
on CPSC18 (C), PTB-XL (P), and Georgia (G) datasets.
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Figure 4: Unsupervised representation learning performance under
varying degrees of data noise.

ally promises better performance on the new dataset, which is
consistent with the findings from related papers [Yang et al.,
2023]. Overall, the results verify that DECL can alleviate the
impact of noise on learning informative representations and
generalize well on cross-dataset scenarios.

4.5 Ablation Study (RQ3)
We also examine the effect of each component in DECL on its
overall performance. Specifically, we derive different method
variants for comparison: (1) DECL-, which drops the reg-
ularization term in the auto-regressive learning and remains
others unchanged; (2) DECL*, which deletes the direction
constraint in the contrastive learning; (3) CL, which assigns
equal weights to the denoising methods and keeps others un-
changed; (4) Only AR, which merely leverages LAR as the
learning objective; (5) Only AR-, which exploits LAR with-
out the regularization term. The results are shown in Table 2.
We find that (i) merely using LAR renders unsatisfactory per-
formance. This is because the noise in latent space cannot
be eliminated and hampers representation learning. (ii) Our
method outperforms CL and DECL-, illustrating that attach-
ing equal importance to the denoising methods would hinder
representation learning and the regularization term in LAR

is conducive to the overall performance. (iii) Our method
achieves higher performance than DECL*, showing that the
direction constraint in contrastive learning helps to eliminate
the noise in representation learning.

4.6 Robustness Analysis against Data Noise (RQ4)
We further investigate the robustness of DECL against vary-
ing degrees of data noise. Specifically, we induce Gaussian
noise to the raw data (with zero mean and varying standard
deviations) and then conduct the linear evaluation for perfor-
mance comparison. The results on three datasets are shown
in Fig. 4; see Appendix B.2 for more results. We have two
interesting findings. (i) By inducing a larger amount of noise,
the performances of the methods gradually drop. This occurs
since the adopted denoising method(s) cannot eliminate the
noise sufficiently, thereby impairing representation learning.
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Figure 5: Hyper-parameter analysis results.

Figure 6: Comparison of the reconstruction error distribution be-
tween raw data and denoised data. After adding regularization, the
distribution gap is more distinguishable.

(ii) Our method consistently outperforms the strong base-
lines. Because DECL selects suitable denoising methods for
every sample and further diminishes noise from representa-
tions with contrastive learning.

4.7 Sensitivity Analysis (RQ5)
We perform sensitivity analysis to study the main hyper-
parameters: the number of predicted future timesteps k in
Eq. (5), the weight α in Eq. (3), and the weight γ in Eq. (8).
Specifically, we adopt the same setup as the linear evalua-
tion experiment, present the results of the PTB-XL dataset in
Fig. 5, and show more results in Appendix B.3. We first ana-
lyze the impact of k, where the x-axis denotes the percentage
k/C and C is the total number of timesteps. It shows that, as
the percentage value increases, the performance first boosts
and then declines. Hence, we suggest setting it to the scope
of 0.1-0.4 in practice. Regarding the hyper-parameter α and
γ, when raising its value, the performance first rises and later
declines. It occurs because either a small or a large value fails
to achieve a balance between the learning objectives. Given
this, we recommend setting the value of α to 0.1-5 and the
value of γ to 0.1-1.

4.8 Visualization Results (RQ6)
The Effect of the Regularization Term. Here, we exam-
ine whether the proposed regularization term in LAR (see
Eq. (5)) can alleviate the overfitting issue and enable the re-
construction error as an indicator for choosing suitable de-
noising methods. Specifically, we compare the model learned
with LAR (i.e., with regularization) and the counterpart with-
out regularization by visualizing the distribution of recon-
struction errors on the PTB-XL dataset. See Appendix B.4
for more details. The results in Fig. 6 show that (i) without a
regularization term, the distributions of reconstruction errors
between raw and denoised data become similar, rendering it
hard to use the reconstruction error as the indicator. (ii) Af-
ter adding the regularization term, the distributions of recon-
struction errors are more distinguishable. In brief, it verifies
that the proposed regularization term indeed alleviates over-
fitting and benefits determining suitable denoising methods.
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Figure 7: (a-c) The learned weights for denoising methods and their
effects. (d) The comparison of SNR on representation.

Analysis on the Selected Denoising Methods. We also ver-
ify whether DECL can assign more weights to the suitable de-
noising methods. In detail, we adopt a case study on the PTB-
XL dataset to (i) visualize the weight values of the denois-
ing methods in M for a sample with high-frequency noise,
and (ii) showcase a raw data and the denoised counterparts
to examine the denoising effect. As shown in Fig. 7(a), the
AR module assigns different weights on the set of poten-
tially feasible denoising methods. For example, the LOESS
method, which is reported to remove high-frequency noise for
ECG [Burguera, 2018], obtains large a weight value; whereas
the PCA method, which does not suit this type of noise [Al-
ickovic and Subasi, 2015], owns a small value. We further
visualize the denoised data by LOESS in Fig. 7(b), which
demonstrates that noises are well mitigated. However, as
shown in Fig. 7(c), the denoised data by PCA still involve
severe noises. More results are presented in Appendix B.5.
The above analyses prove that our method can automatically
select suitable denoising methods for the noisy time series.
Analysis on the Learned Representations. Further, we an-
alyze the effect of DECL on representations. Similar to the
pilot study, we induce some Gaussian noise to the raw data
and compare the SNR value of the randomly initialized rep-
resentations and that of the learned representations after op-
timization. The result on the PTB-XL dataset is presented in
Fig. 7(d). We observe that the SNR value of a strong baseline
CA-TCC almost remains steady after training, while the SNR
value of our method is boosted significantly. See Appendix
B.6 for detailed illustrations. The analyses verify that DECL
can indeed mitigate noise in representation learning.

5 Related Work
5.1 Time Series Self-supervised Learning
To alleviate the reliance on numerous annotated training
data for supervised learning, an increasing number of re-
searches focus on learning representations of time series
in a self-supervised manner. Time series SSL methods
roughly fall into three categories [Zhang et al., 2023a]: (1)
contrastive-based methods [Meng et al., 2023b][Ma et al.,
2023][Meng et al., 2023a], which are characterized by con-
structing positive and negative samples for contrastive learn-
ing, (2) generative-based methods [Zerveas et al., 2021][Li

et al., 2022], which minimize the reconstruction error be-
tween raw data and the generated counterparts for model
learning, (3) adversarial-based methods [Seyfi et al., 2022],
which usually leverage generator and discriminator for adver-
sarial learning. Among them, the contrastive-based methods
are the dominant ones. The key steps of contrastive learn-
ing involve building similar (positive) and dissimilar (nega-
tive) pairs of data samples and mapping the representations of
positive pairs nearby while mapping those of negative pairs
farther apart. The contrastive-based methods can be further
divided into sampling-based [Yèche et al., 2021][Tonekaboni
et al., 2021], augmentation-based [Yue et al., 2022][Yang and
Hong, 2022], and prediction-based [Oord et al., 2018][Del-
dari et al., 2021]. A recent method called TS-CoT [Zhang
et al., 2023b] assumes that complementary information from
different views can be used to mitigate data noise. Differ-
ent from it, our method leverages the power of conventional
denoising methods to guide representation learning. More
details are shown in Appendix D.1.

5.2 Time Series Denoising
Existing time series denoising methods can be divided into
two categories: conventional methods and learning-based
methods. The conventional methods include empirical mode
decomposition [Huang et al., 1998], wavelet filtering [Chao-
valit et al., 2011], sparse decomposition-based, Bayesian fil-
tering [Barber et al., 2011], and hybrid method (e.g., wavelet-
based ICA [Castellanos and Makarov, 2006]) for noise mit-
igation. The advantages of conventional methods lie in the
great denoising effects if properly adopted to match the noise
type. However, selecting suitable denoising methods requires
prior knowledge or trial-and-error. To avoid human efforts,
many learning-based methods that can mitigate the effect of
noise have been proposed in recent years. Based on network
architecture, these methods include wavelet neural networks,
RNN-based [Zhang et al., 2023d][Yoon et al., 2022], and
auto-encoders [Zheng et al., 2022]. Differing from the pre-
vious efforts, our work leverages the conventional denoising
methods to guide mitigating noise in learning, which com-
bines the advantages of the two method categories.

6 Conclusion
In this work, we investigate the problem of mitigating the
effect of data noise for time series SSL. Accordingly, we
propose an end-to-end method called DEnoising-aware Con-
trastive Learning (DECL) for noise elimination in represen-
tation learning. It automatically selects suitable denoising
methods for every sample to guide learning and performs a
customized contrastive learning toward obtaining noise-free
representations. Extensive empirical results verify the effec-
tiveness of our method. Additionally, we perform compre-
hensive analyses to verify our claims, such as the distribution
visualization of reconstruction errors and the denoising ef-
fect visualization of the selected methods. Future works can
explore (i) how to automatically determine suitable hyper-
parameters of the denoising methods; (ii) examine the effec-
tiveness of the method for more downstream tasks, e.g., fore-
casting and anomaly detection [Lai et al., 2021].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5650



Ethical Statement
There are no ethical issues.

Acknowledgments
This research was supported by the grant of DaSAIL project
P0030970 funded by PolyU (UGC).

References
[Alday et al., 2020] Erick A Perez Alday, Annie Gu, Amit J

Shah, Chad Robichaux, An-Kwok Ian Wong, Chengyu
Liu, Feifei Liu, Ali Bahrami Rad, Andoni Elola, Salman
Seyedi, et al. Classification of 12-lead ecgs: the phys-
ionet/computing in cardiology challenge 2020. Physiolog-
ical measurement, 41(12):124003, 2020.

[Alickovic and Subasi, 2015] Emina Alickovic and Abdul-
hamit Subasi. Effect of multiscale pca de-noising in ecg
beat classification for diagnosis of cardiovascular diseases.
Circuits, Systems, and Signal Processing, 34:513–533,
2015.

[Barber et al., 2011] David Barber, A Taylan Cemgil, and
Silvia Chiappa. Bayesian time series models. Cambridge
University Press, 2011.

[Burguera, 2018] Antoni Burguera. Fast qrs detection and
ecg compression based on signal structural analysis. IEEE
journal of biomedical and health informatics, 23(1):123–
131, 2018.

[Castellanos and Makarov, 2006] Nazareth P Castellanos
and Valeri A Makarov. Recovering eeg brain signals:
Artifact suppression with wavelet enhanced independent
component analysis. Journal of neuroscience methods,
158(2):300–312, 2006.

[Chaovalit et al., 2011] Pimwadee Chaovalit, Aryya Gan-
gopadhyay, George Karabatis, and Zhiyuan Chen. Dis-
crete wavelet transform-based time series analysis and
mining. ACM Computing Surveys (CSUR), 43(2):1–37,
2011.

[Chawla, 2011] MPS Chawla. Pca and ica processing meth-
ods for removal of artifacts and noise in electrocardio-
grams: A survey and comparison. Applied Soft Comput-
ing, 11(2):2216–2226, 2011.

[Chowdhury et al., 2022] Ranak Roy Chowdhury, Xiyuan
Zhang, Jingbo Shang, Rajesh K Gupta, and Dezhi Hong.
Tarnet: Task-aware reconstruction for time-series trans-
former. In KDD, pages 212–220, 2022.

[Deldari et al., 2021] Shohreh Deldari, Daniel V Smith, Hao
Xue, and Flora D Salim. Time series change point de-
tection with self-supervised contrastive predictive coding.
In Proceedings of the Web Conference, pages 3124–3135,
2021.

[Dong et al., 2023] Jiaxiang Dong, Haixu Wu, Haoran
Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked
time-series modeling. In NeurIPS, 2023.

[Eldele et al., 2023] Emadeldeen Eldele, Mohamed Ragab,
Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li,
and Cuntai Guan. Self-supervised contrastive represen-
tation learning for semi-supervised time-series classifica-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

[Goldberger et al., 2000] Ary L Goldberger, Luis AN Ama-
ral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody,
Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new re-
search resource for complex physiologic signals. Circu-
lation, 101(23):e215–e220, 2000.

[He et al., 2015] Hong He, Yonghong Tan, and Yuexia
Wang. Optimal base wavelet selection for ecg noise re-
duction using a comprehensive entropy criterion. Entropy,
17(9):6093–6109, 2015.

[Huang et al., 1998] Norden E Huang, Zheng Shen,
Steven R Long, Manli C Wu, Hsing H Shih, Quanan
Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H
Liu. The empirical mode decomposition and the hilbert
spectrum for nonlinear and non-stationary time series
analysis. Proceedings of the Royal Society of London. Se-
ries A: mathematical, physical and engineering sciences,
454(1971):903–995, 1998.

[Ismail Fawaz et al., 2019] Hassan Ismail Fawaz, Germain
Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. Deep learning for time series classi-
fication: a review. Data mining and knowledge discovery,
33(4):917–963, 2019.

[Lai et al., 2021] Kwei-Herng Lai, Daochen Zha, Junjie Xu,
Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting time
series outlier detection: Definitions and benchmarks. In
NeurIPS, 2021.

[Lai et al., 2023] Jiewei Lai, Huixin Tan, Jinliang Wang, Lei
Ji, Jun Guo, Baoshi Han, Yajun Shi, Qianjin Feng, and
Wei Yang. Practical intelligent diagnostic algorithm for
wearable 12-lead ecg via self-supervised learning on large-
scale dataset. Nature Communications, 14(1):3741, 2023.

[Lan et al., 2022] Xiang Lan, Dianwen Ng, Shenda Hong,
and Mengling Feng. Intra-inter subject self-supervised
learning for multivariate cardiac signals. In AAAI, vol-
ume 36, pages 4532–4540, 2022.

[Lessmeier et al., 2016] Christian Lessmeier, James Kuria
Kimotho, Detmar Zimmer, and Walter Sextro. Condition
monitoring of bearing damage in electromechanical drive
systems by using motor current signals of electric motors:
A benchmark data set for data-driven classification. In
PHM Society European Conference, volume 3, 2016.

[Li et al., 2022] Yan Li, Xinjiang Lu, Yaqing Wang, and De-
jing Dou. Generative time series forecasting with diffu-
sion, denoise, and disentanglement. NeurIPS, 35:23009–
23022, 2022.

[Liu et al., 2018] Feifei Liu, Chengyu Liu, Lina Zhao, Xi-
angyu Zhang, Xiaoling Wu, Xiaoyan Xu, Yulin Liu,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5651



Caiyun Ma, Shoushui Wei, Zhiqiang He, et al. An open
access database for evaluating the algorithms of electro-
cardiogram rhythm and morphology abnormality detec-
tion. Journal of Medical Imaging and Health Informatics,
8(7):1368–1373, 2018.

[Luo et al., 2019] Yonghong Luo, Ying Zhang, Xiangrui
Cai, and Xiaojie Yuan. E2gan: End-to-end generative ad-
versarial network for multivariate time series imputation.
In AAAI, pages 3094–3100. AAAI Press Palo Alto, CA,
USA, 2019.

[Ma et al., 2023] Qianli Ma, Zhen Liu, Zhenjing Zheng,
Ziyang Huang, Siying Zhu, Zhongzhong Yu, and James T
Kwok. A survey on time-series pre-trained models. arXiv,
2023.

[Meng et al., 2023a] Qianwen Meng, Hangwei Qian, Yong
Liu, Lizhen Cui, Yonghui Xu, and Zhiqi Shen. MHCCL:
masked hierarchical cluster-wise contrastive learning for
multivariate time series. In AAAI, pages 9153–9161, 2023.

[Meng et al., 2023b] Qianwen Meng, Hangwei Qian, Yong
Liu, Yonghui Xu, Zhiqi Shen, and Lizhen Cui. Unsu-
pervised representation learning for time series: A review.
arXiv, 2023.

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv, 2018.

[Robbins et al., 2020] Kay A Robbins, Jonathan Touryan,
Tim Mullen, Christian Kothe, and Nima Bigdely-Shamlo.
How sensitive are eeg results to preprocessing methods: a
benchmarking study. IEEE transactions on neural systems
and rehabilitation engineering, 28(5):1081–1090, 2020.

[Seyfi et al., 2022] Ali Seyfi, Jean-Francois Rajotte, and
Raymond Ng. Generating multivariate time series with
common source coordinated gan (cosci-gan). NeurIPS,
35:32777–32788, 2022.

[Tonekaboni et al., 2021] Sana Tonekaboni, Danny Eytan,
and Anna Goldenberg. Unsupervised representation learn-
ing for time series with temporal neighborhood coding.
ICLR, 2021.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. NeurIPS, 30, 2017.

[Wagner et al., 2020] Patrick Wagner, Nils Strodthoff, Ralf-
Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze, Woj-
ciech Samek, and Tobias Schaeffter. Ptb-xl, a large pub-
licly available electrocardiography dataset. Scientific data,
7(1):154, 2020.

[Yang and Hong, 2022] Ling Yang and Shenda Hong. Unsu-
pervised time-series representation learning with iterative
bilinear temporal-spectral fusion. In ICML, 2022.

[Yang et al., 2023] Chaoqi Yang, M Brandon Westover, and
Jimeng Sun. Biot: Biosignal transformer for cross-data
learning in the wild. In NeurIPS, 2023.
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