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Abstract
Machine learning based molecular property predic-
tion has been a hot topic in the field of computer
aided drug discovery (CADD). However, current
MPP methods face two prominent challenges: 1)
single-view MPP methods do not sufficiently ex-
ploit the complementary information of molecu-
lar data across multiple views, generally produc-
ing suboptimal performance, and 2) most existing
multi-view MPP methods ignore the disparities in
data quality among different views, inadvertently
introducing the risk of models being overshadowed
by inferior views. To address the above challenges,
we introduce a novel cross-view contrastive fusion
for enhanced molecular property prediction method
(MolFuse). First, we extract intricate molecular
semantics and structures from both sequence and
graph views to leverage the complementarity of
multi-view data. Then, MolFuse employs two dis-
tinct graphs, the atomic graph and chemical bond
graph, to enhance the representation of the molecu-
lar graph, allow us to integrate both the fundamen-
tal backbone attributes and the nuanced shape char-
acteristics. Notably, we incorporate a dual learn-
ing mechanism to refine the initial feature represen-
tations, and global features are obtained by maxi-
mizing the coherence among diverse view-specific
molecular representations for the downstream task.
The overall learning processes are combined into
a unified optimization problem for iterative train-
ing. Experiments on multiple benchmark datasets
demonstrate the superiority of our MolFuse.

1 Introduction
In modern drug research and development (R&D), accurately
predicting molecular properties is crucial for speeding up
drug launch and enhancing R&D efficiency. Molecular Prop-
erty Prediction (MPP) technologies offer an innovative ap-
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proach for estimating properties based on molecular struc-
tural data, thereby refining the screening and validation of
candidate drug molecules.

Existing MPP approaches can be broadly categorized into
single-view and multi-view MPP methods. Single-view MPP
methods uncover molecular traits from singular data perspec-
tives,e.g., molecular knowledge graphs [Fang et al., 2022],
molecular fingerprints [Kearnes et al., 2016], SMILES rep-
resentations [Honda et al., 2019], and 2D molecular graphs
[Hu et al., 2020]. These data capture different angles and fea-
tures of molecules to achieve specific downstream tasks, e.g.,
activity prediction, and drug-target prediction. In contrast,
multi-view MPP methods [Zhu et al., 2021; Liu et al., 2021;
Ma et al., 2022; Zhou et al., 2023], considering more com-
prehensive contextual information, have garnered increasing
attention in this field. However, existing multi-view MPP
approaches generally have not considered quality variations
across views, lacking consistency in learning and interac-
tion for the same molecule. Low-quality information could
easily misguide the learning of common semantics. For in-
stance, [Zhu et al., 2022] concatenate all views to obtain
global features, where the inconsistency between the latent
feature spaces is ignored.

To this end, we implement a two-stage feature learn-
ing framework for predicting molecular properties. Specif-
ically, we consider different types of molecular data, in-
cluding biophysical (e.g., BACE) and physiological (e.g.,
ClinTox) datasets. Biophysical datasets focus on molecule-
biomolecule interactions, emphasizing physical traits. On the
other hand, physiological datasets spotlight bioactivity, tox-
icity, and metabolic processes in biological systems. They
comprehensively reveal bond types and molecular connectiv-
ity, which are particularly critical when certain toxicities link
to specific structures and bonds.

Balancing these aspects is complex, as detailed atomic
interactions can become intricate, especially in larger
molecules, impacting model training. Focusing solely on
chemical bond embeddings might inadvertently gloss over
granular atomic details, an omission that might be detrimen-
tal for biophysical datasets that rely heavily on atomic inter-
action insights. To bridge this gap, inspired by [Ma et al.,
2022], we introduce a novel approach which synergizes the
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topological and spatial perspectives of molecules in the first
stage, which crafts a holistic portrayal that encompasses both
its backbone and shape attributes, thereby streamlining the
representational domain while ensuring the nuanced require-
ments of both dataset types are met.

In the second stage, we design a dual learning loss to uti-
lize view complementarity to refine the feature representa-
tion, where the reliable semantic information between dif-
ferent views are shared. Furthermore, we implement cross-
view contrastive fusion to obtain the global features. In this
module, the mutual information between global features and
view-specific refined features is maximized. Specifically, two
linear feature transformation layers are constructed for differ-
ent views to yield their refined features. Then, a nonlinear
MLP is used to fuse all views’ features to generate global
features, thereby exploring view consensus information from
different views.

The main contributions of our work are as follows:

• We emphasize the comprehensive learning of molecu-
lar information through integrating multiple views, fully
considering molecular sequence features, atomic fea-
tures along with their neighboring attributes, and chem-
ical bond angular features.

• We introduce a multi-view contrastive fusion method,
which jointly conduct cross-view interaction and consis-
tency learning on latent features across views, thereby
addressing inconsistency in multi-view molecular data
while maintaining consistent shared semantics.

• Extensive experiments demonstrate the approach outper-
forms other state-of-the-art methods on multiple molec-
ular benchmark datasets.

2 Related Work
This section provides a concise overview of molecular ma-
chine learning methods, including single-view MPP and
multi-view MPP.

2.1 Single-View Molecular Property Prediction
For molecular prediction work, RDKit [Tosco et al., 2014]
can process SMILES strings [Anderson et al., 1987], sub-
sequently converting them into feature vectors or molecular
fingerprints. These vectors or fingerprints can be used as
inputs for machine learning models. Sequence-based MPP
methods [Chithrananda et al., 2020; Honda et al., 2019;
Ross et al., 2022] decompose SMILES into a series of to-
kens representing atoms/bonds and then apply deep models
on these tokens. In addition to the traditional use of se-
quence data, graph-based MPP models are one of the dom-
inant models. [Hu et al., 2020] propose a graph-based pre-
training model, which pre-train expressive GNNs at the level
of individual nodes and entire graphs. [Zhuang et al., 2023]
emphasize the relation between each molecule and its multi-
ple properties, and construct a meta-learning framework with
scheduling subgraph sampling by contrastive loss. [Xiong et
al., 2020] propose to learn molecular characterization from
relevant drug discovery datasets, and employ a graph neural
network architecture for molecular representation. [You et

al., 2020] propose Graph Contrastive Learning (GraphCL),
which is a general framework for learning node representa-
tions. On this basis, [You et al., 2021] proposes a unified
bi-level optimization framework to automatically select data
augmentations when performing GraphCL on specific graph
data. [Wang et al., 2022] present a self-supervised learning
framework for large unlabeled molecule datasets. [Stärk et
al., 2022] uses 3D pre-training to provides significant im-
provements for different properties.

2.2 Multi-View Molecular Property Prediction
Based on the diversity of molecular data, such as molecu-
lar fingerprints, SMILES representation, 2D molecular graph
and 3D molecular graph, each view captures different angles
and properties of molecules, making the technology utiliz-
ing multi-view properties gain more attention in this field.
[Guo et al., 2022] propose a multilingual molecular embed-
ding generation approach, incorporating molecular SMILES
and InChI for pretraining. [Zhu et al., 2021] design a new pre-
training algorithm, dual-view molecule pre-training, which
constructs an auxiliary contrast loss using molecular map fea-
tures and sequence features. [Liu et al., 2021] employ self-
supervised learning to enhance 2D molecular graph encoders.
The enhancement is through correspondence and consistency
between 2D topological structures and 3D geometric views.
[Fang et al., 2022] combine chemical knowledge graphs with
molecular graphs. By integrating domain knowledge into
graph semantics, the model can consider the correlation be-
tween atoms with shared properties, thereby capturing the
features of molecules in the representation of the molecu-
lar graph more accurately. [Stärk et al., 2022] utilize exist-
ing 3D molecular datasets to pre-train models. It infers the
geometry of molecules in advance and then employs a self-
supervised learning approach, maximizing mutual informa-
tion of 3D summary vectors for downstream tasks. [Yang et
al., 2023] propose a gradient perturbation-based contrastive
Learning to generate positive and negative molecules to opti-
mize the exposure bias problem in translational molecule op-
timization. [Zhu et al., 2022] present a novel multi-view con-
trastive learning approach, and a unique pretraining frame-
work which is learned from four molecular representations.
In response to molecules are treated as 1D sequential tokens
or 2D topology graphs in most MRL methods, [Zhou et al.,
2023] propose a universal MRL framework named Uni-Mol.
All these valuable works have demonstrated the superior per-
formance of multi-view learning in molecular prediction.

3 Proposed Method
3.1 Multi-View Molecule Feature Learning
Embedding SMILES Strings
First, we use the SMILES to represent molecular sequences,
which offers a concise and expressive format. In this way,
each atom is uniquely represented using its ASCII sym-
bol and employs distinctive symbols to articulate chemical
bonds, branches, and stereochemical configurations. The pro-
posed MolFuse begins by dissecting the SMILES molecu-
lar descriptors into a series of tokens ei. The molecular
sequence S is an ordered list of ei, expressed as S =<
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Notation Descriptions
S An ordered list of chemical symbols, rep-

resenting molecular sequence.
T = (V, E) Molecular topological graph.
M = (E ,A) Molecular spatial graph.
v ∈ V Node in the molecular topological graph

T , representing atom v .
(u, v) ∈ E Edge in the molecular topological graph

M, representing the chemical bond (u, v).
N (v) The neighboring atoms of atom v.
auvw ∈ A Bond angles formed between two consecu-

tive chemical bonds (u, v) and (v, w), uni-
fied by the shared atom v.

Hseq , Hgra The latent embedding for the sequence
view and graph view, respectively.

Zseq,Zgra The refined molecular representations for
the sequence view and the graph view, re-
spectively.

Ẑseq, Ẑgra The reconstructed features for the se-
quence view and the graph view, respec-
tively.

Zfuse The global fused features used to final clas-
sification.

Table 1: Nomenclature.

e1, e2, e3, · · · , en > (1 ≤ i ≤ n). Subsequently, a GRU
is applied to these tokens to obtain the molecular embedding
Hseq in sequence view:

Hseq =←−−gseq(ϕ(S))⊕−−→gseq(ϕ(S)), (1)

where the embedding layer ϕ encodes the molecular sequence
S, the ⊕ operator symbolizes matrix concatenation, and the
gseq (·) signifies the bidirectional gated recurrent unit (GRU)
[Chung et al., 2014]. This design ensures that the model rec-
ognizes and integrates information from both backward and
forward states in the sequence, employed to capture contex-
tual information within the molecular sequence. In particular,
in the first stage, we train our GRU units under the constraints
of the training dataset labels. In order to simplify the compu-
tational process and stabilize the pre-trained model, we strate-
gically freeze the GRU units in the second stage.

Embedding Topological and Spatial Graph
Considering the molecular structure represented by the topo-
logical graph T = (V, E), the individual nodes v ∈ V are
emblematic of distinct atoms, while each edge (u, v) ∈ E en-
capsulates the chemical bond formed between atoms u and v.
We denote the atom attribute as xv for the atom v, and the
bond attribute as x(u,v) for the bond (u, v).

Diving deeper into the spatial intricacies, the molecular
spatial graph M = (E ,A) is presented. Within this depic-
tion, each node (u, v) ∈ E is indicative of the chemical bond
established between atoms u and v. The edge auvw ∈ [0, π]
captures the bond angles formed between two consecutive
chemical bonds (u, v) and (v, w), unified by the shared atom

v. This delineation provides an insight into both the molec-
ular configuration and spatial orientation. Specifically, we
conduct a comprehensive graph representation by consider-
ing both topological graph and spatial graph.

In topological graph T , we leverage the graph neural net-
work (GNN) to get the graph representation. Specifically, the
embedding of atom v is initialized as h(0)

v = xv , and the m(k)
v

represents the hidden state of atom v during the k-th iteration.
The GNN produces the embedding h

(k)
v for atom v at the k-th

iteration, which can be described by:

m(k)
v = F (k)

{
h(k−1)
v ,h(k−1)

w ,h
(k−1)
(v,w) | w ∈ N (v)

}
, (2)

h(k)
v = C(k)

{
h(k−1)
v ,m(k)

v

}
, (3)

where F (·) and C (·) denote aggregating messages from the
neighbours and updating the node representation in the GNN
module, respectively. The N (v) indicates the neighbouring
atoms of v at the k-th iteration. Particularly, h(k−1)

(v,w) denotes
the embedding of bond (v, w) learned at the (k − 1)-th itera-
tion in a molecular spatial graphM as Eq. (5).

Similarly, in spatial graphM, the embeddings of chemical
bonds (u, v) and (v, w) are also initialized as h(0)

(u,v) = x(u,v)

and h
(0)
(v,w) = x(v,w), undergo training via GNN. Let m(k)

(u,v)

denote the hidden state of the chemical bond (u, v) during
the k-th iteration. Finally, the GNN produces the embedding
h
(k)
(u,v) for this bond at k-th iteration:

m
(k)
(u,v) = F

(k)
{(

h
(k−1)
(u,v) ,h

(k−1)
(u,w) , awuv | w ∈ N (u)

)
∪
(
h
(k−1)
(u,v) ,h

(k−1)
(v,w) , auvw | w ∈ N (v)

)}
,

(4)
h
(k)
(u,v) = C

(k)
{
h
(k−1)
(u,v) ,m

(k)
(u,v)

}
, (5)

where N (u) and N (v) denote the neighbouring atoms of
u and v, respectively. Similarly, the F (·) and C (·) denote
aggregating messages from the neighbours and updating the
node representation in GNN module.

To achieve an advanced molecular representation that
adaptively combines both topological and spatial views, we
employ READOUT function to make it integrate local node
embeddings into a coherent global graph representation:

Hgra = READOUT
{
h(K)
v | v ∈ V

}
, (6)

where Hgra is the learned graph representation, and the K
is the number of iterations. Notably, with restrictions of the
training dataset’s label, we can get the optimized molecular
representation under the graph view, which will stop gradient
propagation in the second stage.

3.2 Cross-View Representation Fusion
After the first learning stage, we obtain both optimized
molecular representations under the sequence view and graph
view. We design a novel contrastive fusion framework for
learning more comprehensive joint representation from two
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Figure 1: An overview of the proposed MolFuse. (a) Extracting intricate molecular semantics and structures from both sequence and graph
views, to optimize molecular representations at distinct granularities, providing a holistic portrayal of molecules that integrates both backbone
and shape attributes. (b) Leveraging the linear feature transformation layer G(·) as parametric function to facilitate the dual learning across
the views from Zseq to Zgra, ensures that the insights from high-quality views are imparted to their low-quality counterparts. Then, we
maximize the consistency in the molecular representations specific to each view, to learn a more comprehensive global features.

views. Specifically, we propose a dual learning module,
where view-specific features acquire reliable knowledge from
another view to refine their own unclear feature expression.
Another contrastive fusion module is designed to learn more
comprehensive global features via maximizing consistency
with view-specific molecular representations. Notedly, in our
designed contrastive fusion framework, the consistency and
complementarity under different views are fully explored.

Dual Learning Module
Let hseq

i and hgra
i denote the i-th molecular representations

under the sequence view and the graph view, respectively.
Generally, the diversity of molecular features brings incon-
sistency in molecular representation. We consider that two
representations of the same molecule should be consistent in
the latent space. To do this, we first stack two view-specific
MLPs on the features hseq , and hgra respectively, to project
them into a consistent feature space. Specially, for a molecule
i under the different views, the transformation is defined as:

Zseq
i = σ

(
W⊤

s h
seq
i + bs

)
, (7)

Zgra
i = σ

(
W⊤

g h
gra
i + bg

)
, (8)

where Zseq and Zgra denote the refined molecular represen-
tations for the sequence view and the graph view, respectively.
The Ws, bs, Wg , bg are the learnable parameters in the
MLPs, and the σ is an activation function.

Considering that the characteristics and qualities of dif-
ferent views generally vary widely, we hope to utilize view

complementarity to refine the feature expression of the low-
quality view. Simply put, the low-quality view acquires re-
liable knowledge from other views. To this end, we design
a dual learning module, which aims to achieve 1) different
views maintain consistency in latent feature space and 2) re-
liable semantic information is delivered to each other from
different views. Specifically, we construct two linear feature
transformation layers G(1) and G(2), where the feature Zseq is
projected to maintain consistency with the feature Zgra, vice
versa. Then the reconstructed features Ẑgra and Ẑseq can be
described as:

Ẑgra
i = G(1) (Zseq

i ) = W⊤
(1)Z

seq
i + b(1), (9)

Ẑseq
i = G(2) (Zgra

i ) = W⊤
(2)Z

gra
i + b(2), (10)

where W(1), b(1), and W(2), b(2) denote the parameters on
the feature transformation layers G(1) and G(2), respectively.

In this module, We employ a dual learning strategy, where
the consistency objective is conducted by forcing view-
specific features Zseq and Zgra to be consistent with their
reconstruction objective Ẑseq and Ẑseq . In this way, cross-
view reliable information is delivered to each other. Then,
the dual learning loss can be formulated as:

Ldua =
1

N

N∑
i=1

(∥∥∥Zseq
i − Ẑseq

i

∥∥∥2
2
+

∥∥∥Zgra
i − Ẑgra

i

∥∥∥2
2

)

=
1

N

N∑
i=1

(∥∥∥Zseq
i − G(2) (Zgra

i )
∥∥∥2
2
+
∥∥∥Zgra

i − G(1) (Zseq
i )

∥∥∥2
2

)
.

(11)
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Contrastive Fusion Module
In this module, we conduct cross-view contrastive fusion to
obtain more comprehensive global features from two views.
To leverage the global discriminative information, we first
concatenate all origin embedding, i.e., hseq and hgra. Then,
a multi-layer perceptron (MLP) is applied to fuse the se-
quence view representations with the graph view represen-
tations adaptively. Then, the global fused feature Zfuse is
obtained by:

Zfuse
i = σ

(
W⊤

fuse (h
seq
i ⊕ hgra

i ) + bfuse

)
, (12)

where ⊕ denotes the matrix concatenation, σ denotes the ac-
tivation function, and Wfuse, bfuse denote the parameters
on fusion MLP.

Motivated by the insight that the representations of the
same molecule from different views are typically similar, we
conduct contrastive fusion between view-specific features,
i.e., Zseq and Zgra, and global fused feature Zfuse to imple-
ment the fusion objective. In this respect, taking the sequence
view as an example, we denote

{
Zfuse

i ,Zseq
j

}
j=i

as positive

feature pairs, and the rest
{
Zfuse

i ,Zseq
j

}
j ̸=i

are negative fea-

ture pairs. By contrastive learning, the model could achieve
that the similarities of positive pairs are maximized, and neg-
ative pairs are minimized. Firstly, the cosine distance is used
to measure the similarity of feature pairs:

sim
(
Zfuse

i ,Zseq
j

)
=

〈
Zfuse

i ,Zseq
j

〉
∥Zfuse

i ∥∥Zseq
j ∥

, (13)

where ⟨·, ·⟩ is the dot product operator. Then, the contrastive
loss under the sequence view can be expressed as:

Ls = −
1

N

N∑
i=1

log
exp

(
sim

(
Zfuse

i ,Zseq
i

)
/τ

)
∑N

j=1,j ̸=i exp
(
sim

(
Zfuse

i ,Zseq
j

)
/τ

) ,
(14)

where τ is a temperature coefficient. Similarly, we can also
compute the contrastive loss under the graph view:

Lg = − 1

N

N∑
i=1

log
exp

(
sim

(
Zfuse

i ,Zgra
i

)
/τ

)
∑N

j=1,j ̸=i exp
(
sim

(
Zfuse

i ,Zgra
j

)
/τ

) .
(15)

Then, we combine the contrastive losses under the two
views, and the final contrastive fusion loss is:

Lcon = Ls + Lg. (16)

After cross-view contrastive fusion, we use the global
fused feature Zfuse as the final molecular representation to
predict the molecular property. Specifically, the probability
ŷi of the molecule i classified as a positive instance can be
calculated as follows:

ŷi = σ
(
W⊤

predZ
fuse
i + bpred

)
, (17)

where σ is an activation function, and the Wpred, bpred are
learnable parameters on classifier MLP. The supervised loss

Category Dataset #Compounds #Task Split
Physiology BBBP 2,039 1 Scaffold

Tox21 7,831 12 Random
ClinTox 1,478 2 Random
SIDER 1,427 27 Random
ToxCast 8,575 617 Random

Biophysics BACE 1,513 1 Scaffold
HIV 41,127 1 Scaffold

Table 2: Details of datasets used in this study.

Lsup based on cross entropy is defined as follows:

Lsup (ŷ) = −
N∑
i=1

yi log (ŷi) + (1− yi) log (1− ŷi) , (18)

where yi is the true label of the molecule i. In the end, we
jointly optimize the supervised loss, the contrastive fusion
loss, the dual learning loss. Specifically, the α and β are hy-
perparameters, and the overall loss function is:

L = Lsup + αLdua + βLcon. (19)

4 Experiments
In this section, we focus on the following three research ques-
tions to validate the effectiveness of MolFuse. Due to space
limitation, appendix B offers more comprehensive analysis
and more details on our experiments.

• RQ1: Can MolFuse surpass state-of-the-art on molecu-
lar property prediction task?

• RQ2: Does MolFuse enable high-quality view guidance
through dual learning?

• RQ3: Does the multi-view fusion module explore the
consistency and complementarity of molecules under
different views?

4.1 Experimental Setup
Dataset Description
MoleculeNet [Wu et al., 2017] is a large scale benchmark
for molecular machine learning. It curates multiple public
datasets and establishes metrics for evaluation. We use seven
of these datasets, BBBP, BACE, Tox21, ClinTox, SIDER,
ToxCast, HIV, for this experiment. The statistics of these
datasets are summarized in Table 2.

Comparison Algorithms
We used three different types of baseline comparisons.

GNN Classifier. We employ a standard classifier that con-
sists of a 5-layer GNN complemented by a single fully con-
nect layer. This encompasses three distinctive GNN architec-
tures: GCN [Kipf and Welling, 2016], GAT [Veličković et al.,
2018], and GIN [Xu et al., 2018].

Single-View MMP Methods. We select the representative
single-view MPP pretraining models, include AttrMask [Hu
et al., 2020], ContextPred [Hu et al., 2020], GraphCL [You et
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Dataset BBBP Tox21 ToxCast SIDER ClinTox HIV BACE Avg.↑
GCN (2016) 65.9 ± 0.9 74.4 ± 0.6 63.6 ± 1.1 60.6 ± 0.8 55.4 ± 3.6 75.2 ± 1.4 71.0 ± 4.6 66.5
GAT (2018) 64.9 ± 1.2 75.0 ± 0.8 63.5 ± 1.6 61.0 ± 1.1 58.9 ± 1.4 75.5 ± 1.7 75.3 ± 2.4 67.7
GIN (2018) 68.9 ± 1.2 74.3 ± 0.6 64.0 ± 1.6 58.1 ± 1.5 58.8 ± 5.7 75.6 ± 1.6 69.0 ± 4.7 66.9

AttrMask (2020) 65.0 ± 2.3 74.8 ± 0.2 62.9 ± 0.1 61.2 ± 0.1 87.7 ± 1.1 76.8 ± 0.5 79.7 ± 0.3 72.5
ContextPred (2020) 65.7 ± 0.6 74.2 ± 0.1 62.5 ± 0.3 62.2 ± 0.5 77.2 ± 0.8 77.1 ± 0.8 76.0 ± 2.0 70.7

GraphCL (2020) 69.7 ± 0.6 73.9 ± 0.6 62.4 ± 0.5 60.5 ± 0.8 76.0 ± 2.6 77.5 ± 1.2 75.4 ± 1.4 70.6
JOAO (2021) 66.0 ± 0.6 74.4 ± 0.7 62.7 ± 0.6 60.7 ± 1.0 66.3 ± 3.9 76.6 ± 0.5 72.9 ± 2.0 68.5

MolCLR (2022) 66.6 ± 1.8 73.0 ± 0.1 62.9 ± 0.3 57.5 ± 1.7 86.1 ± 0.9 76.2 ± 1.5 71.5 ± 3.1 70.5
GraphMVP (2021) 68.5 ± 0.2 74.5 ± 0.4 62.7 ± 0.1 62.3 ± 1.6 79.0 ± 2.5 74.8 ± 1.4 76.8 ± 1.1 71.2
3DInfomax (2022) 69.1 ± 1.0 74.5 ± 0.7 64.4 ± 0.8 60.6 ± 0.7 79.9 ± 3.4 76.1 ± 1.3 79.7 ± 1.5 72.0

MEMO (2022) 71.6 ± 1.0 76.7 ± 0.4 64.9 ± 0.8 61.2 ± 0.6 81.6 ± 3.7 78.3 ± 0.4 82.6 ± 0.3 73.8
Uni-Mol (2023) 71.3 ± 0.6 76.1 ± 0.2 63.6 ± 0.1 66.3 ± 0.9 92.0 ± 0.9 77.0 ± 0.8 85.1 ± 0.8 75.9

Ours 74.3 ± 1.3 77.6 ± 0.4 64.1 ± 0.3 69.5 ± 1.0 95.5 ± 3.3 78.6 ± 0.9 87.2 ± 1.3 78.1

Table 3: ROC-AUC (%) performance of different methods on seven binary classification tasks from MoleculeNet benchmark. The mean and
standard derivation are reported. The best result is shown in bold and the second best result is underlined.

Dataset BBBP SIDER BACE
w/o Ldua&Lcon 59.8 ± 1.0 57.5 ± 1.7 73.9 ± 0.6

w/o Ldua 63.8 ± 1.0 60.7 ± 1.0 77.6 ± 0.3
w/o Lcon 71.7 ± 0.7 62.3 ± 1.6 81.6 ± 3.7

Full modules 74.3 ± 1.3 69.5 ± 1.0 87.2 ± 1.3

Table 4: ROC-AUC (%) performance of ablation studies. All other
parameters are kept the same for a fair comparison.

al., 2020], along with the recently introduced methods JOAO
[You et al., 2021] and MolCLR [Wang et al., 2022].

Multi-View MMP Methods. We adopt multi-view MPP
benchmarks, include GraphMVP [Liu et al., 2021], 3D Info-
Max [Stärk et al., 2022], MEMO [Zhu et al., 2022], and the
newly revealed Uni-Mol [Zhou et al., 2023].

Dataset Splitting
In addition to dataset selection, how to split the dataset ratio-
nally is another important factor in training the model. The
dataset is usually split into training set, validation set and test
set for benchmarking using random splitting, which is con-
sidered an effective and simple method in typical machine
learning. However, due to the uniqueness of the molecular
data, using random split molecular data is not an appropri-
ate method. We used a splitting method called scaffold split-
ting, to cope with this situation, which is an attempt to split
molecules with different structures into different sets [Bemis
and Murcko, 1996]. And in this experiment, we used the
dataset splitting method recommended in MoleculeNet.

Evaluation Metrics
Considering that the seven datasets in MoleculeNet used are
all related to the classification task, we use the area under
the curve of the receiver operating characteristic curve (ROC-
AUC) to quantify the classification performance. We use the

Figure 2: ROC-AUC performance of MolFuse on seven datasets at
different epochs.

mean metric value as the final performance results for the
datasets with multi-labels.

Implementation Details
Flowing [Ma et al., 2022] and [Wang et al., 2022], each
model was trained for up to 100 epochs, with the training
procedure halting if there was no increase in the validation
ROC-AUC over 15 consecutive epochs. A 1-layer BiGRU is
employed as the backbone to extract sequence features and
two 5-layer graph isomorphism networks with edge features
as the foundation for the graph view representation encoder.
All modules undergo training using the Adam optimizer. A
grid search based on the validation ROC-AUC was conducted
to seek the optimal hyperparameter configuration. Cross-
entropy loss was implemented as the classification loss. All
simulations are implemented using PyTorch 1.7.1, and the
original code of this method will be provided later.
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Figure 3: The t-SNE visualization. (a), (b), (c) are the molecular
clusters of BBBP in sequence view, topology-spatial view, and Mol-
Fuse classified molecular clusters. (d), (f), (g) are the same clusters
of BACE.

4.2 Experimental Results and Analysis
Overall Performance (RQ1)
The performance of seven molecular property prediction
tasks is summarized in Table 3. Generally, it can be found
from the table that MolFuse shows strong empirical perfor-
mance across all seven downstream datasets, delivering six
out of seven state-of-the-art results and acquiring an 2.2%
absolute improvement on average. The outstanding results
validate the superiority of our proposed model. We further
visualize the performance changes during the model’s learn-
ing process to provide an intuitive understanding in Fig. 2.
We observe that as the number of training epochs increased,
MolFuse’s performance on the BACE, HIV, SIDER, ToxCast,
and BBBP datasets first improved and then stabilized. How-
ever, for the Clintox and Tox21 datasets, the performance ini-
tially improves but subsequently begins to decline. This indi-
cates that MolFuse requires an appropriate number of training
epochs to facilitate optimal model iterations.

Molecule Clustering Analysis (RQ1)
We take the BBBP and BACE dataset as the case studies to vi-
sualize molecular embeddings at different views and stages.
Fig. 3 (a) illustrates that molecules derived solely from the
single view SMILES information do not have relatively indis-
tinct separations. This suggests an absence of clear chemical
information and atom-level differences. Fig. 3 (b) shows that
the molecular differentiation boundaries obtained from 2D in-
formation differ from those in Fig. 3 (a), also do not have
relatively indistinct separations. This disparity arises due to
the inconsistencies in the latent feature space across different
views. However, Fig. 3 (c) demonstrates that our MolFuse
model distinctly separates different types of molecules with
clearer boundaries. This indicates that the comparative fusion
strategy of our model effectively deploys the consistency and
complementarity across the views.

Ablation Studies (RQ2 & RQ3)
Table 4 investigates the effect of removing different modules
on the model. We observe that bypassing the cross-view fu-
sion module and simply concatenating the views produces

Figure 4: (a) Parameter sensitivity analysis of α and β on SIDER.
(b) Parameter sensitivity analysis of τ on three datasets.

suboptimal results. This underscores the importance of har-
nessing the consistency across views. Concurrently, we ob-
serve that MolFuse still outperforms baseline methods on the
BBBP dataset under study, attesting to the robust capability of
the dual learning module in handling view alignment. When
the model is without both module, it reduces to a GNN Clas-
sifier, and its performance closely mirrors that of the GNN
Classifier. Across all tasks, we note that combining the dual
learning module with the cross-view fusion module yields su-
perior representations.

Parameter Sensitivity Analysis (RQ1)
In the parameter sensitivity analysis, we investigate two hy-
perparameters that balance the loss components, specifically:
L = Lsup + αLdua + βLcon. Additionally, we examine the
sensitivity of the temperature coefficient τ in Eqs. (15) and
(16).

Fig. 4 (a) displays the average ROC-AUC across 100 inde-
pendent runs. As depicted in the figure, our method exhibits
robustness to the choices of α and β. Selecting both hyperpa-
rameters at 0.5 leads to optimal model performance.

The ROC-AUC initially increases with the growth of τ .
However, when it surpasses 0.6, there is a noticeable perfor-
mance drop on the SIDER dataset. This decline might be
attributed to the increased entropy causing greater disorder
and subsequently deteriorate MolFuse’s performance. Over-
all, MolFuse exhibits relative stability.

5 Conclusion
In this paper, we introduce a novel model MolFuse that amal-
gamates various molecular features. Particularly, all view in-
formation is integrated into a cross-view contrastive fusion
framework, where the quality of each view is fully consid-
ered. Firstly, the intricate molecular semantics and structures
from both sequence and graph views are extracted. Then,
we design the dual learning loss to refine low-quality views,
which acquire reliable semantic information from different
views. Finally, to fully explore view consistency and comple-
mentary, we conduct the fusion object on all views’ features,
where the mutual information between global feature and
view-specific refined features is maximized. As evidenced by
the results, MolFuse model produces precise chemical repre-
sentations for a diverse range of molecules, ensuring accurate
molecular property predictions.
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