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Abstract

Test Time Adaptation (TTA) has garnered signif-
icant attention in recent years, with the research
focus on addressing distribution shifts during test
time. As one fundamental component of many TTA
methods, the Batch Normalization (BN) layer plays
a crucial role in enabling the model adaptability.
However, existing BN strategies can prove detri-
mental when the batch size is (extremely) small.
In numerous real-world scenarios, limited hard-
ware resources or just-in-time demand often ne-
cessitates adjusting models with very small batch
sizes, making existing methods less practical. In
this paper, we first showcase and thoroughly ana-
lyze the negative transfer phenomenon in previous
TTA methods encountering extremely small batch
sizes. Subsequently, we propose a novel batch
size-agnostic method called NanoAdapt to effec-
tively mitigate the negative transfer even with batch
size 1. NanoAdapt is composed of three key com-
ponents: a dynamic BN calibration strategy that
leverages historical information and the Taylor se-
ries to refine the statistics estimations, an entropy-
weighted gradient accumulation strategy that uses
the entropy of each sample’s label prediction to
weigh and accumulate the loss for backpropaga-
tion, and a novel proxy computation graph to cap-
ture the sample interactions. Extensive experi-
ments are conducted to validate the superiority of
NanoAdapt, showing its consistent efficacy in im-
proving existing TTA methods.

1 Introduction
Deep neural networks have demonstrated remarkable perfor-
mance across various machine learning problems, particu-
larly in image classification. However, they frequently ex-
hibit brittleness and vulnerability to challenges arising from
data distribution shifts. Instances of these challenges include
a rapid decline in accuracy for deep image classifiers when
confronted with input perturbations, such as noise or blur
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Figure 1: Top: resource-constrained test time adaptation scenarios
with small batch size. Bottom: Noticeable performance decline of
one representative pioneering TTA approach TENT [Wang et al.,
2021] as the batch size decreases from N=200 to N=1. Whereas
our proposed NanoAdapt effectively enhances TENT even in case
of extremely small batch size N=1.

[Hendrycks and Dietterich, 2019]. Consequently, the robus-
tification of deep models against such test shifts constitutes a
crucial and actively researched area.

Test time adaptation (TTA) is an emerging frontier that ad-
dresses the challenge of adjusting pre-trained models to un-
foreseen shifts in distribution. It is particularly crucial as
it enables models to perform effectively on unlabeled data
encountered during deployment. In the pursuit to adapt
models during testing, various methodologies have been ex-
plored, including test time normalization [Nado et al., 2020;
Schneider et al., 2020], entropy minimization [Wang et al.,
2021], self-supervised learning [Sun et al., 2020a; Liu et al.,
2021], contrastive learning [Chen et al., 2022], data augmen-
tation [Zhang et al., 2022a], uncertainty-aware optimization
[Niu et al., 2022], etc.

Recently, some studies have focused on addressing the
challenges of TTA in intricate test environments, particu-
larly in Out-of-Distribution scenarios [Sun et al., 2020b;
Li et al., 2023; Zhou et al., 2023], as well as in online con-
tinual adaptation [Boudiaf et al., 2022; Wang et al., 2022;
Niu et al., 2022; Zhang et al., 2023]. However, there is
a noticeable gap in the literature concerning the issue of
TTA in resource-constrained scenarios. As depicted in Fig.
1, resource-constrained industrial environments with limited
hardware resources such as mobile devices, or just-in-time
adaptation needs for individualized models, often necessitate
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adjusting models with very small batch sizes. However, ex-
isting TTA methods relying on the Batch Normalization layer
encounter significant challenges in such situations, as the con-
ventional BN relies on a sufficiently large enough batch size
to accurately estimate the data distribution statistics. When
the batch sizes are small, they tend to degrade drastically,
leading to severe negative transfer. Fig. 1 shows the no-
ticeable performance decline of one representative pioneering
TTA approach TENT [Wang et al., 2021] as the batch size
decreases from N=200 to N=1. With extremely small batch
sizes N=2, 1, the model collapses with error rates exceeding
97%.

Previously only few works have explored the small batch
size challenge of BN in TTA. SAR [Niu et al., 2023] high-
lighted that existing TTA methods struggle to handle small
batch sizes. It sidestepped the issues associated with BN by
opting for Group Normalization (GN) over BN in the pre-
trained training model. However, what if a pre-trained model
already includes BN modules and how do we address this is-
sue? Delta [Zhao et al., 2023] introduced test time renormal-
ization to refine the statistical estimation in BN. While this
proves helpful in addressing situations with small batch sizes,
it still falls short in extremely small batch size cases. Besides,
gradient accumulation is a common technique during the
training phase to tackle challenges arising from small batch
sizes. It entails accumulating gradients computed across mul-
tiple batches and updating them collectively. However, sim-
ple gradient accumulation alone does not mitigate the nega-
tive transfer phenomenon in TTA methods when confronted
with small batch sizes.

To the best of our knowledge, our study is the first to in-
vestigate TTA with extremely small batch sizes. We first con-
duct a thorough analysis to comprehend why previous ap-
proaches relying on Batch Normalization struggle to adapt
the model during test time. We found that when the batch
size is particularly small, there is significant discrepancy be-
tween the BN statistics of the current batch and the en-
tire test dataset. Additionally, the gradient computed from
small batches is also highly unreliable. Then we introduce
our NanoAdapt approach to mitigate this issue. NanoAdapt
comprises three main components: Dynamic BN Calibration
(DBC), Entropy-Weighted Gradient Accumulation (EWGA),
and Proxy Computation Graph (PCG). DBC harnesses histor-
ical information and employs the Taylor series to correct the
statistics estimations. EWGA uses the entropy of each sam-
ple’s label prediction to weigh the loss and accumulates them
for backpropagation. PCG employs different data augmenta-
tions to construct a proxy computation graph for the forward
process, capturing the sample interactions for backpropaga-
tion.

In summary, our contributions are as follows:

• We showcase and give a thorough analysis of the nega-
tive transfer phenomenon in prior TTA methods with ex-
tremely small batch sizes, showing that inaccurate statis-
tical estimates and the unreliable gradients collectively
contribute to this phenomenon.

• We have designed three powerful tools: DBC, EWGA,
and PCG to respectively solve these issues. DBC aims

to correct BN statistics at each time step. EWGA fo-
cuses on reduce noise in gradients and PCG is designed
to capture sample interactions in gradients.

• We evaluate NanoAdapt on three distribution shift
benchmark datasets, showing that it consistently miti-
gates negative transfer for existing TTA methods with
(extremely) small batch sizes.

2 Related Works
Unsupervised Domain Adaptation (UDA) Unsupervised
domain adaptation (UDA) seeks to enhance models’ capacity
for generalization to target domain data, even when no la-
beled data is available in the target domain. UDA commonly
involves methods such as feature alignment [Zellinger et al.,
2017; Long et al., 2017], adversarial training [Ganin and
Lempitsky, 2015; Yi-Hsuan Tsai, 2018; Ganin et al., 2016]
and self-supervised training [Hoyer et al., 2022; Zou et al.,
2018]. In more stringent scenarios, such as Source-Free Do-
main Adaptation (SFDA), it is not feasible to acquire source
domain data, and only the source domain model is available
[Liang et al., 2020; Qiu et al., 2021; Ding et al., 2022]. How-
ever, SFDA still faces limitations in addressing a more real-
istic scenario where the distribution of the target domain is
unknown before testing commences.

Domain Generalization (DG) Domain generalization
(DG) focuses on developing models capable of learning from
multiple domains and performing well on unseen testing do-
mains. Techniques such as meta-learning [Li et al., 2019;
Li et al., 2018a], data augmentation [Prakash et al., 2019;
Nam et al., 2021], and domain alignment [Li et al., 2018b],
style augmentation [Li et al., 2022; Kang et al., 2022;
Zhang et al., 2022b] are employed. However, DG is not ca-
pable of generalizing to all target domains without any prior
knowledge of the specific target domain.

Test Time Adaptation (TTA) Test Time Adaptation (TTA)
focuses on dynamically adapting a pre-trained model in real-
time. This adaptation occurs as a test data stream in batches,
offering a more agile and online approach to model refine-
ment. Pred BN [Nado et al., 2020] replaces the normaliza-
tion statistics computed during training with those derived
from the test mini-batch. TENT [Wang et al., 2021] opti-
mizes the affine parameters in Batch Normalization through
entropy minimization during testing. Long-term test time
adaptation in dynamically changing environments is explored
by EATA [Niu et al., 2022] and CoTTA [Wang et al., 2022].
AdaContrast [Chen et al., 2022] employs contrastive learning
to enhance feature learning, incorporating a pseudo label re-
finement mechanism. LAME [Boudiaf et al., 2022] adjusts
the model’s output probabilities via the Laplacian adjusted
maximum-likelihood estimation. SAR [Niu et al., 2023] re-
places BN with GN in the training phase and introduces a
sharpness-aware and reliable entropy minimization method.
OWTTT [Li et al., 2023] develops adaptive strong OOD
pruning and proposes a method to dynamically expand pro-
totypes to represent robust OOD samples. In various real-
world scenarios, the demand for constrained hardware re-
sources or just-in-time adaptation often necessitates adapting
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models with small batch sizes. However, prior research has
largely overlooked the challenges associated with adaptation
under small batch sizes. Delta [Zhao et al., 2023] introduces
a test time batch renormalization technique to enhance esti-
mated normalization statistics, but it falls short of fully re-
solving this issue. Our proposed method, NanoAdapt, effec-
tively addresses this problem and mitigates the occurrence of
the negative transfer phenomenon.

3 Problem Statement and Analysis
3.1 TTA Problem Definition
In the context of Test Time Adaptation, we denote the training
data as Dtrain = {(xi, yi)}Ntrain

i=1 ∼ Ptrain(X,Y ), where x ∈ X
represents the input, and y ∈ Y represents the label. We de-
note the test data as Dtest = {(xj , yj)}Ntest

j=1 ∼ Ptest(X,Y ),
where the labels {yj} are not available. It should be noted
that the test data is delivered in a streaming fashion, organized
into batches. We consider the common covariate distribution
shift, which can be formalized as Ptrain(X) ̸= Ptest(X) while
Ptrain(Y |X) = Ptest(Y |X). A pre-trained model f{θ0,s0} is
characterized by model weights θ0 and normalization statis-
tics s0 learned from Dtrain. It requires updates at each time
step t to attain f{θt,st} and generate label predictions for sam-
ples xt. In real-world scenarios, the batch size of incoming
test data may vary at each time step. In the most extreme
scenario, each batch may comprise only one sample.

3.2 The Negative Transfer Phenomenon With
Small Batch Sizes

We are familiar with the forward process of BN layers, which
unfolds as follows:

µ =
1

N

N∑
i=1

xi, σ2 =
1

N

N∑
i=1

(xi − µ)2,

x̂i =
xi − µ√
σ2 + ϵ

, yi = γx̂i + β,

(1)

where xi is the input and yi is the output of the BN layer.
µ and σ are the normalization statistics and γ and β are the
affine parameters.

Traditionally, each BN layer records {µ0, σ0} in the train-
ing phase and directly applies them in the testing phase:

µ = µ0, σ = σ0. (2)

In previous TTA methods, notable works have implemented
treatments specifically tailored for Batch Normalization lay-
ers. Taking the two most representative works as examples,
Pred BN [Nado et al., 2020] entails substituting the nor-
malization statistics computed during training with those ob-
tained from the test mini-batch. Meanwhile, TENT [Wang et
al., 2021] further minimize entropy and selectively updates
only the affine parameters of the BN layers. Their BN statis-
tics are all calculated using the information from the current
batch at time step t:

µ = µt, σ = σt. (3)

Figure 2: Error Rate on Cifar100-C. ”Source” denotes the perfor-
mance of the unadapted pre-trained ResNet-50 model.

When dealing with small batch sizes, the calculated statis-
tics are not accurate, and the computed gradient is also unre-
liable.

As illustrated in Fig. 2, when the batch size exceeds 100,
both Pred BN and Tent perform well. However, as the batch
size decreases to 1, their performance declines. In the most
severe scenarios when N=1, their error rate reaches 99%.
Since Tent requires gradient updates, we employ gradient ac-
cumulation to assist it, which helps reduce the classification
error but falls short of avoiding the negative transfer phe-
nomenon. With the implementation of NanoAdapt, the nega-
tive transfer phenomenon can be effectively circumvented.

4 The Proposed Method: NanoAdapt
4.1 Dynamic BN Calibration
To address inaccurate statistics within each testing batch, a
straightforward solution arises: employing the Exponential
Moving Average(EMA) to update the statistics in each time
step t:

µ̂θt(x1..t) = mµ̂θt−1(x1..t−1) + (1−m)µθt(xt),

σ̂2
θt(x1..t) = mσ̂2

θt−1
(x1..t−1) + (1−m)σ2

θt(xt),
(4)

where m denotes the smoothing coefficient, µθt(xt) repre-
sents the mean value of each input x before the BN layers
at time step t, µ̂θt−1

(x1..t−1) represents the aggregated mean
estimates from past time steps 1 to t-1. µ̂θt(x1..t) represents
the final mean estimation with current model θt. The notation
for the corresponding variance σ2 has a similar interpretation.

Due to the second-order nature of σ2, a more effective ap-
proach is to maintain the mean values of both x and x2 for
each feature map before the BN layer at time step t and cal-
culate σ̂2

t based on the corresponding relationship.

µ̂θt(x1..t) = mµ̂θt−1
(x1..t−1) + (1−m)µθt(xt),

µ̂θt(x
2
1..t) = mµ̂θt−1

(x2
1..t−1) + (1−m)µθt(x

2
t ),

σ̂2
θt(x1..t) = µ̂θt(x

2
1..t)− µ̂2

θt(x1..t).

(5)

Nonetheless, a notable issue arises with this computation
that both µ̂θt−1

(x1..t−1) and µ̂θt−1
(x2

1..t−1) are computed us-
ing the previous model weights θt−1, For a more accurate es-
timation, these values should be computed under the current
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Figure 3: Overall structure of NanoAdapt. NanoAdapt consists of three components: Dynamic BN Calibration (DBC), Entropy-Weighted
Gradient Accumulation (EWGA) and Proxy Computation Graph (PCG). DBC harnesses historical information and employs the Taylor series
to correct the statistics estimations. EWGA uses the entropy of each sample’s label prediction(H(xt)) to weigh the loss(Lt) and accumulates
the gradients(gt) for backpropagation. PCG employs different data augmentations to construct a proxy computation graph for the forward
process, capturing the sample interaction terms for backpropagation.

model weights θt. In essence, what we seek are µ̂θt(x1..t−1)
and µ̂θt(x

2
1..t−1).

Given that the model weights θt are updated through gra-
dient descent, when the learning rate is sufficiently small, the
alterations in parameters at each time step t can be perceived
as a continuous function. Hence, The Taylor polynomials
can be employed to approximately compute µ̂θt(x1..t−1) and
µ̂θt(x

2
1..t−1) derived from past model weights θt−1 under the

current model weights θt.

µ̂θt(x1..t−1) = µ̂θt−1
(x1..t−1) +

∂µ̂θt−1
(x1..t−1)

∂θt−1
(θt − θt−1)

+O(∥θt − θt−1∥2),

µ̂θt(x
2
1..t−1) = µ̂θt−1

(x2
1..t−1) +

∂µ̂θt−1(x
2
1..t−1)

∂θt−1
(θt − θt−1)

+O(∥θt − θt−1∥2),
(6)

where O(·) represents higher-order terms.
To expedite computation, we neglect higher-order terms.

Additionally, empirical observations suggest a swift decline
in the gradients of layers preceding the BN layer [Yao et al.,
2021]. So we focus solely on computing the gradients of the
convolutional layer preceding the BN layer. We simplify Eq.
(6) as follows:

µ̂θl
t
(x1..t−1) ≈ µ̂θl

t−1
(x1..t−1) +

∂µ̂θl
t−1

(x1..t−1)

∂θlt−1

(θlt − θlt−1),

µ̂θl
t
(x2

1..t−1) ≈ µ̂θl
t−1

(x2
1..t−1) +

∂µ̂θl
t−1

(x2
1..t−1)

∂θlt−1

(θlt − θlt−1),

(7)
where the superscript l indicates that only the parameters of
the layer preceding the BN layer l are considered. Therefore,
the final dynamic BN calibration can be formalized as the

following:

µ̂θt(x1..t) = m(µ̂θl
t−1

(x1..t−1) +
∂µ̂θl

t−1
(x1..t−1)

∂θlt−1

(θlt − θlt−1))

+ (1−m)µθt(xt),

µ̂θt(x
2
1..t) = m(µ̂θl

t−1
(x2

1..t−1) +
∂µ̂θl

t−1
(x2

1..t−1)

∂θlt−1

(θlt − θlt−1))

+ (1−m)µθt(x
2
t ),

σ̂2
θt(x1..t) = µ̂θt(x

2
1..t)− µ̂2

θt(x1..t).
(8)

The implementation is depicted in Figure 2. In each time
step t, for each BN layer l, we apply the correction outlined
in Eq. (8) to obtain estimates of the statistics µ̂θt(x1..t) and
σ̂θt(x1..t). These estimates are then applied to the BN layer,
and the estimates at the current time step t are integrated into
the subsequent time step t+1.

4.2 Entropy-Weighted Gradient Accumulation
with Proxy Computation Graph

To deal with unreliable gradient with small batch sizes, we
propose to employ an entropy-weighted gradient accumula-
tion strategy that leverages entropy of each sample’s label
prediction to assess the reliability of the gradient computed
by the loss. Subsequently, these gradients are accumulated
for backpropagation. This can be formulated as follows:

L =
S∑

i=1

r

S
·min(

1

H(x)
, 1) · Lo(x),

r =
log(S) + log(i)

2 · log(S)
,

(9)

where H(x) denotes the entropy of the sample’s label predic-
tion, Lo represents the original loss computed by TTA meth-
ods, S denotes the steps for gradient accumulation, L repre-
sents the corrected loss of x for gradient descent, and r is em-
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ployed to progressively increase the weighting of subsequent
step computations since their BN statistics are more accurate.

When combined with dynamic BN calibration proposed in
Section 4.1, this approach is sufficiently effective in achieving
results nearly comparable to those obtained with larger batch
sizes. However, this success diminishes when the batch size
is extremely small, such as N=1. In the following, we will
give a formal analysis, and propose our proxy computation
graph strategy to compensate this issue.

Analysis for Batch Size 1 Due to the forward process of
BN layers shown in Eq. (1), we can compute the gradients
across the BN layers as follows:

∂L

∂γ
=

N∑
i=1

∂L

∂yi
x̂i,

∂L

∂β
=

N∑
i=1

∂L

∂yi
,

∂L

∂x̂i
=

N∑
i=1

∂L

∂yi
γ,

∂L

∂σ2
=

N∑
i=1

∂L

∂x̂i
· (xi − µ) · −1

2
(σ2 + ϵ)−

3
2 ,

∂L

∂µ
=

∂L

∂σ2

∑m
i=1 −2(xi − µ)

m
+

N∑
i=1

∂L

∂x̂i

−1√
σ2 + ϵ

,

∂L

∂xi
=

1√
σ2 + ϵ

∂L

∂x̂i
+

1

N

∂L

∂µ
+

2(xi − µ)

N

∂L

∂σ2
.

(10)
We can further simplify the gradient over xi it as follows:

∂L

∂xi
=

1

N
√
σ2 + ϵ

(N
∂L

∂x̂i
−

N∑
j=1

∂L

∂x̂j
− x̂i

N∑
j=1

∂L

∂x̂j
x̂j).

(11)
The gradient includes the interaction term x̂i

∑N
j=1

∂L
∂x̂j

x̂j

between different samples within one batch. When N=1, the
interaction term disappears, indicating that even if we employ
dynamic BN calibration and accumulate entropy-weighted
gradients, the computation graph remains different.

Proxy Computation Graph Strategy To build a proxy
computation graph with sample interaction terms, we propose
employing data augmentation to generate various views of
a single sample x. As illustrated in Fig. 3, in the forward
process, we randomly select k distinct data augmentations
including rotation, random crop, flipping, grayscale, satura-
tion to generate {x̂1, x̂2, · · · , x̂k} and combine them with the
original image x to feed into the network and construct the
proxy computation graph. Then we employ the dynamic BN
calibration to exclusively replace the statistics while preserv-
ing the forward proxy computation graph.

µ̂, σ̂ = DBC(µ, σ) (12)

In other words, we fool the model into believing that the
statistics are computed by the proxy computation graph. Dur-
ing the backpropagation process, the gradient will traverse
through the substituted statistics in the proxy computation
graph.

5 Experiments
5.1 Experimental Setup
Datasets We conduct experiments on three distribution shift
datasets: Cifar10-C, Cifar100-C and ImageNet-C [Hendrycks
and Dietterich, 2019], which are commonly used to evaluate
the performance of test time adaptation. These datasets cover
a comprehensive range of 15 distinct corruption types. For
each corruption type, there are 5 severity levels, providing a
nuanced evaluation of the models under varying degrees of
data corruption.
Baselines Pred BN [Nado et al., 2020] and Tent [Wang et
al., 2021] represent pioneering approaches in TTA, specifi-
cally addressing the adaptation of BN layers. Notably, Pred
BN does not require gradient updates, while Tent necessitates
gradient updates. Subsequent TTA works often build upon
these two studies to make modifications in other directions.
Our paper specifically addresses the issue that TTA methods
relying on BN may exhibit negative transfer when the batch
size is small. Therefore, we choose these two as baselines.
Furthermore, we compare with Delta [Zhao et al., 2023], the
latest and so far the only method that addresses the inaccu-
racy of BN statistics.
Implementation Details We evaluate the results at the most
severe corruption level (level 5). We use the ResNet-50 [He
et al., 2016] architecture as the pre-trained model for our ex-
periments. The performance of ResNet-50 on each dataset
is denoted as Source. For optimization, we utilize the Adam
optimizer [Kingma and Ba, 2014] with a fixed learning rate
of 0.001. In the dynamic BN calibration, we set the smooth-
ing coefficient to m = 0.98. For the construction of the proxy
computation graph, we opt for a value of k = 3 as the number
of augmentations.

5.2 Comparative Analysis
Table 1 - 3 respectively report the results on the three dis-
tribution shift datasets. As observed in Table 1 and Table
2, when N=200, Pred BN and Tent perform well, and their
error rates exhibited no significant change when augmented
with Delta or NanoAdapt. However, with reduced batch
size (N=10), both Pred BN and Tent experience a decline in
performance, albeit still outperforming Source (without any
adaptation). Applying Delta results in a partial improvement
in performance, while applying NanoAdapt can nearly match
or even slightly surpass the performance with N=200. When
N=1, both Pred BN and Tent exhibit a negative transfer phe-
nomenon. Delta proves effective in reducing the error rate
with Pred BN, as it doesn’t require gradient updates. How-
ever, its impact is limited with Tent, as the gradient from a
single sample may introduce excessive noise. On the other
hand, when NanoAdapt is applied, both Pred BN and Tent
experience a substantial decrease in error rate, surpassing the
Source results. This indicates that NanoAdapt can effectively
address the negative transfer phenomenon even with a mini-
mal batch size. ImageNet-C is a more challenging dataset. As
shown in Table 3, NanoAdapt consistently outperforms Delta.
The only pity is that when N=1, NanoAdapt can only assist
Tent in reducing its error rate from 99.97% to 74.10%, which
is still slightly lower than the Source. This suggests that on
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Cifar10-C error rate on various batch sizes with corruption level 5

Method gauss shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixel jpeg Average

Source 28.77 22.95 26.18 9.45 20.59 10.56 9.25 14.15 15.27 17.49 7.60 20.95 14.73 41.31 14.67 18.26

N = 200

Pred BN 18.52 16.17 22.27 8.97 21.85 10.47 9.68 12.80 13.33 15.02 7.56 11.90 16.33 15.00 17.46 14.49
+Delta 18.45 16.05 21.73 10.24 22.77 10.69 9.62 13.32 13.22 16.10 7.74 12.82 16.40 16.72 17.25 14.87
+NanoAdapt 15.22 13.15 18.40 9.11 19.12 9.30 7.87 10.46 9.63 12.89 6.34 9.18 13.93 13.93 15.25 12.25
Tent 15.60 13.24 18.78 7.93 18.08 8.98 8.01 10.39 10.88 12.28 6.64 10.05 14.05 11.40 14.75 12.07
+Delta 14.83 13.71 19.99 10.30 19.74 10.09 8.19 11.05 11.15 13.87 7.29 12.31 14.77 14.34 14.79 13.09
+NanoAdapt 13.51 12.33 17.16 8.60 16.87 9.08 7.59 9.46 9.40 10.50 6.35 8.37 12.87 11.65 13.35 11.14

N = 10

Pred BN 23.26 21.17 26.71 13.32 27.09 14.78 13.87 17.78 17.69 19.70 11.57 16.83 21.28 19.72 22.47 19.15
+Delta 19.56 17.16 23.48 9.72 22.99 11.24 10.30 13.68 14.35 16.11 8.24 13.76 17.08 15.88 18.38 15.46
+NanoAdapt 15.76 13.91 19.34 8.43 19.46 9.69 8.31 10.71 10.05 12.92 6.61 9.10 14.24 13.16 16.05 12.52
Tent 21.29 21.41 24.47 13.52 29.12 15.45 15.77 16.71 16.81 18.04 12.25 14.63 21.71 17.28 21.31 18.65
+Delta 16.83 15.79 20.84 10.09 24.14 11.66 9.83 13.44 12.44 14.36 8.80 13.59 17.08 14.51 16.70 14.67
+NanoAdapt 13.90 11.99 16.95 7.91 17.03 8.67 7.55 9.76 9.15 10.29 6.32 8.02 13.02 10.73 13.66 11.00

N = 1

Pred BN 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
+Delta 30.04 28.02 33.75 19.22 34.26 21.61 20.07 24.35 26.22 25.83 18.12 60.53 28.16 26.39 30.66 28.48
+NanoAdapt 23.01 20.91 25.95 14.53 27.31 16.20 14.28 17.54 16.54 19.62 11.94 15.98 22.13 19.99 22.62 19.24
Tent 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
+Delta 78.67 80.59 80.72 76.42 79.00 75.69 70.63 72.06 70.35 78.94 66.82 81.49 79.81 74.80 77.83 76.25
+NanoAdapt 17.91 15.79 21.37 9.39 21.42 10.67 9.53 12.20 11.22 14.35 7.55 9.09 16.59 14.97 17.80 13.99

Table 1: Error rate on Cifar10-C. Bold value represents the best result.

Cifar100-C error rate on various batch sizes with corruption level 5

Method gauss shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixel jpeg Average

Source 65.58 60.05 59.10 32.05 50.94 33.56 32.53 41.39 45.15 51.38 31.63 55.53 40.28 59.72 42.45 46.76

N = 200

Pred BN 44.31 44.03 47.35 32.11 45.85 32.84 33.03 38.36 37.90 45.38 29.86 36.48 40.58 36.71 44.10 39.26
+Delta 44.31 43.52 46.81 33.79 46.90 33.28 32.65 38.90 38.00 46.68 29.85 37.52 41.03 38.75 44.01 39.73
+NanoAdapt 41.28 40.92 43.92 31.73 43.56 31.05 29.77 35.59 34.22 43.13 27.51 33.75 38.71 35.12 41.29 36.77
Tent 40.11 39.50 41.95 29.65 41.85 30.72 29.67 34.45 34.76 39.04 27.43 32.99 37.55 32.88 40.23 35.52
+Delta 39.72 40.30 42.93 32.00 43.60 32.07 30.16 35.73 35.36 41.76 29.26 35.56 39.01 37.08 40.79 37.02
+NanoAdapt 38.51 38.29 39.80 29.77 40.62 30.04 28.31 33.47 33.12 36.98 26.59 30.97 36.53 32.61 38.67 34.29

N = 10

Pred BN 52.62 50.78 54.64 39.62 53.67 40.22 40.83 46.16 45.77 52.73 37.80 44.17 48.71 45.44 51.63 46.99
+Delta 45.71 45.31 48.40 33.56 47.62 34.32 33.93 40.30 39.68 46.77 31.58 39.56 41.90 38.34 45.74 40.85
+NanoAdapt 42.44 41.98 45.13 31.29 43.68 31.57 31.15 36.63 35.14 43.15 28.25 34.29 39.08 34.78 42.40 37.40
Tent 52.68 48.24 49.14 38.85 52.06 40.59 39.39 43.42 45.69 46.25 37.39 44.59 47.78 41.98 51.01 45.27
+Delta 42.65 42.05 41.20 31.78 45.12 33.47 32.11 36.58 38.03 39.47 31.07 40.22 39.67 33.84 42.40 37.98
+NanoAdapt 38.92 38.50 40.61 29.08 40.27 29.72 28.41 33.26 33.33 37.18 26.59 30.00 36.25 31.89 38.95 34.20

N = 1

Pred BN 99.04 98.97 98.92 99.13 99.01 99.01 99.08 99.05 99.05 99.05 99.06 99.10 98.99 99.11 99.00 99.04
+Delta 61.18 60.56 62.98 50.12 62.79 51.79 51.12 56.01 57.24 60.05 49.16 88.39 58.48 54.96 61.87 59.11
+NanoAdapt 52.60 51.99 55.39 41.63 54.87 43.15 42.57 48.22 46.42 53.11 39.26 48.42 50.56 46.68 53.40 48.55
Tent 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00
+Delta 93.86 94.35 94.17 91.00 93.54 91.87 90.76 91.99 91.87 93.61 90.36 96.38 92.58 91.32 93.09 92.72
+NanoAdapt 46.38 45.65 49.51 33.45 46.72 33.85 33.17 38.85 37.65 46.52 30.30 34.47 41.98 37.08 45.15 40.05

Table 2: Error rate on Cifar100-C. Bold value represents the best result.
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ImageNet-C error rate on various batch sizes with corruption level 5

Method gauss shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixel jpeg Average

Source 94.32 88.44 94.64 74.40 82.94 70.92 64.66 76.82 72.12 76.10 39.36 84.32 71.40 59.26 52.14 73.46

N = 50

Pred BN 71.68 68.54 71.66 70.30 69.52 54.24 48.08 54.54 58.58 47.76 31.06 69.60 44.28 41.04 50.70 56.77
+Delta 70.70 68.84 70.92 85.82 68.30 53.98 47.46 55.08 61.16 47.68 36.58 73.90 45.44 40.76 49.42 58.40
+NanoAdapt 69.34 66.86 68.94 75.80 67.44 54.16 46.76 55.04 56.98 47.36 30.82 70.36 47.46 40.20 48.82 56.42
Tent 61.26 58.06 59.10 61.04 60.16 45.44 42.28 45.78 50.82 40.16 30.92 53.90 40.48 37.10 43.52 48.67
+Delta 59.46 58.94 62.36 97.32 60.44 47.14 41.74 47.20 52.20 42.38 33.88 70.98 44.38 38.82 43.16 53.36
+NanoAdapt 58.72 59.34 59.60 60.18 58.62 45.48 41.14 44.82 52.02 39.20 30.12 54.22 39.74 36.62 42.14 48.13

N = 10

Pred BN 77.98 75.82 77.26 77.58 76.86 63.62 57.10 61.68 64.86 55.82 40.18 74.88 53.08 50.40 59.68 64.45
+Delta 74.20 72.76 72.48 76.12 72.34 59.46 51.14 58.54 60.84 49.98 33.00 79.44 49.34 46.96 53.78 60.69
+NanoAdapt 69.64 67.42 68.68 72.86 66.94 54.06 47.44 56.20 57.02 46.86 32.50 73.98 45.84 40.26 51.06 56.72
Tent 88.90 86.92 88.58 86.72 89.88 74.74 71.28 69.74 79.52 66.76 47.48 85.42 63.16 55.86 70.70 75.04
+Delta 74.42 74.70 72.82 95.08 75.96 58.28 52.68 55.36 65.16 48.80 39.10 89.82 51.76 47.72 51.94 63.57
+NanoAdapt 61.00 62.64 60.88 68.30 59.20 46.84 42.54 48.42 52.38 43.02 30.06 70.06 41.52 37.58 44.12 51.24

N = 1

Pred BN 99.96 99.96 99.94 99.98 99.92 99.96 99.92 99.96 99.94 99.94 99.94 99.96 99.96 99.94 99.92 99.95
+Delta 91.14 91.90 88.02 92.34 92.70 91.16 83.38 8.04 90.22 81.16 68.72 99.72 82.46 79.46 83.06 81.57
+NanoAdapt 73.22 70.60 71.34 70.20 74.34 62.76 54.80 59.92 61.02 50.62 37.44 78.14 51.86 48.24 56.90 61.43
Tent 99.88 99.98 99.98 99.98 99.98 99.98 99.86 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.97
+Delta 99.68 99.72 99.40 99.64 99.52 99.58 98.86 99.04 99.56 99.12 98.10 99.60 99.26 99.06 99.06 99.28
+NanoAdapt 77.72 77.82 85.96 82.84 86.20 73.44 70.88 72.02 76.62 68.92 48.30 89.82 68.04 61.94 70.92 74.10

Table 3: Error rate on ImageNet-C. Bold value represents the best result.

more challenging datasets like ImageNet-C, NanoAdapt pre-
vents Tent from experiencing negative transfer but may not
enable it to achieve nearly equivalent results to larger batch
sizes.

5.3 Ablation Study of Different Components
We conducted a comprehensive ablation study on each com-
ponent within NanoAdapt. As illustrated in Table 4, Tent
performs poorly as the batch size decreases in the absence
of NanoAdapt. Both Dynamic BN Calibration (DBC) and
Entropy-Weighted Gradient Accumulation (EWGA) prove to
be beneficial, although they may not assist in extreme situ-
ations when N=1. Combining DBC and EWGA effectively
resolves the negative transfer phenomenon. Furthermore, in-
corporating the Proxy Computation Graph (PCG) results in
improved performance.

DBC EWGA PCG N=200 N=10 N=1

- - - 35.52 46.99 99.04
✓ - - 36.07 36.89 90.95
- ✓ - 35.51 43.62 97.20
✓ ✓ - 36.07 35.91 43.66
✓ ✓ ✓ 34.29 34.20 40.05

Table 4: Average Error Rate on Cifar100-C (Corruption Level 5)
when Tent Combines Each Component of NanoAdapt

5.4 Hyperparameter Sensitivity
As depicted in Table 5, we evaluate Tent+NanoAdapt with
N=1, varying DBC smoothing factor m from 0.9, 0.92, 0.94,
0.96 to 0.98. In our experiments, m = 0.98 yields optimal

performance. Additionally, we explore different selections
of augmentation views k, ranging from 1 to 4. Notably, we
observe that when k reaches 3, the performance peaks.

m 0.9 0.92 0.94 0.96 0.98
Error Rate 52.74 50.11 47.28 44.32 40.05

k 0 1 2 3 4
Error Rate 43.66 41.48 41.06 40.05 40.99

Table 5: Average Error Rate on Cifar100-C (Corruption level 5,
N=1) with Tent+NanoAdapt under different hyperparameters

6 Conclusion
In this paper, we showcase the presence of negative transfer
in previous test time adaptation methods with extremely small
batch sizes. We attribute this issue to inaccurate BN statistics
estimates and unreliable gradient updates. To address these
challenges, we propose NanoAdapt, comprising three key
components: dynamic BN calibration, entropy-weighted gra-
dient accumulation and proxy computation graph. Dynamic
BN calibration utilizes historical information to refine the
estimation of Batch Normalization statistics, incorporating
the Taylor series for additional correction. Entropy-weighted
gradient accumulation employs entropy to weigh the loss and
accumulate the gradients for backpropagation. The proxy
computation graph is constructed to capture sample interac-
tion terms in backpropagation, enhancing NanoAdapt’s capa-
bilities. We evaluate NanoAdapt on three distribution shift
datasets, demonstrating its efficiency in mitigating the nega-
tive transfer phenomenon with minimal batch sizes.
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